
REF: Resource Elasticity Fairness with
Sharing Incentives for Multiprocessors

Seyed Majid Zahedi
Duke University

seyedmajid.zahedi@duke.edu

Benjamin C. Lee
Duke University

benjamin.c.lee@duke.edu

Abstract

With the democratization of cloud and datacenter comput-
ing, users increasingly share large hardware platforms. In
this setting, architects encounter two challenges: sharing
fairly and sharing multiple resources. Drawing on economic
game-theory, we rethink fairness in computer architecture.
A fair allocation must provide sharing incentives (SI), envy-
freeness (EF), and Pareto efficiency (PE).

We show that Cobb-Douglas utility functions are well
suited to modeling user preferences for cache capacity and
memory bandwidth. And we present an allocation mecha-
nism that uses Cobb-Douglas preferences to determine each
user’s fair share of the hardware. This mechanism provably
guarantees SI, EF, and PE, as well as strategy-proofness in
the large (SPL). And it does so with modest performance
penalties, less than 10% throughput loss, relative to an un-
fair mechanism.

Categories and Subject Descriptors B.3.2 [Hardware]:
Memory Structures; C.1.2 [Processor Architectures]: Mul-
tiple Data Stream Architectures; F.2.2 [Theory of Compu-
tation]: Analysis of Algorithms and Problem Complexity

Keywords Multiprocessor architectures, fair sharing, eco-
nomic mechanisms, game theory

1. Introduction
Datacenter platforms are often poorly utilized, running at
less than 30% of peak capability [1]. With poor utilization,
server power is amortized over little computation. To ad-
dress this inefficiency, software must share hardware. Mech-
anisms for fair resource allocation (or a lack thereof) de-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
ASPLOS ’14, March 1–5, 2014, Salt Lake City, Utah, USA.
Copyright © 2014 ACM 978-1-4503-2305-5/14/03. . . $15.00.
http://dx.doi.org/10.1145/2541940.2541962

termine whether users have incentives to participate in dy-
namic, shared hardware platforms. In this setting, architects
encounter two challenges: sharing fairly and sharing multi-
ple resources.

We rethink fairness in resource allocation for computer
architecture. Adopting the game-theoretic definition, a fair
hardware allocation is one in which

• all users perform no worse than under an equal division,

• no user envies the allocation of another, and

• no other allocation improves utility
without harming a user.

Our resource allocation strategy relies on robust game the-
ory, encouraging users to share hardware and ensuring equi-
table allocations when they do. Conventional wisdom, on the
other hand, assumes that users have no choice but to share.
In this setting, prior efforts devise mechanisms to equally
distribute performance penalties from sharing, which is not
equitable [14, 28].

Drawing on economic game theory, we present a fair,
multi-resource allocation mechanism. This mechanism and
its resulting allocations provide key game-theoretic proper-
ties. First, the mechanism provides sharing incentives (SI),
ensuring that each agent is at least as happy as they would
be under an equal division of shared resources. Without SI,
agents would not participate in the proposed sharing mech-
anism. Instead, they would rather equally and inefficiently
divide the hardware. Supposing agents share a system, they
will desire a fair division of the hardware.

In economic game theory, a fair allocation is defined to be
envy-free (EF) and Pareto efficient (PE) [37]. An allocation
is EF if each agent prefers his own allocation to other agents’
allocations. Equitable sharing is defined by EF for all agents.
An allocation is PE if we cannot improve an agent’s utility
without harming another agent.

Finally, a mechanism to allocate hardware should be
strategy-proof (SP), ensuring that agents cannot gain by
misreporting their preferences. Without SP, strategic agents
may manipulate the hardware allocation mechanism by ly-
ing. In practice, SP may be incompatible with SI, EF, and

PE [19]. But there exist allocation mechanisms that are ap-
proximately SP as long as many agents share a system. We
refer to this weaker guarantee as strategy-proofness in the
large (SPL).

Thus, we present a new framework for reasoning about
fair resource allocation in computer architecture. Our contri-
butions include the following:

• Cobb-Douglas Utility in Computer Architecture. We
show that Cobb-Douglas utility functions are well suited
to model user performance and preferences for multiple
hardware resources. Given Cobb-Douglas utilities, we
detail conditions for SI, EF, and PE. (§3)

• Fair Allocation for Computer Architecture. We present
a new mechanism to fairly allocate multiple hardware re-
sources to agents with Cobb-Douglas utilities. We prove
its game-theoretic properties (SI, EF, PE, SPL) and de-
scribe its implementation. (§4)

• Case Study for Cache Size and Memory Bandwidth.
We apply the mechanism to fairly allocate cache size
and memory bandwidth. We evaluate with cycle-accurate
processor and memory simulators for diverse application
suites, including PARSEC, SPLASH-2x, and Phoenix
MapReduce. (§5)

• Performance Trade-offs. We compare our mechanism
against prior approaches that equalize slowdown, de-
scribing how the latter violates game-theoretic fairness.
Our mechanism provides fairness with modest penalties
(< 10% throughput loss) relative to a mechanism that
does not provide SI, EF, PE, and SPL. (§5)

Without loss of generality, we evaluate our multi-resource al-
location mechanism for cache size and memory bandwidth.
In future, the mechanism can support additional resources,
such as the number of processor cores. Collectively, our find-
ings establish robust foundations for the fair division of mul-
tiple hardware resources.

2. Motivation and Background
We present a mechanism for allocating shared resources.
This mechanism guarantees SI, EF, PE, and SPL. And we
demonstrate its ability to allocate last-level cache capacity
and off-chip memory bandwidth. Our mechanism design
relies on two fundamental insights about utility functions for
computer architecture.

First, we use Cobb-Douglas utility functions to accurately
capture hardware performance. For example, u = xαxyαy

models performance u as a function of resource allocations
for cache capacity x and memory bandwidth y. The expo-
nents α capture non-linear trends and model performance
elasticity (i.e., sensitivity) for each hardware resource. For
example, if αx > αy , the agent prefers cache capacity to
memory bandwidth.

Second, we design a mechanism that uses each agent’s
reported resource elasticity α to determine his fair share of
hardware. Given Cobb-Douglas utilities, the fair share can
be expressed in a closed-form equation. Thus, the mech-
anism is computationally trivial. Yet the resulting alloca-
tion provably guarantees each of the desired game-theoretic
properties: SI, EF, PE, and SPL.

Game-theoretic versus Heuristic Fairness. Our ap-
proach addresses fundamental limitations in prior work.
Prior mechanisms consider each user’s performance penalty
incurred from sharing [12, 13]. They then allocate a re-
source, such as memory bandwidth, trying to equalize slow-
down [28]. While this approach produces equal outcomes,
it is not fair in the economic sense. Our rigorous, game-
theoretic analysis shows that equalizing slowdown provides
neither SI nor EF.

Without these properties, strategic users would have no
incentive to share. They would prefer an equal division of
memory bandwidth rather than receive an equal slowdown
guarantee from the allocation mechanism. Allocating mul-
tiple resources with heuristics, such as hill-climbing [4], is
even more difficult and provides even fewer guarantees.

Cobb-Douglas versus Leontief. Cobb-Douglas allows
us to guarantee fairness in computer architecture for the
first time. Although Leontief [9, 15, 21] provides the same
guarantees in distributed systems, they do not apply in a
more fine-grained analysis of hardware behavior for two
reasons.

First, unlike Leontief, Cobb-Douglas utilities capture di-
minishing returns and substitutability. Both of these effects
are prevalent in architecture, whether in Amdahl’s Law for
multi-core parallelism [20], in data locality for cache siz-
ing, or in communication intensity for bandwidth allocation.
In these settings, linear Leontief preferences of the form
u = min(x1/α1, x2/α2) are ineffective.

Second, consider the complexity of Cobb-Douglas and
Leontief. We use classical regression to fit log-linear Cobb-
Douglas to architectural performance. In contrast, since
Leontief is concave piecewise-linear, fitting it would require
non-convex optimization, which is computationally expen-
sive and possibly NP-hard [36]. Note that [9, 15, 21] did
not encounter these difficulties because they assume that
agents in a distributed system provide a demand vector (e.g.,
2CPUs, 4GB-DRAM). Fitting architectural performance to
Leontief is equivalent to finding the demand vector for sub-
stitutable microarchitectural resources (e.g., cache and mem-
ory bandwidth), which is conceptually challenging.

3. Fair Sharing and Cobb-Douglas
A mechanism for fair sharing should guarantee several game
theoretic properties. First, the mechanism must provide shar-
ing incentives (SI). Without such incentives, software agents
would prefer equally divided resources to a sophisticated
mechanism that shares hardware more efficiently.

If agents do intelligently share, they will want a fair divi-
sion. In economic game theory, a fair allocation is envy-free
(EF) and Pareto efficient (PE) [37]. We present an alloca-
tion mechanism that provides SI, EF, and PE for hardware
resources given software agents with Cobb-Douglas utility.

Cobb-Douglas Utility. Suppose multiple agents share a
system with several types of hardware resources 1, . . . , R.
Let xi = (xi1, . . . , xiR) denote agent i’s hardware alloca-
tion. Further, let ui(xi) denote agent i’s utility. Equation (1)
defines utility within the Cobb-Douglas preference domain.

ui(xi) = αi0

R∏
r=1

xαir
ir (1)

The exponents α introduce non-linearity, useful for captur-
ing diminishing marginal returns in utility. The product mod-
els interactions and substitution effects between resources.
The user requires both resources for progress because utility
is zero when either resource is unavailable.

The parameters αi = (αi1, . . . , αiR) quantify the elastic-
ity with which an agent demands a resource. If αir > αir′ ,
then agent i benefits more from resource r than from re-
source r′. These parameters are tailored to each agent and
define her demand for resources.

With Cobb-Douglas utility functions, we reason about
agents’ preferences. Consider two allocations x and x′ for
agent i.

• If ui(x) > ui(x
′), then x �i x′ (strictly prefer x to x′)

• If ui(x) = ui(x
′), then x ∼i x′ (indifferent to x and x′)

• If ui(x) ≥ ui(x′), then x %i x′ (weakly prefer x to x′)

Cobb-Douglas preferences are a good fit for resources in
computer architecture. They capture diminishing marginal
returns and substitution effects in ways that linear Leontief
preferences, which prior work uses [15], cannot.

Example with Cache and Memory. We use a recur-
ring example to illustrate the allocation of multiple re-
sources given Cobb-Douglas preferences. Consider proces-
sor cache size and memory bandwidth. Agents see diminish-
ing marginal returns from larger caches since software tasks
exhibit limited exploitable locality. Depending on its data
access locality, software tasks can substitute cache size for
memory bandwidth and vice versa.

Suppose a system has 24GB/s of memory bandwidth and
12MB cache. This setting is representative of a quad-core
processor with two DDRx channels. The system is shared
by two users or agents. Let (x1, y1) denote the memory
bandwidth and cache capacity allocated to the first user.
Similarly, let (x2, y2) denote the second user’s allocation.
Suppose users’ utilities are described by Equation (2).

u1 = x0.61 y0.41 u2 = x0.22 y0.82 (2)

Memory Bandwidth

C
a
ch
e
S
iz
e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

user
2

user
1

Figure 1. Edgeworth Box Example. Box height shows to-
tal cache size and box width shows total memory bandwidth.
User 1’s origin is at the lower left corner and User 2’s origin
is at the upper right corner. Each point in this box corre-
sponds to a feasible resource allocation to users.

User 1 runs an application that exhibits bursty memory ac-
tivity but little data re-use. For user 1, memory bandwidth
x1 is more useful than cache capacity y1. In contrast, user
2 makes good use of its cache capacity y2. We use profilers
and regression to derive these utility functions (§4.4).

Software behavior translates into hardware demands,
which in turn are reflected in the utility functions. These
utility functions are representative of realistic applications.
For example, u1 and u2 accurately model the relative cache
and memory intensities for canneal and freqmine from
the PARSEC benchmarks (§5).

Visualization with Edgeworth Boxes. To visualize fea-
sible resource allocations, we use the Edgeworth box [11].
Figure 1 illustrates the allocation of two resources to two
users. User 1’s origin is at the lower left corner and User
2’s origin is at the upper right corner. The total amount of
cache is the height of the box and the total amount of mem-
ory bandwidth is the width. Therefore, each feasible alloca-
tion of resources can be represented as a point in the Edge-
worth box. If user 1 gets 6GB/s memory bandwidth and
8MB cache, user 2 is left with 18GB/s memory bandwidth
and 4MB cache.

The Edgeworth box includes all possible allocations. But
only some of these allocations are fair. And only some
of these provide sharing incentives. Thus, desired game-
theoretic properties (sharing incentives, envy-freeness, and
Pareto efficiency) define constraints on the allocation space.
We use the Edgeworth box to visualize these constraints,
beginning with sharing incentives.

3.1 Sharing Incentives (SI)
Sharing hardware is essential to increasing system utilization
and throughput. An allocation mechanism should provide
sharing incentives (SI) such that agents are at least as happy
as they would be under an equal split of the resources.
Without SI, users would prefer to partition hardware equally.
But an equal partitioning would not reflect software diversity

and heterogeneous hardware demands. Resources may be
mis-allocated, leaving throughput unexploited.

Formally, let Cr denote the total capacity of resource r
in the system. Suppose an allocation mechanism provides
agent i with resources xi = (xi1, . . . , xiR). For a system
with N users, this mechanism provides SI if

(xi1, . . . , xiR) %i

(
C1

N
, . . . ,

CR
N

)
(3)

for each agent i∈[1, N]. In other words, each agent weakly
prefers its allocation of hardware to an equal partition.

Whether an allocation is preferred depends on the util-
ity functions. Consider our example with cache size and
memory bandwidth. User 1 compares its allocation (x1, y1)
against equally splitting 24GB/s of bandwidth and 12MB of
cache. If user 1 always weakly prefers (x1, y1), then the al-
location mechanism provides user 1 an incentive to share.

x0.61 y0.41 ≥
(
24GB/s

2

)0.6(
12MB

2

)0.4

(4)

x0.22 y0.82 ≥
(
24GB/s

2

)0.2(
12MB

2

)0.8

(5)

In our example with two agents, Equations (4)–(5) must be
satisfied. User 1 must receive allocations that satisfy Equa-
tion (4). Simultaneously, user 2 must receive allocations that
satisfy Equation (5). A mechanism that provides SI will
identify allocations that satisfy both constraints.

3.2 Envy-Freeness (EF)
Envy is the resentment of another agent’s allocation com-
bined with a desire to receive that same allocation. Allo-
cations are envy-free (EF) if no agent envies another. Such
allocations are considered equitable and equity is a game-
theoretic requirement for fairness [37].

Specifically, suppose agent i is allocated xi. This allo-
cation is EF if agent i prefers its allocation to any other
agent’s allocation and has no desire to swap. That is, xi %i
xj ,∀j 6=i. In this comparison, each agent considers herself
in the place of other agents and evaluates their allocations in
the same way she judges her own allocation.

In our cache and bandwidth example, the EF allocations
for user 1 are those for which u1(x1, y1) ≥ u1(x2, y2).
Note that (x2, y2) = (24 − x1, 12 − y1). Thus, allocations
that satisfy Equation (6) are EF for user 1. And Figure
2(a) illustrates regions in which these allocations are found.
Similarly, Equation (7) and Figure 2(b) describe the set of
EF allocations for user 2. A mechanism that satisfies EF will
identify allocations that satisfy both constraints.

x0.61 y0.41 ≥ (24− x1)0.6(12− y1)0.4 (6)
x0.22 y0.82 ≥ (24− x2)0.2(12− y2)0.8 (7)

Memory Bandwidth

C
ac

h
e

S
iz

e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

EF Region

(a) Envy-free Allocations for User 1

Memory Bandwidth

C
ac

h
e

S
iz

e
0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

EF Region

(b) Envy-free Allocations for User 2

Figure 2. Visualizing Envy-freeness (EF). EF allocations
for user 1 satisfy x0.61 y0.41 ≥ (24−x1)0.6(12−y1)0.4. Those
for user 2 satisfy x0.22 y0.82 ≥ (24 − x2)0.2(12 − y2)0.8. The
mid-point (12GB/s, 6MB) and two corners (24GB/s, 0MB),
and (0GB/s, 12MB) are always EF.

There are always at least three EF allocations, which are
illustrated by the middle point and two corner points. The
middle point corresponds to the situation in which all re-
sources all equally divided between users. No user envies
the other.

The corners correspond to situations in which all of one
resource is given to one user and all of the other resource is
given to the other. Both users derive zero utility and do not
envy each other. In our example, the two corner allocations
are (0GB/s, 12MB) and (24GB/s, 0MB). Users derive zero
utility because both cache and memory are required for
computation.

None of these obvious EF allocations is attractive. The
middle point divides resources equally without accounting
for differences in user utility. In this setting, system through-
put could likely be improved. And corner points are clearly
not useful. Thus, we need a mechanism to identify more ef-
fective EF allocations.

3.3 Pareto Efficiency (PE)
Pareto efficiency (PE) is another game-theoretic property
that must be satisfied by a fair resource allocation [37]. An
allocation is PE if increasing one user’s utility necessarily

Memory Bandwidth

C
ac

h
e

S
iz

e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

I1 I3I2

Δx

Δy

Slope = marginal rate
of substitution

Figure 3. Cobb-Douglas Indifference Curves. On a given
indifference curve, allocations provide the same utility. On
different curves, utility of I3 is greater than that of I1. Slopes
illustrate the marginal rate of substitution.

Memory Bandwidth

C
a
ch
e
S
iz
e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

Figure 4. Leontief Indifference Curves. Resources are
perfect complements and the marginal rate of substitution
is either zero or infinity.

decreases another’s utility. If an allocation is not PE, there
exists another allocation that should have been chosen to
improve total system utility.

More precisely, consider an allocation x = (x1, . . . , xN)
for N agents. Allocation x is PE if there exists no other
feasible allocation x′ that all agents i weakly prefer (x′i %i
xi) and at least one agent j strictly prefers (x′j �j xj).
Finding PE allocations is inherently linked to navigating
trade-offs between substitutable resources.

Substitution Effects. An indifference curve depicts the
allocations that are substitutable for one another. Figure 3
shows three indifference curves for user 1. Allocations on the
same curve provide the same utility. Allocations on different
curves provide different utilities. The utility of I1 is less
than that of I2, and the utility of I2 is less than that of I3.
Therefore, all allocations on I2 and I3 are strictly preferred
to those on I1.

The Leontief preferences used in prior work do not permit
substitution [15]. Suppose user 1 demands 2GB/s of memory
bandwidth and 1MB of cache. With this demand vector, the
user’s Leontief utility function is shown in Equation (8).

Memory Bandwidth

C
ac

h
e

S
iz

e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

Indifference Curves

Figure 5. Visualizing Pareto Efficiency (PE). The contract
curve includes all PE allocations for which the marginal rate
of substitution (MRS) for both utility functions are equal.

Under Leontief, resources are perfect complements, leading
to the L-shaped indifference curves in Figure 4.

u1 = min{x1, 2y1} (8)

User 1 demands bandwidth and cache in a 2:1 ratio. If the
allocated ratio differs, then extra allocated resources are
wasted. For example, user 1 derives the same utility from
(4GB/s, 2MB) as it does from disproportional allocations
such as (10GB/s, 2MB) or (4GB/s, 10MB). Leontief pref-
erences do not account for marginal benefits from dispro-
portional allocations. Nor do they allow for substitution in
which more cache capacity compensates for less memory
bandwidth.

In contrast, substitution is modeled by Cobb-Douglas
preferences as illustrated by indifference curves’ slopes in
Figure 3. For instance, user 1 can substitute an allocation of
(4GB/s, 1MB) for an allocation of (1GB/s, 8MB). Such flex-
ibility provides the allocation mechanism with more ways to
provide the same utility, which is particularly important as
the set of feasible allocations are constrained by the condi-
tions for SI, EF, and PE.

Marginal Rates of Substitution. The marginal rate of
substitution (MRS), is the rate at which the user is willing
to substitute one resource for the other. Visually, the MRS
is the slope of the indifference curve. If MRS=2, the user
will give up two units of y for one unit of x. Under Leontief
preferences, the MRS is either zero or infinity; the user
has no incentive for substitution. But under Cobb-Douglas
preferences, the MRS is more interesting. In our cache and
bandwidth example, the marginal rate of substitution for user
1 is given by Equation (9).

MRS1,xy =
∂u1/∂x1
∂u1/∂y1

=

(
0.6

0.4

)(
y1
x1

)
(9)

For any PE allocation, the MRS for the two users must be
equal. Visually, this means users’ indifference curves are
tangent for PE allocations. Suppose curves were not tangent

Memory Bandwidth

C
ac

h
e

S
iz

e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

Fair Allocations

Figure 6. Fair Allocation Set All the points on the inter-
section of envy-free sets and the contract curve correspond
to the fair allocations.

for a particular allocation. Then a user i could adjusts its al-
location and travel along its indifference curve, substituting
resources based on its MRS without affecting ui. But the
substitution would take the other user to a higher utility.

The MRS determines the contract curve, which shows
all PE allocations. Figure 5 shows the contract curve and
illustrates tangency for three allocations. With the tangency
condition, formal conditions for PE is easily formulated. In
our example, allocations (x1, y1) and (x2, y2) are PE if the
users’ marginal rates of substitution are equal; Equation (10)
must be satisfied.(

0.6

0.4

)(
y1
x1

)
=

(
0.2

0.8

)(
y2
x2

)
(10)

As seen in Figure 5, both origins are PE allocations. At
these points, one user’s utility is zero and the other’s is
maximized. Increasing a user’s utility, starting from zero,
necessarily decreases the other user’s utility. While PE, these
allocations are neither desirable nor fair. The user with zero
utility envies the other user’s allocation. Thus, we need a
mechanism that identifies both PE and EF allocations.

4. Resource Elasticity Fairness (REF)
We present a fair allocation mechanism that satisfies three
game-theoretic properties: sharing incentives (SI), envy-
freeness (EF), and Pareto efficiency (PE). We begin with
the space of possible allocations. We then add constraints to
identify allocations with the desired properties.

Economic game theory defines a fair allocation as one
that is equitable (EF) and efficient (PE) [37]. Figure 6 il-
lustrates the effect of these constraints. Each user identifies
its EF allocations. And the contract curve identifies PE al-
locations. The intersection of these three constraints define
feasible, fair allocations. Figure 7 shows that SI further con-
strains the set of fair allocations.

Formally, finding fair multi-resource allocations given
Cobb-Douglas preferences can be modeled as the following
feasibility problem for N agents and R resources.

Memory Bandwidth

C
ac
h
e
S
iz
e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

Figure 7. Visualizing Sharing Incentives (SI). Satisfying
the sharing incentive property limits the set of feasible fair
allocations.

find x (11)

subject to ui(xi) ≥ ui(xj) i, j∈[1, N]
αir
αis

xis
xir

=
αjr
αjs

xjs
xjr

i, j∈[1, N]; r, s∈[1, R]

ui(xi) ≥ ui(C/N) i∈[1, N]

N∑
i=1

xir ≤ Cr, r∈[1, R]

where C/N is (C1/N, . . . , CR/N). In this formulation, the
four constraints enforce EF, PE, SI, and capacity.

4.1 Procedure for Fair Allocation
To solve the multi-resource allocation problem, we present a
mechanism to determine each agent’s fair share of the hard-
ware. N agents share R resources. For each agent i, we de-
termine its allocation xi = (xi1, . . . , xiR) with the following
procedure, which satisfies all constraints in Equation (11).

• Fit Cobb-Douglas Utility. Profile and characterize agent
i’s performance for various resource allocations. Fit a
Cobb-Douglas utility function ui(xi) = αi0

∏R
r=1 x

αir
ir .

• Re-scale Elasticities. Parameters α in the Cobb-Douglas
utility function are known as elasticities. For each agent
i, re-scale its elasticities so that they sum to one.

α̂ir =
αir∑R
r=1 αir

(12)

• Re-scale Utilities. Redefine the Cobb-Douglas utility
function with re-scaled elasticities ûi(xi) =

∏R
r=1 x

α̂ir
ir .

• Allocate in Proportion to Elasticity. Examine re-scaled
Cobb-Douglas utilities and use their elasticities to deter-
mine fair share for each agent i and resource r.

xir =
α̂ir∑N
j=1 α̂jr

× Cr (13)

In effect, this allocation mechanism quantifies elasticity α to
determine the extent each resource improves an agent’s util-
ity. Re-scaling elasticities allows us to compare values for
different agents on the same scale. By allocating in propor-
tion to elasticity, agents that benefit more from resource r
will receive a larger share of the total Cr.

In our cache and bandwidth example, two users pro-
vide Cobb-Douglas utility functions with elasticities. These
elasticities are already scaled and sum to one (e.g., u1 =
x0.61 y0.41). To determine the memory bandwidth alloca-
tion, we examine both user’s bandwidth elasticity (α1x =
0.6, α2x = 0.2) and allocate proportionally.

x1 =

(
0.6

0.8

)
× 24 = 18GB/s, y1 =

(
0.4

1.2

)
× 12 = 4MB

x2 =

(
0.2

0.8

)
× 24 = 6GB/s, y2 =

(
0.8

1.2

)
× 12 = 8MB

4.2 Fairness and Sharing Incentives
The proportional elasticity mechanism has several attractive
properties. The mechanism promotes sharing and guarantees
fairness by satisfying conditions for SI, EF, and PE. We
sketch the proofs for these properties.

First, we show that the allocation is a Nash bargaining
solution. Observe that the allocation from Equation (13)
is equivalent to finding an allocation that maximizes the
product of re-scaled utilities û. This equivalence can be
shown by substituting re-scaled Cobb-Douglas utility func-
tions into Equation (14) and using Lagrange multipliers for
constrained optimization.

max
N∏
i=1

ûi(xi) subject to
N∑
i=1

xir ≤ Cr (14)

In game theory, the bargaining problem asks how agents
should cooperate to produce Pareto efficient outcomes.
Nash’s solution is to maximize the product of utilities
[27, 30], which is equivalent to Equation (14) and our al-
location mechanism. Thus, our mechanism produces an al-
location that is also a Nash bargaining solution.

Next, we show that our allocation is also a Competitive
Equilibrium from Equal Outcomes (CEEI), a well-known
microeconomic concept for fair division. In CEEI, users are
initially assigned equal resource allocations. Based on user
preferences, prices are assigned to resources such that users
trade and the market clears to produce an allocation.

The CEEI solution picks precisely the same allocation
of resources as the Nash bargaining solution for homoge-
neous utility functions [26]. Let x = (x1, . . . , xR) be a
vector of resources. Utility function u is homogeneous if
u(kx) = ku(x) for some constant k. Our re-scaled Cobb-
Douglas utilities are homogeneous because

∑R
r=1 α̂r = 1.

For this reason, our allocation is a solution to both the Nash
bargaining problem and CEEI.

Finally, a CEEI allocation is known to be fair, satisfying
both EF and PE [37]. CEEI solutions also satisfy SI because
users start with an equal division of resources. Users would
only deviate from this initial division if buying and selling
resources in the CEEI market would increase utility. Thus,
users can do no worse than an equal division and CEEI
provides SI.

In summary, our allocation mechanism is equivalent to
the Nash bargaining solution, which is equivalent to the
CEEI solution. Because the CEEI solution provides SI, EF,
and PE for re-scaled Cobb-Douglas utility functions, the
proportional elasticity mechanism provides these properties
as well.

4.3 Fairness and Strategy-Proofness in the Large
The proportional elasticity mechanism is strategy-proof in
the large. An allocation mechanism is strategy-proof (SP) if
a user cannot gain by mis-reporting its utility functions. Un-
fortunately, SP is too restrictive a property for Cobb-Douglas
utility functions. For these preferences, no mechanism can
provide both PE and SP [19]. However, our mechanism does
satisfy a weaker property, strategy-proofness in the large
(SPL). When there are many users in the system, users have
no incentive to lie about their elasticities α.

First, we define large. A large system has many users
such that the sum of all agents’ elasticities for any resource
is much bigger than 1. In such a system, any one user’s
resource elasticity is small relative to the sum of all agents’
elasticities for the resource. More formally, the system is
large if 1�

∑
j αjr, for all resources r.

Next, suppose user i decides to lie about her utility func-
tion, reporting α′

ir instead of the true value αir for resource
r. Given other users’ utilities, user i would choose to report
the α′

ir that maximizes her utility.

∂

∂α′
ik

R∏
r=1

(
α′
ir

α′
ir +

∑
j 6=i αjr

Cr

)αir

= 0 ∀k∈[1, R] (15)

In her best scenario, user i knows all other users’ utilities and
αjr,∀j 6=i. Thus, by mis-reporting α′

ir, user i can precisely
affect her proportional share of resource r. Yet, when user
i receives her allocation, she evaluates it with αir, which
reflects her true utility from resource r. Thus, the product in
Equation (15) reflects user i’s utility from lying.

User i attempts to maximize this utility from lying, tak-
ing partial derivatives with respect to α′

ir. But it can be
proven that this optimization produces α′

ir ≈ αir when
1 �

∑
j αjr for all resources r.1 Thus, in a large system,

our allocation mechanism is approximately strategy proof.
A user cannot benefit by lying about her utility.

In theory, SPL holds when an individual agents elastic-
ity is much smaller than the sum of all agents elasticities.

1 See §A for the proof

In practice, we find that tens of agents are sufficient to pro-
vide SPL. In other words, a strategic agent performing the
optimization of Equation (15) will not deviate from her true
elasticity.

For example, consider 64 tasks sharing a large system.
This is a realistic setting since modern servers can have
four processor sockets (= 64 threads) that share eight-twelve
memory channels (> 100 GB/s of bandwidth). Suppose each
of the 64 tasks elasticities are uniformly random from (0,1).
We analyze Equation (15) and find that SPL holds.

4.4 Implementing the Mechanism
To implement the proportional elasticity mechanism, we
need Cobb-Douglas utilities. We describe the process for de-
riving these utilities based on performance profiles and sta-
tistical regression. We also describe how proportional shares
can be enforced by leveraging known resource schedulers.

Profiling Performance. Suppose a user derives utility
from performance. Without loss of generality, we measure
performance as the number of instructions committed per
cycle (IPC). Execution time, speed-ups over a baseline, and
energy efficiency would all exhibit similar trends.

The user profiles its performance as a function of allo-
cated resources. These profiles reveal the rate of diminishing
returns and identify resource substitutability. For example,
the user samples from the allocation space to determine sen-
sitivity to cache size and memory bandwidth. These profiles
provide the data needed to derive utilities.

Performance can be profiled in several ways. First, con-
sider off-line profiling in which a user runs software while
precisely varying the available hardware. For example, a
user can co-locate its task with synthetic benchmarks that
exert tunable pressure on the memory hierarchy [25]. Thus,
profiles would quantify cache and bandwidth sensitivity.

Also off-line, the user might rely on cycle-accurate, full-
system simulators. These simulators combine virtual ma-
chines, such as QEMU, with hardware timing models to
accurately model processor and memory [33, 35]. Simu-
lated and physical hardware may report different perfor-
mance numbers. But simulators can accurately report trends
and elasticities, identifying hardware resources that are more
important for performance. We value relative accuracy over
absolute accuracy when profiling hardware preferences.

Finally, consider on-line profiling. Without prior knowl-
edge, a user assumes all resources contribute equally to per-
formance. Such a naive user reports utility u = x0.5y0.5. As
the system allocates for this utility, the user profiles software
performance. And as profiles are accumulated for varied al-
locations, the user adapts its utility function.

Fitting Cobb-Douglas Utility. Given performance pro-
files for varied hardware allocations, each user fits her Cobb-
Douglas utility function in the form of u = α0

∏R
r=1 x

αr
r .

For example, let u be IPC, let x1 be cache capacity, and let
x2 be memory bandwidth.

Fitting the utility function means identifying elasticities
α = (α0, . . . , αR) that best relate performance to the re-
sources. We fit α with regression. Specifically, we apply
a log transformation to linearize Cobb-Douglas. After this
transformation, we have a standard linear model with param-
eters α as shown in Equation (16). Parameters are fit with
least squares.

log(u) = log(α0) +

R∑
r=1

αrlog(xr) (16)

Allocating Proportional Shares. We re-scale elasticities
from each user’s Cobb-Douglas utility function and compute
proportional shares. The novelty of our mechanism is not in
proportional sharing but in how we identify the proportions
based on Cobb-Douglas elasticities to ensure SI, EF, and PE.
After the procedure determines proportional shares for each
user, we can enforce those shares with existing approaches,
such as weighted fair queuing [8] or lottery scheduling [38].

4.5 Alternative Fair Mechanisms
There may exist multiple allocations x that satisfy the fair-
ness conditions in Equation (11). Our mechanism for pro-
portional elasticity is only one possible mechanism for one
possible solution. Alternative mechanisms may also produce
fair allocations but increase computational complexity. Sup-
pose we follow prior work in computer architecture and seek
fair allocations that maximize system throughput.

To evaluate throughput for a multi-programmed system,
architects define the notion of weighted progress, which
divides each application’s multi-programmed IPC by its
single-threaded IPC [12]. Weighted system throughput is
the sum of each user’s weighted progress. This is the met-
ric used to evaluate prior work on memory scheduling and
multiprocessor resource management [4, 29].

N∑
i=1

IPC(xi)
IPC(C)

≈
N∑
i=1

ui(xi)

ui(C)
=

N∑
i=1

U(xi) (17)

We adapt this notion of normalized throughput, expressing
it in terms of our utility functions. This means dividing
utility for an allocation in the shared machine ui(xi) by
utility when given all of the machine’s capacity ui(C). Let
U(xi) = ui(xi)/ui(C) define the notion of weighted utility,
which is equivalent to the notion of slowdown in prior work
[4, 29].

Fair Allocation for Utilitarian Welfare. Rather than
allocate in proportion to elasticities, we could allocate to
maximize utilitarian welfare. Instead of finding x subject
to fairness conditions in Equation (11), we would opti-
mize max

∑
i Ui(xi) subject to the same conditions. While

max
∑
i Ui(xi) is computationally intractable, max

∏
i Ui(xi)

is similar but tractable with geometric programming.2 But
this mechanism would be more computationally demanding
than our closed-form solution in Equation (13).

Yet a utilitarian mechanism is interesting. Overall system
performance is an explicit optimization objective. A utilitar-
ian mechanism likely provides the allocation that achieves
the highest performance among all fair allocations. In effect,
utilitarian allocations provides an empirical upper bound on
fair performance.

Fair Allocation for Egalitarian Welfare. We could also
find fair allocations to optimize egalitarian welfare. In Equa-
tion (11), we would optimize max-minUi(xi) subject to fair-
ness conditions. As before, geometric programming can per-
form this optimization but this mechanism would be more
computationally demanding than our closed-form solution.

Egalitarian welfare is interesting because it optimizes for
the least satisfied user. EF and PE define conditions for
a fair allocation. But these conditions say nothing about
equality in outcomes. An allocation could be fair but the
difference between the most and least satisfied user in the
system could be large. The max-min optimization objective
mitigates inequality in outcomes, perhaps at the expense
of system welfare. Egalitarian allocations might provide an
empirical lower bound on fair performance.

Unfair Allocation. Finally, we could neglect game-
theoretic fairness and ignore constraints imposed by SI, EF,
and PE. In this setting, we would maximize welfare subject
only to capacity constraints. Note that optimizing egalitarian
welfare without fairness conditions is equivalent to the ob-
jective in prior work [29], which equalizes users’ weighted
progress such that maxi Ui(xi) / minj Uj(xj) → 1. The
max-min objective for egalitarian welfare causes the denom-
inator to approach the numerator. Assessing performance of
unfair allocations reveals the penalty we must pay for SI, EF,
and PE.

5. Evaluation
We evaluate the proportional elasticity mechanism when
sharing the last-level cache and main memory bandwidth
in a chip-multiprocessor. In this setting, we evaluate several
aspects of the mechanism. First, we show that Cobb-Douglas
utilities are a good fit for performance. Then, we interpret
utility functions to identify applications that prefer cache
capacity (C) and memory bandwidth (M).

Finally, we compare the proportional elasticity mecha-
nism against an equal slowdown mechanism, which repre-
sents conventional wisdom. We find that equal slowdown
fails to guarantee game-theoretic fairness. On the other hand,
proportional elasticity guarantees SI, EF and PE with only
modest performance penalties relative to an unfair approach.

2 Cobb-Douglas is a monomial function (i.e., function with the form
f(x) = axα1

1 xα2
2 , . . . , xαm

m). And geometric programming can maxi-
mize monomials [5].

Table 1. Platform Parameters
Component Specification

Processor 3 GHz OOO cores, 4-width issue and
commit

L1 Cache 32 KB, 4-way set associative, 64-byte
block size, 2-cycle latency

L2 Cache [128 KB, 256 KB, 512 KB, 1 MB, 2 MB],
8-way set associative, 64-byte block size,
20-cycle latency

DRAM
Controller

Closed-page, Queue per rank, Rank then
bank round-robin scheduling

DRAM
Bandwidth

[0.8 GB/s, 1.6 GB/s, 3.2 GB/s, 6.4 GB/s,
12.8 GB], single channel

5.1 Experimental Methodology
Simulator. We simulate the out-of-order cores using the
MARSSx86 full system simulator [33]. We integrate the pro-
cessor model with the DRAMSim2 simulator [35] to simu-
late main memory. To characterize application sensitivity to
allocated cache size and memory bandwidth, we simulate 25
architectures spanning combinations of five cache sizes and
five memory bandwidths. The platform parameters are de-
scribed in Table 1.

Given simulator data, we use Matlab to fit Cobb-Douglas
utility functions. Our mechanism includes a closed-form
expression for each agent’s fair allocation. But to evaluate
other mechanisms that require geometric programming, we
use CVX [16], a convex optimization solver.

Workloads. We evaluate our method on 24 benchmarks
from PARSEC and SPLASH-2x suites [2]. We further eval-
uate applications from the Phoenix system for MapReduce
programming [34], including histogram, linear regression,
string match, and word count. For PARSEC 3.0 benchmarks,
we simulate 100M instructions from the regions of interest
(ROI), which are representative application phases identified
by MARSSx86 developers. Phoenix applications we simu-
late 100M instructions from the beginning of the map phase.

5.2 Fitting Cobb-Douglas Utility
Each application is associated with a user. Application per-
formance is measured as instructions per cycle (IPC). Us-
ing cycle-accurate simulations, we profile each benchmark’s
performance. Given these profiles for varied cache size and
memory bandwidth allocations, we perform a linear regres-
sion to estimate utility functions.

For each application, we use a Cobb-Douglas utility
function u = α0x

αxyαy where u is application perfor-
mance measured with IPC, x is memory bandwidth, and
y is cache size. Although a non-linear relationship exists
between Cobb-Douglas utility and resource allocations, a
logarithmic transformation produces a linear model (Equa-

tion (16)). Least squares regression estimates the resource
elasticities α for each benchmark.

To evaluate this fit, we report the coefficient of determi-
nation (R-squared), which measures how much variance in
the data set is captured by the model. R-squared→ 1 as fit
improves. Figure 8(a) shows that most benchmarks are fit-
ted with R-squared of 0.7-1.0, indicating good fits. Bench-
marks with low R-squared, such as radiosity, have negli-
gible variance and no trend for Cobb-Douglas to capture.

We consider representative workloads with high and low
R-squared values in Figure 8, which plots simulated and
fitted IPC. Cobb-Douglas utilities accurately track IPC and
reflect preferences for cache and memory bandwidth. Even
workloads with lower R-squared values, such as radiosity,
do not deviate significantly from true values.

In practice, the proportional elasticity mechanism never
uses the predicted value for u to allocate hardware. It only
uses the fitted parameters for α to determine fair shares.
Thus, Cobb-Douglas fits need only be good enough to assess
resource elasticities and preferences. But good predictions
for u give confidence in the accuracy of fitted α.

We expect Cobb-Douglas utility functions to generalize
beyond cache size and memory bandwidth. After apply-
ing log transformations to performance and each of the re-
source allocations, our approach to fitting the utility func-
tion is equivalent to prior work in statistically inferred mi-
croarchitectural models [23]. Prior work accurately inferred
performance models with more than ten microarchitectural
resources, which suggests our application of Cobb-Douglas
utilities will scale as more resources are shared.

5.3 Interpreting Cobb-Douglas Utilities
After fitting Cobb-Douglas utilities, we re-scale elasticities
as described in Equation (12). Resource elasticity quantifies
the extent to which an agent demands a resource. In other
words, in a multi-resource setting, elasticities quantify the
relative importance of each resource to an agent.

Figure 9 depicts re-scaled elasticities for our workloads.
If αcache > αmem, then the workload derives more utility
from cache size than it does from memory bandwidth (e.g.,
raytrace). In contrast, if αmem > αcache, then the work-
load finds memory bandwidth more useful (e.g., dedup).

Given resource elasticities, we can classify workloads
into two groups. Workloads in group M demand memory
bandwidth and αmem > 0.5. Workloads in group C de-
mand cache capacity and αcache > 0.5. This classification
differentiates how workloads re-use data in their cache and
whether they exhibit bursty memory behavior.

For example, facesim, fluidanimate, and
streamcluster exhibit streaming behavior [3]. Increasing
the cache size would only marginally increase performance.
Streaming workloads clearly prefer memory bandwidth and
this preference is reflected in their resource elasticities in
Figure 9.

ra
yt
ra
ce

w
a
te
r_
sp
a
tia
l

h
is
to
g
ra
m

lu
_
n
cb

lin
e
a
r_
re
g
re
ss
io
n

fr
e
q
m
in
e

w
a
te
r_
n
sq
u
a
re
d

b
o
d
yt
ra
ck

ra
d
io
si
ty

w
o
rd
_
co
u
n
t

ch
o
le
sk
y

vo
lr
e
n
d

sw
a
p
tio
n
s

fm
m

b
a
rn
e
s

fe
rr
e
t

x2
6
4

b
la
ck
sc
h
o
le
s ff
t

st
re
a
m
cl
u
st
e
r

ca
n
n
e
a
l

rt
vi
e
w

lu
_
cb

flu
id
a
n
im
a
te

fa
ce
si
m

d
e
d
u
p

st
ri
n
g
_
m
a
tc
h

o
ce
a
n
_
cp

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

C
o

e
ff

ic
ie

n
t

o
f

D
e

te
rm

in
a

ti
o

n

(a) Coefficient of determination (R-squared) measures goodness of
fit for Cobb-Douglas utility functions. Larger values are better.

(0
.8

 G
B

/s
,

1
2
5
 M

B
)

 (
0
.8

 G
B

/s
,

2
5
6
 M

B
)

 (
0
.8

 G
B

/s
,

5
1
2
 M

B
)

 (
0
.8

 G
B

/s
,

1
 M

B
)

 (
0
.8

 G
B

/s
,

2
 M

B
)

 (
1
.6

 G
B

/s
,

1
2
5
 M

B
)

 (
1
.6

 G
B

/s
,

2
5
6
 M

B
)

 (
1
.6

 G
B

/s
,

5
1
2
 M

B
)

 (
1
.6

 G
B

/s
,

1
 M

B
)

 (
1
.6

 G
B

/s
,

2
 M

B
)

 (
3
.2

 G
B

/s
,

1
2
5
 M

B
)

 (
3
.2

 G
B

/s
,

2
5
6
 M

B
)

 (
3
.2

 G
B

/s
,

5
1
2
 M

B
)

 (
3
.2

 G
B

/s
,

1
 M

B
)

 (
3
.2

 G
B

/s
,

2
 M

B
)

 (
6
.4

 G
B

/s
,

1
2
5
 M

B
)

 (
6
.4

 G
B

/s
,

2
5
6
 M

B
)

 (
6
.4

 G
B

/s
,

5
1
2
 M

B
)

 (
6
.4

 G
B

/s
,

1
 M

B
)

 (
6
.4

 G
B

/s
,

2
 M

B
)

 (
1
2
.8

 G
B

/s
,

1
2
5
 M

B
)

 (
1
2
.8

 G
B

/s
,

2
5
6
 M

B
)

 (
1
2
.8

 G
B

/s
,

5
1
2
 M

B
)

 (
1
2
.8

 G
B

/s
,

1
 M

B
)

 (
1
2
.8

 G
B

/s
,

2
 M

B
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

Ferret Sim. Ferret Est.

Fmm Sim. Fmm Est.

IP
C

(b) Simulated versus fitted Cobb-Douglas performance for varied
cache size, memory bandwidth allocations. Representative work-
loads with high R-squared.

(0
.8

 G
B

/s
,

1
2

5
 M

B
)

 (
0
.8

 G
B

/s
,

2
5

6
 M

B
)

 (
0
.8

 G
B

/s
,

5
1
2

 M
B

)

 (
0
.8

 G
B

/s
,

1
 M

B
)

 (
0
.8

 G
B

/s
,

2
 M

B
)

 (
1
.6

 G
B

/s
,

1
2

5
 M

B
)

 (
1
.6

 G
B

/s
,

2
5

6
 M

B
)

 (
1
.6

 G
B

/s
,

5
1
2

 M
B

)

 (
1
.6

 G
B

/s
,

1
 M

B
)

 (
1
.6

 G
B

/s
,

2
 M

B
)

 (
3
.2

 G
B

/s
,

1
2

5
 M

B
)

 (
3
.2

 G
B

/s
,

2
5
6

 M
B

)

 (
3
.2

 G
B

/s
,

5
1
2

 M
B

)

 (
3
.2

 G
B

/s
,

1
 M

B
)

 (
3
.2

 G
B

/s
,

2
 M

B
)

 (
6
.4

 G
B

/s
,

1
2
5

 M
B

)

 (
6
.4

 G
B

/s
,

2
5
6

 M
B

)

 (
6
.4

 G
B

/s
,

5
1
2

 M
B

)

 (
6
.4

 G
B

/s
,

1
 M

B
)

 (
6
.4

 G
B

/s
,

2
 M

B
)

 (
1
2
.8

 G
B

/s
,

1
2
5
 M

B
)

 (
1
2
.8

 G
B

/s
,

2
5
6
 M

B
)

 (
1
2
.8

 G
B

/s
,

5
1
2
 M

B
)

 (
1
2
.8

 G
B

/s
,

1
 M

B
)

 (
1
2
.8

 G
B

/s
,

2
 M

B
)

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.90

0.91

0.92

0.93

Radiosity Sim. Radiosity Est.

String_match Sim. String_match Est.

IP
C

(c) Simulated versus fitted Cobb-Douglas performance for varied
cache size, memory bandwidth allocations. Representative work-
loads with low R-squared.

Figure 8. Evaluating Cobb-Douglas utilities for cache size
and memory bandwidth. u = α0x

αxyαy where u is IPC
performance, x is memory bandwidth, and y is cache size.
Cobb-Douglas is fit by finding α with method of least
squares.

0.0
0.1

0.2
0.3

0.4
0.5
0.6
0.7
0.8
0.9
1.0

R
e
la

tiv
e
 R

e
so

u
rc

e
P

re
fe

re
n
ce

s
Cache Size – Rescaled Elasticity
Memory Bandwidth – Rescaled Elasticity

Figure 9. Resource Preferences and Elasticities. Re-
scaled elasticities from Equation (12) show relative impor-
tance of cache size and memory bandwidth for each work-
load. Workloads for which αmem > 0.5 are classified M.
Otherwise, they are classified C.

R
e
s
o
u
rc

e
 A

llo
c
a
ti
o
n

(%
 o

f
To

ta
l C

a
p
a
ci

ty
)

(a) Equal Slowdown

R
e
s
o
u
rc

e
 A

llo
c
a
ti
o
n

(%
 o

f
To

ta
l C

a
p
a
ci

ty
)

(b) Proportional Elasticity

Figure 10. Allocations for histogram (C) and dedup (M)
show that equal slowdown can satisfy SI, EF, and PE in some
scenarios.

5.4 Proportional Elasticity versus Equal Slowdown
Having demonstrated accurate Cobb-Douglas utility models,
we now evaluate our mechanism that allocates in proportion
to elasticity. We compare against a mechanism that allocates
for equal slowdown, a commonly used approach in computer
architecture that seeks to equally distribute the performance
penalties from sharing [29], [4].

We compare proportional elasticity and equal slowdown
with a series of representative examples. In the first exam-
ple, all desirable properties (SI, EF, PE) are satisfied by both
proportional elasticity and equal slowdown. But an equal
slowdown mechanism cannot guarantee these properties. We
present two other examples where both SI and EF are vio-
lated by an equal slowdown mechanism.

Example 1: C-M satisfies SI, EF, PE. Consider a system
shared by histogram from group C and dedup from group
M, which prefer cache capacity and memory bandwidth,
respectively. Figure 10 illustrates allocations as a percentage

R
e
so

u
rc

e
 A

llo
ca

tio
n

(%
 o

f
To

ta
l C

a
p
a
ci

ty
)

(a) Equal Slowdown

R
e
so

u
rc

e
 A

llo
ca

tio
n

(%
 o

f
To

ta
l C

a
p
a
ci

ty
)

(b) Proportional Elasticity

Figure 11. Allocations for barnes (C) and canneal (M) show
that equal slowdown can fail to satisfy SI and EF. Equal
slowdown provides canneal less than half of both resources,
which satisfies neither SI nor EF. Proportional elasticity sat-
isfies SI, EF, and PE.

of total capacity for an equal slowdown mechanism and our
proportional elasticity mechanism.

Both mechanisms allocate more cache capacity to
histogram (C) and memory bandwidth to dedup (M). Con-
sider a chip multiprocessor with 12MB cache and 24GB/s
of memory bandwidth. We can compute the allocations and
evaluate the conditions for SI, EF, and PE in Equation (11).
In this particular case, the equal slowdown allocation sat-
isfies all game-theoretic conditions for fairness. And, of
course, we have proven that the proportional elasticity al-
location is fair.

Unfortunately, while an equal slowdown mechanisms
may provide SI and EF in this case, it cannot guarantee them.
We cannot even generalize the properties of equal slowdown
for broad classes of workloads. While equal slowdown hap-
pens to provide SI and EF for histogram (C) and dedup

(M), it may not do so for other pairs of C and M workloads.
Example 2: C-M violates SI and EF. Figure 11 consid-

ers the allocations for barnes (C) and canneal (M). Barnes
prefers cache size to memory bandwidth whereas cannel
prefers bandwidth to cache. This example shows how an
equal slowdown mechanism fails to satisfy SI and EF for
canneal, which receives less than half of both resources
in the system. In this setting, cannel would not be willing
to participate in an equal slowdown mechanism and would
rather statically receive half the hardware resources. More-
over, canneal envies barnes’s allocation. In contrast, our
proportional elasticity mechanism allocates more than half
of the memory bandwidth to canneal, giving it an incentive
to share.

Example 3: C-C violates SI and EF. Finally, Figure
12 considers two workloads from the same group. In this,
case freqmine (C) and linear regression (C) both pre-
fer cache capacity to memory bandwidth. But freqmine ex-
hibits less memory activity than linear. To equalize slow-
downs, linear must receive far more of both resources.

R
e
so

u
rc

e
 A

llo
ca

tio
n

(%
 o

f
To

ta
l C

a
p
a
ci

ty
)

(a) Equal slowdown

R
e
so

u
rc

e
 A

llo
ca

tio
n

(%
 o

f
To

ta
l C

a
p
a
ci

ty
)

(b) Proportional elasticity

Figure 12. Allocations for freqmine (C) and lin-
ear regression (C) show that equal slowdown can fail
to satisfy SI and EF. Equal slowdown provides freqmine
less than half of both resources, which satisfies neither SI
nor EF. Proportional elasticity satisfies SI, EF, and PE.

In this setting, freqmine would not be willing to share
the system, preferring an equal split of the resources rather
than participate in an equal slowdown mechanism. Even if
freqmine had been willing to share resources with linear,
it would prefer linear’s allocation over its own. Thus, the
allocation from equal slowdown is far from equitable. On the
other hand, proportional elasticity divides resources almost
equally between benchmarks to satisfy SI and EF.

However, proportional elasticity seems inefficient. It al-
locates resources equally when one user needs them more.
Although the equal slowdown mechanism does not provide
game-theoretic fairness, it likely provides higher system
throughput in this example. Thus, in some cases, propor-
tional elasticity pays a throughput penalty to provide game-
theoretic fairness.

This trade-off between game-theoretic fairness and per-
formance efficiency is fundamental to the mechanisms. The
equal slowdown mechanism seeks to equalize normalized
performance. If one more unit of a resource significantly
improves linear’s performance and only modestly im-
prove freqmine’s, the equal slowdown mechanism favors
linear. And overall throughput should increase. In the next
section, we quantify the performance penalty incurred by
adding constraints for SI, EF, and PE.

5.5 Performance Penalty from Fairness
We investigate the performance lost due to game-theoretic
fairness conditions. We define an agent’s individual perfor-
mance as Ui(xi) = ui(xi)/ui(C), which divides utility
when sharing by utility when not. Ui is equivalent to the
notion of weighted throughput [12] except that we use util-
ity functions rather than IPC. For each allocation policy, we
compare weighted system throughput in Equation (17) cal-
culated from utility functions fitted to simulator data.

• Max Welfare w/o Fairness. Find an allocation that max-
imizes welfare subject only to capacity constraints. We

Table 2. Workload Characterization
Name Benchmarks C/M

WD1 histogram, linear regression, 4C
water nsquared, bodytrack

WD2 radiosity, fmm, facesim, string match 2C-2M

WD3 lu cb, fluidanimate, facesim, dedup 4M

WD4 fft, streamcluster, canneal, word count 3C-1M

WD5 streamcluster, facesim, dedup, 1C-3M
string match

WD6 histogram, linear regression, 7C-1M
water nsquared, bodytrack, freqmine,
word count, x264, dedup

WD7 histogram, canneal, rtview, body-
track, radiosity, word count, lin-
ear regression, water nsquared

6C-2M

WD8 radiosity, word count (2), canneal,
rtview, freqmine, x264, dedup

5C-3M

WD9 radiosity (2), word count, canneal,
rtview, fmm, facesim, string match

4C-4M

WD10 water nsquared, barnes, ferret, 3C-5M
lu cb (2), fluidanimate, facesim, dedup

use Nash social welfare (
∏
i Ui(xi)), which is tractably

maximized with geometric programming. This mecha-
nism provides an empirical upper bound on performance.

• Equal Slowdown w/o Fairness. Find an allocation that
maximizes the minimum Ui(xi). This max-min objective
function is equivalent to equalizing slowdown by closing
the gap between the best and worst performing agents.

• Max Welfare w/ Fairness. Find an allocation that max-
imizes welfare subject to SI, EF, and PE conditions. We
use Nash social welfare (

∏
i Ui(xi)), which is tractably

maximized with geometric programming.
• Proportional Elasticity w/ Fairness. Allocate in propor-

tions based on elasticities in Cobb-Douglas utility func-
tions. Allocations are proven to provide SI, EF, and PE.

Thus, we compare two allocations with and without game-
theoretic fairness. Note that our mechanism is computation-
ally trivial based on the closed-form expression in Equation
(13). In contrast, the other mechanisms require geometric
programming and convex optimization.

Figure 13 presents weighted system throughput when
four applications share cache and memory bandwidth. The
workloads have different characteristics, as shown in Ta-
ble 2. Performance penalties are larger when the allocation
mechanism imposes more constraints. Least restricted, max-
imizing welfare without any fairness constraints provides an

WD1 (4C) WD2 (2C-2M) WD3 (4M) WD4 (3C-1M) WD5 (1C-3M)
0

0.5

1

1.5

2

2.5

3

3.5

4

Max Welfare w/ Fairness
Proportional Elasticity w/ Fairness

Max Welfare w/o Fairness
Equal Slowdown w/o Fairness

W
ei

g
ht

ed
 S

y
st

em
 T

hr
ou

g
hp

ut

Figure 13. Performance Comparison for 4-core System.
Penalties for game-theoretic fairness are less than 10%.

WD6 (7C-1M) WD7 (6C-2M) WD8 (5C-3M) WD9 (4C-4M) WD10 (3C-5M)
0

1

2

3

4

5

6

7

8

Max Welfare w/ Fairness
Proportional Elasticity w/ Fairness

Max Welfare w/o Fairness
Equal Slowdown w/o Fairness

W
ei

gh
te

d
S

ys
te

m
 T

hr
ou

gh
pu

t

Figure 14. Performance Comparison for 8-core System.
Penalties for game-theoretic fairness are less than 10%. Pro-
portional elasticity out-performs equal slowdown.

empirical upper bound on throughput. Relative to this upper
bound, equal slowdown optimizes worst-case performance,
thereby lowering overall throughput. Yet, despite its lower
performance, an equal slowdown mechanism does not guar-
antee game-theoretic fairness.

Among the two mechanisms that provide fairness with
SI, EF and PE, we find no performance difference, which is
a compelling result. First, our proportional elasticity mech-
anism is as good as explicitly optimizing throughput subject
to fairness. Second, proportional elasticity provides fair per-
formance in a complexity effective way. Our mechanism
simply calculates fair shares whereas other mechanisms
would require geometric programming.

The price for game-theoretic fairness is small. First, com-
pare maximizing welfare with and without fairness. Con-
straints for SI, EF, and PE reduces throughput by less than
10%. Second, compare equal slowdown to proportional elas-
ticity. With less than a 7% throughput penalty, proportional
elasticity provides game-theoretic guarantees.

Figure 14 further presents throughput for an eight-core
system in which eight applications share cache and memory
bandwidth. We select five representative workloads to com-

pare allocation mechanisms. In this setting, constraints for
game-theoretic fairness reduce throughput by less than 10%.

More interesting, in an eight-core setting, equal slow-
down may perform worse than proportional elasticity. Poor
performance for an equal slowdown mechanism may be due
to optimizing allocations to favor the least satisfied user (i.e.,
max-min ui). As the number of users increases, the op-
portunity cost of favoring the least satisfied user also in-
creases. Thus, not only does an equal slowdown mecha-
nism fail to provide game-theoretic fairness, it may also per-
form worse than proportional elasticity in large systems with
many agents.

6. Related Work
Computer Science and Economics. The fair resource allo-
cation problem has been extensively studied in computer sci-
ence and economics. While most prior studies focus on fairly
allocating a single resource, Ghodsi et al. propose Dominant
Resource Fairness (DRF) for fair, multi-resource allocation
[15]. DRF satisfies SI, PE, EF and SP for Leontief prefer-
ences. Leveraging Leontief properties, Parkes et al. [32] and
Joe-Wong et al. [21] extend DRF. Dolev et al. propose an
alternative notion of multi-resource fairness [9]. Gutman et
al. analyze fairness frameworks and present computational
tractable algorithms [18].

While Leontief preferences might be appropriate for dis-
tributed systems [15], they cannot capture important trends
in hardware architecture. Leontief utilities are linear and do
not allow substitution between multiple resources. More-
over, specifying a demand vector for resources, which is
required by DRF, is not always possible. In this paper, we
consider fair, multi-resource allocation under Cobb-Douglas
preferences, which are more realistic in computer architec-
ture.

Fairness in Computer Architecture. Nesbit et al. [31]
propose a memory scheduler to address fairness for a single
memory resource. Other architects use an unfairness index
[13, 28]. A variety of memory scheduling heuristics optimize
this metric to fairly share memory bandwidth [4, 7, 10, 22,
29]. The unfairness index quantifies the ratio between the
maximum and the minimum performance slowdown among
workloads sharing the system. The allocation is considered
fair if workloads experience equal slowdowns. However, we
find that equal slowdowns cannot guarantee game-theoretic
properties (e.g., SI, EF, PE).

We consider fairness in a multi-resource setting. Coordi-
nating multi-resource allocation is more challenging due to
substitution effects. Bitirgen et al. [4] consider multiple re-
sources, relying on machine learning to predict performance
for different allocations at run-time. Their objective is sys-
tem throughput not fairness. Moreover, their learning tech-
nique is likely more computationally demanding than our
equation for fair shares.

Resource Allocation in Datacenters. Within datacen-
ters, market mechanisms allocate resources to maximize
welfare, which is defined as user utility minus power cost
[6], [24]. Guevara et. al. [17] apply market mechanisms
for heterogeneous resources. Whereas these market mecha-
nisms enhance welfare, we provide game-theoretic fairness.

7. Conclusions
Our results motivate new thinking in fairly allocating hard-
ware resources. Rather than assume users must share hard-
ware, we must provide allocation mechanisms to encourage
sharing. We show that Cobb-Douglas utilities are well suited
to modeling user preferences in computer architecture. For
Cobb-Douglas utilities, we present an allocation mechanism
that provides sharing incentives, envy-freeness, Pareto effi-
ciency, and strategy-proofness in the large. By linking hard-
ware resource management to robust, game-theoretic analy-
sis, computer architects can qualitatively change the nature
of performance guarantees in hardware platforms shared by
strategic users.

A. Strategy Proofness in the Large
Suppose user i decides to lie about her utility function,
reporting α′

ir instead of the true value αir for resource r.
Given other users’ utilities, user i would choose to report the
α′
ir that maximizes her utility. As mentioned in §4, in a large

system 1 �
∑
j αjr, for all resources r. Since α′

ir ≤ 1, we
have α′

ir �
∑
j αjr. Therefore:

ui =

R∏
r=1

(
α′
ir

α′
ir +

∑
j 6=i αjr

Cr

)αir

≈

R∏
r=1

(
α′
ir∑

j 6=i αjr
Cr

)αir

=

Ai

R∏
r=1

α′αir
ir ,

where Ai =
∏R
r=1 Cr/

∑
j 6=i αjr is a constant. Let us con-

sider the following optimization problem:

maximize
∏
r

α′αir
ir

subject to
∑
r

α′
ir = 1.

Now, consider the Lagrangian form:

L(α′, λ) =
∏
r

α′αir
ir − λ(1−

∑
r

α′
ir),

where λ is a Lagrange multiplier. Then, based on the KKT
conditions:

∂L

∂α′
ir

= αir

∏
r α

′αir
ir

α′
ir

− λ = 0 ∀r

∂L

∂λ
= 1−

∑
r

α′
ir = 0

The solution to these equations is α′
ir = αir, for all re-

sources r.

Acknowledgments
We sincerely thank Vincent Conitzer for his feedback dur-
ing various stages of this project. We also thank Marisabel
Guevara, Blake Hechtman and the anonymous reviewers for
their feedback. This work is supported by NSF grants CCF-
1149252 (CAREER) and CCF-1337215 (XPS-CLCCA).
This work is also supported by STARnet, a Semiconduc-
tor Research Corporation program, sponsored by MARCO
and DARPA. Any opinions, findings, conclusions, or rec-
ommendations expressed in this material are those of the
author(s) and do not necessarily reflect the views of these
sponsors.

References
[1] Luiz André Barroso and Urs Hölzle. The datacenter as a com-

puter: An introduction to the design of warehouse-scale ma-
chines. Synthesis Lectures on Computer Architecture, 4(1):1–
108, 2009.

[2] Christian Bienia. Benchmarking Modern Multiprocessors.
PhD thesis, Princeton University, January 2011.

[3] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and
Kai Li. The parsec benchmark suite: Characterization and ar-
chitectural implications. In Proc. International Conference on
Parallel Architectures and Compilation Techniques (PACT),
pages 72–81, 2008.

[4] Ramazan Bitirgen, Engin Ipek, and Jose F Martinez. Coor-
dinated management of multiple interacting resources in chip
multiprocessors: A machine learning approach. In Proc. In-
ternational Symposium on Microarchitecture (MICRO), 2008.

[5] Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and
Arash Hassibi. A tutorial on geometric programming. Opti-
mization and Engineering, 8(1):67–127, 2007.

[6] Jeffrey S Chase, Darrell C Anderson, Prachi N Thakar,
Amin M Vahdat, and Ronald P Doyle. Managing energy and
server resources in hosting centers. In Proc. Symposium on
Operating System Principles (SOSP), 2001.

[7] Reetuparna Das, Onur Mutlu, Thomas Moscibroda, and
Chita R Das. Application-aware prioritization mechanisms
for on-chip networks. In Proc. International Symposium on
Microarchitecture (MICRO), pages 280–291. IEEE, 2009.

[8] Alan Demers, Srinivasan Keshav, and Scott Shenker. Analy-
sis and simulation of a fair queueing algorithm. In ACM SIG-
COMM Computer Communication Review, volume 19, pages
1–12. ACM, 1989.

[9] Danny Dolev, Dror G Feitelson, Joseph Y Halpern, Raz
Kupferman, and Nathan Linial. No justified complaints: On
fair sharing of multiple resources. In Proc. Innovations in The-
oretical Computer Science Conference, pages 68–75. ACM,
2012.

[10] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N
Patt. Fairness via source throttling: a configurable and high-
performance fairness substrate for multi-core memory sys-
tems. In Proc. International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), pages 335–346. ACM, 2010.

[11] Francis Ysidro Edgeworth. Mathematical psychics: An es-
say on the application of mathematics to the moral sciences.
Number 10. C. Kegan Paul & Company, 1881.

[12] Stijn Eyerman and Lieven Eeckhout. System-level perfor-
mance metrics for multiprogram workloads. Micro, IEEE,
28(3):42–53, 2008.

[13] Ron Gabor, Shlomo Weiss, and Avi Mendelson. Fairness and
throughput in switch on event multithreading. In Proc. In-
ternational Symposium on Microarchitecture (MICRO), pages
149–160. IEEE, 2006.

[14] Ron Gabor, Shlomo Weiss, and Avi Mendelson. Fairness en-
forcement in switch on event multithreading. ACM Transac-
tions on Architecture and Code Optimization (TACO), 4(3):15,
2007.

[15] Ali Ghodsi, Matei Zaharia, Benjamin Hindman, Andy Kon-
winski, Scott Shenker, and Ion Stoica. Dominant resource
fairness: fair allocation of multiple resource types. In Proc.
USENIX NSDI, 2011.

[16] Michael Grant and Stephen Boyd. Cvx: Matlab software for
disciplined convex programming, version 1.21, 2010.

[17] Marisabel Guevara, Benjamin Lubin, and Benjamin C Lee.
Navigating heterogeneous processors with market mecha-
nisms. In Proc. International Symposium on High Perfor-
mance Computer Architecture (HPCA), pages 95–106, 2013.

[18] Avital Gutman and Noam Nisan. Fair allocation without trade.
In Proc. International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 719–728, 2012.

[19] Kazuhiko Hashimoto. Strategy-proofness versus efficiency
on the cobb-douglas domain of exchange economies. Social
choice and welfare, 31(3):457–473, 2008.

[20] Mark D Hill and Michael R Marty. Amdahl’s law in the
multicore era. Computer, 41(7):33–38, 2008.

[21] Carlee Joe-Wong, Soumya Sen, Tian Lan, and Mung Chiang.
Multi-resource allocation: Fairness-efficiency tradeoffs in a
unifying framework. In Proc. INFOCOM, pages 1206–1214.
IEEE, 2012.

[22] Yoongu Kim, Dongsu Han, Onur Mutlu, and Mor Harchol-
Balter. Atlas: A scalable and high-performance scheduling
algorithm for multiple memory controllers. In Proc. Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA), pages 1–12. IEEE, 2010.

[23] Benjamin Lee and David Brooks. Accurate and efficient
regression modeling for microarchitectural performance and
power prediction. In Proc. International Conference on Archi-

tectural Support for Programming Languages and Operating
Systems (ASPLOS), 2006.

[24] Benjamin Lubin, Jeffrey O Kephart, Rajarshi Das, and
David C Parkes. Expressive power-based resource allocation
for data centers. In Proc. International Joint Conferences on
Artificial Intelligence (IJCAI), pages 1451–1456, 2009.

[25] Jason Mars, Lingjia Tang, Robert Hundt, Kevin Skadron,
and Mary Lou Soffa. Bubble-up: Increasing utilization in
modern warehouse scale computers via sensible co-locations.
In Proc. International Symposium on Microarchitecture (MI-
CRO), pages 248–259. ACM, 2011.

[26] Hervé Moulin. Fair division and collective welfare. MIT
press, 2004.

[27] Abhinay Muthoo. Bargaining theory with applications. Cam-
bridge University Press, 1999.

[28] Onur Mutlu and Thomas Moscibroda. Stall-time fair mem-
ory access scheduling for chip multiprocessors. In Proc. In-
ternational Symposium on Microarchitecture (MICRO), pages
146–160. IEEE Computer Society, 2007.

[29] Onur Mutlu and Thomas Moscibroda. Parallelism-aware
batch scheduling: Enhancing both performance and fairness
of shared dram systems. In Proc. International Symposium on
Computer Architecture (ISCA), pages 63–74. IEEE Computer
Society, 2008.

[30] John F Nash Jr. The bargaining problem. Econometrica:
Journal of the Econometric Society, pages 155–162, 1950.

[31] Kyle J Nesbit, Nidhi Aggarwal, James Laudon, and James E
Smith. Fair queuing memory systems. In Proc. International
Symposium on Microarchitecture (MICRO), pages 208–222.
IEEE, 2006.

[32] David C Parkes, Ariel D Procaccia, and Nisarg Shah. Be-
yond dominant resource fairness: extensions, limitations, and
indivisibilities. In Proc. Conference on Electronic Commerce
(EC), pages 808–825. ACM, 2012.

[33] Avadh Patel, Furat Afram, Shunfei Chen, and Kanad Ghose.
MARSSx86: A Full System Simulator for x86 CPUs. In
Design Automation Conference 2011 (DAC’11), 2011.

[34] Colby Ranger, Ramanan Raghuraman, Arun Penmetsa, Gary
Bradski, and Christos Kozyrakis. Evaluating MapReduce for
multi-core and multiprocessor systems. In Proc. Interna-
tional Symposium on High Performance Computer Architec-
ture (HPCA), pages 13–24. IEEE, 2007.

[35] Paul Rosenfeld, Elliott Cooper-Balis, and Bruce Jacob. Dram-
sim2: A cycle accurate memory system simulator. Computer
Architecture Letters, 10(1):16–19, 2011.

[36] Alejandro Toriello and Juan Pablo Vielma. Fitting piecewise
linear continuous functions. European Journal of Operational
Research, 219(1):86–95, 2012.

[37] Hal Varian. Equity, envy, and efficiency. Journal of economic
theory, 9(1):63–91, 1974.

[38] Carl A Waldspurger and William E Weihl. Lottery scheduling:
Flexible proportional-share resource management. In Proc.
USENIX Conference on Operating Systems Design and Im-
plementation (OSDI), page 1. USENIX Association, 1994.

