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SHARING INCENTIVES AND FAIR
DIVISION FOR MULTIPROCESSORS
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THE TREND IN DATACENTER COMPUTING IS TOWARD LARGE, SHARED HARDWARE

PLATFORMS, WHICH POSES TWO CHALLENGES TO ARCHITECTS: SHARING FAIRLY AND

SHARING MULTIPLE RESOURCES. DRAWING ON ECONOMIC GAME THEORY, THE AUTHORS

RETHINK FAIRNESS IN COMPUTER ARCHITECTURE AND PROPOSE RESOURCE ELASTICITY

FAIRNESS TO FIND FAIR ALLOCATIONS THAT ENSURE SHARING INCENTIVES, ENVY-

FREENESS, PARETO EFFICIENCY, AND STRATEGY PROOFNESS IN LARGE SYSTEMS.

......Datacenter servers are often
poorly utilized, running at less than 30 per-
cent of peak capability,1 such that power is
amortized over little computation. To
improve energy efficiency and address energy
disproportionality, software tasks should
share hardware. Policies for fair resource allo-
cation (or a lack thereof) determine whether
users have incentives to participate in dynam-
ically managed systems. In such shared sys-
tems, computer architects encounter two
challenges: allocating resources fairly and
allocating multiple resources in a coordinated
fashion. To address these challenges, this
article presents a game-theoretic framework
that encourages strategic users to share
hardware.

Conventional wisdom in computer archi-
tecture assumes that users must share system
resources, which overlooks strategic behavior.
Users who dislike the allocation policy can
choose to participate in another system that
provides exclusive access to private, possibly
less capable, machines. Moreover, prior poli-
cies for fairness equally distribute the per-
formance penalties from sharing,2,3 but equal
slowdowns fail to incentivize sharing between
envious users. Finally, prior mechanisms

equalize slowdown with heuristics, which
lack provable guarantees.4

In this work, we rethink fairness in com-
puter architecture, seeking a more robust
approach that uses the economic definition
of fairness. This article provides a fair, multi-
resource allocation policy called Resource
Elasticity Fairness (REF), which guarantees
four fundamental, game-theoretic desiderata:

� Sharing incentives (SI) ensures that
users perform no worse than under an
equal division of resources—that is,
1/n division for n users. Without SI,
strategic users would not participate
in the shared system. Instead, the n
users would prefer exclusive access to
their own machines, each with 1/n-th
the resources, an inefficient outcome.

� Envy-freeness (EF) ensures that each user
prefers her own allocation over other
users’ allocations. In the economic defi-
nition of fairness, an allocation is equi-
table if it is envy free. This notion of
equity is intuitive; humans often pro-
claim an outcome “unfair” after observ-
ing another preferable outcome. Shared
resources are allocated equitably when
no user experiences envy.
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� Pareto efficiency (PE) allocates resour-
ces such that the system cannot
improve any user’s performance with-
out harming another’s. If an alloca-
tion is not Pareto efficient, some
reallocation could improve system
performance. With PE, REF identi-
fies allocations that perform well sub-
ject to SI and EF constraints.

� Strategy-proofness in the large (SPL)
ensures that users cannot improve
their performance by misreporting
their hardware preferences when the
number of users in a shared system is
large. In practice, we find that tens of
users who share a server with multiple
sockets, cores, and threads comprise a
sufficiently large system for SPL.

Thus, we present a new framework for
reasoning about fair resource allocation in
computer architecture. Collectively, our find-
ings establish robust foundations for the fair
division of multiple hardware resources.

Fairness and Cobb-Douglas utility
We seek fair resource allocations that pro-

vide sharing incentives such that users prefer
sophisticated allocation policies to a simple
but inefficient policy of equal division. Users
that share want fair division, which is defined
in economic theory by EF and PE.5 The REF
allocation policy provides these assurances
when software preferences for hardware can be
modeled by Cobb-Douglas utility functions.

Equation 1 defines utility within the
Cobb-Douglas preference domain. Multiple
users share a system with R types of hardware.
Let x ¼ ðx1;…; xRÞ denote a user’s hardware
allocation, and let uðxÞ denote her utility
from that allocation. The parameters a ¼
ða1;…; aRÞ quantify the elasticity with
which a user demands a resource. If ar > ar0 ,
then the user benefits more from resource r
than from resource r0. These parameters are
tailored and define each user’s resource
demands.

u xð Þ ¼ a0

YR

r¼1

xar
r ð1Þ

The exponents a capture nonlinearity and
help model diminishing marginal returns in

utility, which are prevalent in computer
architecture. Examples include Amdahl’s law
for multicore parallelism, limited locality as
cache allocations increase, and limited com-
munication intensity as memory bandwidth
allocations increase. The product captures
substitution effects and interdependencies
between resource allocations. For example, a
user might substitute memory bandwidth for
cache capacity or vice versa.

Cobb-Douglas utility accurately models
performance, and we illustrate its effective-
ness in a recurring example. Suppose two
users share a system with 24 Gbytes per sec-
ond (GBps) of memory bandwidth and a 12-
Mbyte cache. Let ðx1; y1Þ denote memory
bandwidth and cache capacity allocated to
the first user, and let ðx2; y2Þ denote alloca-
tions to the second. Let u1 and u2 measure
instruction throughput. Cobb-Douglas accu-
rately models performance as well as relative
elasticities for cache and memory bandwidth.
In our example, we fit the following utility
functions for canneal and freqmine,
benchmarks from the Parsec suite.

u1 ¼ x0:6
1 y0:4

1

u2 ¼ x0:2
2 y0:8

2

Figure 1 illustrates the space of feasible
allocations when two users divide cache
capacity and memory bandwidth. Allocations
that satisfy certain conditions ensure game-
theoretic desiderata. We enumerate these
conditions for SI, EF, and PE. We can easily
determine whether an allocation is fair, given
users’ utility functions. Although the condi-
tions for fairness are general, their specific
effects on Cobb-Douglas supply intuition.
We illustrate their effect for two users, and
these conditions extend to many users.

Sharing incentives
An allocation policy should provide SI

such that users are at least as happy as they
would be under an equal division of the
resources. Without SI, users would prefer to
partition hardware equally. However, doing
so would not reflect software diversity and
heterogeneous hardware preferences. Hard-
ware would be misallocated, and throughput
would suffer.
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Consider our example with cache size and
memory bandwidth. In the inequalities in
Equations 2 and 3, user 1 compares her allo-
cation ðx1; y1Þ against equally partitioning
24 GBps of bandwidth and 12 Mbytes of
cache. The allocation policy incentivizes user
1 to share if she weakly prefers ðx1; y1Þ to
equal division. Similarly, user 2 should
weakly prefer ðx2; y2Þ. A policy that provides
SI allocates hardware to satisfy such con-
straints for each user.

x0:6
1 y0:4

1 �
24 GBps

2

� �0:6 12 Mbytes

2

� �0:4

ð2Þ

x0:2
2 y0:8

2 �
24 GBps

2

� �0:2 12 Mbytes

2

� �0:8

ð3Þ

Envy-freeness
Allocations are envy free if no user prefers

another user’s allocation. In economic theory,
such allocations are equitable, and equity is a
prerequisite for fairness.5 In our recurring
example, EF allocations for user 1 are those
for which u1ðx1; y1Þ � u1ðx2; y2Þ. Note that
ðx2; y2Þ ¼ ð24� x1; 12� y1Þ. An EF policy
allocates hardware to avoid envy for each
user, satisfying the following constraints,

which produce the EF regions in Figure 2 for
our example with two users.

x0:6
1 y0:4

1 � 24� x1ð Þ0:6 12� y1ð Þ0:4 ð4Þ

x0:2
2 y0:8

2 � 24� x2ð Þ0:2 12� y2ð Þ0:8 ð5Þ

Fundamentally, there always exist at least
three EF allocations, which are illustrated by
points in the middle and at the corners of
Figure 1. The middle equally divides resour-
ces between users; no user envies the other.
The corners at (0 GBps, 12 Mbytes) and
(24 GBps, 0 Mbytes) allocate all of one
resource to one user and all of the other
resource to the other user. With these alloca-
tions, neither user derives utility, because
both cache and memory bandwidth are
required for computation, yet neither user is
envious. These obvious EF allocations per-
form poorly and call for a mechanism to find
more efficient divisions of hardware that exist
within the intersection of EF regions.

Pareto efficiency
An allocation is Pareto efficient if increas-

ing one user’s utility necessarily decreases
another’s utility. If an allocation is not Pareto
efficient, another allocation exists that could
improve aggregate utility. To find PE alloca-
tions, we begin with indifference curves that
identify sets of allocations that provide the
same utility. The gradient at each point on
the indifference curve quantifies the marginal
rate of substitution (MRS), the rate at which
a user substitutes one resource for another
without utility loss. In our recurring example,
Equation 6 gives the marginal rate of substi-
tution for user 1:

MRS1;xy ¼
@u1=@x1

@u1=@y1
¼ 0:6

0:4

� �
y1

x1

� �
ð6Þ

In a PE allocation, the two users have the
same MRS, and their indifference curves are
tangent. If this were not the case, a user could
adjust her allocation, travel along her indif-
ference curve, and substitute resources based
on her MRS without affecting utility. Simul-
taneously, these substitutions would increase
the other user’s utility and improve overall
performance. The contract curve is the set of
all PE allocations. In our example, PE
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Figure 1. In an Edgeworth box, height and width show total capacity for

cache and bandwidth. The origins of users 1 and 2 are at the lower left and

upper right corners, respectively. Each point is a feasible allocation. If user

1 gets 6 Gbytes per second (GBps) and 8 Mbytes of bandwidth and cache,

user 2 is left with 18 GBps and 4 Mbytes.
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allocations lie on the contract curve in Figure
2 and satisfy the following constraints:

MRS1;xy ¼
0:6

0:4

� �
y1

x1

� �
¼ 0:2

0:8

� �
y2

x2

� �

¼ MRS2;xy

Both origins in Figure 2 are PE allocations
because one user’s utility is 0 and the other’s
is maximized. At the origin, increasing one
user’s utility necessarily harms the other user’s
utility. Although such allocations are Pareto
efficient, they are neither desirable nor fair,
because the user with zero utility is envious.
Thus, we need a mechanism that finds both
EF and PE allocations.

Resource Elasticity Fairness
Many feasible allocations provide the

game-theoretic desiderata of SI, EF, and PE,
despite their constraints and conditions, and
we present a simple mechanism to find one.
Specifically, we model performance with
Cobb-Douglas utility, rescale elasticities, and
calculate resource shares in proportion to users’
elasticities. We calculate shares with a closed-
form expression and enforce those shares with
prior mechanisms, such as weighted fair
queueing6 or lottery scheduling.7

First, we fit the profile and characterize
the performance of user i for varied alloca-
tions. We fit a Cobb-Douglas utility function
ui xið Þ ¼ ai0

QR
r¼1 xair

ir by taking the log of
both sides and performing a linear regression.

Next, we rescale elasticities and utilities as
shown in Equation 7. Parameters a in the
Cobb-Douglas utility are known as elastic-
ities. For each user i, we rescale elasticities so
that they sum to 1. Rescaling lets us compare
users’ elasticities on the same scale.

âir ¼
airPR
r¼1 air

; ûi xið Þ ¼
YR

r¼1

x âir
ir ð7Þ

Finally, we use rescaled elasticities to deter-
mine the fair share for each user i and resource
r. Because REF allocates in proportion to elas-
ticity, users that benefit more from resource r
will receive a larger share of the total resource
capacity Cr.

xir ¼
âirPN
j¼1 âjr

� Cr ð8Þ

In our cache and bandwidth example, two
users provide Cobb-Douglas utility functions
with elasticities that are already scaled and
summed to 1 (for example, u1 ¼ x0:6

1 y0:4
1 ).

The REF mechanism examines both users’
memory bandwidth elasticities (a1x ¼ 0:6
and a2x ¼ 0:2) and allocates this resource
proportionally. Similarly, the REF mecha-
nism allocates last-level cache capacity.

x1 ¼
0:6

0:8

� �
� 24 ¼ 18 GBps;

y1 ¼
0:4

1:2

� �
� 12 ¼ 4 Mbytes;

x2 ¼
0:2

0:8

� �
� 24 ¼ 6 GBps;

y2 ¼
0:8

1:2

� �
� 12 ¼ 8 Mbytes:

The REF mechanism guarantees SI, EF,
and PE. We sketch the proofs and refer the
reader to our prior work for details.8 Equa-
tion 8 expresses the mechanism’s allocation in
closed form, which makes the calculation triv-
ial, once user performance is modeled as a
Cobb-Douglas utility. The allocation is
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Figure 2. Envy-free regions satisfy Equations 4 and 5. Pareto-efficient

allocations lie on the contract curve. Fair allocations are both envy free and

Pareto efficient.
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equivalent to the Nash bargaining solution.
The Nash bargaining solution is, in turn,
equivalent to the Competitive Equilibrium
from Equal Incomes (CEEI) solution for
homogeneous utility functions, such as Cobb-
Douglas.9 Because the CEEI solution provides
SI, EF, and PE for rescaled Cobb-Douglas
utilities,5 REF provides these properties as
well.

REF is also strategy proof in the large. An
allocation mechanism is strategy proof (SP) if
a user can’t gain by misreporting her utility.
Unfortunately, for Cobb-Douglas, SP is too
restrictive a property, and no mechanism can
provide both PE and SP.10 However, our REF
mechanism satisfies a weaker property, SPL.
When there are many users in the system,
users have no incentive to lie about their elas-
ticities a. In theory, SPL holds when an indi-
vidual user’s elasticity is far smaller than the
sum of all users’ elasticities. In practice, tens of
agents suffice to provide SPL. For example,
SPL holds when 64 tasks share a large system,
which is a realistic setting because modern
servers have four processor sockets (¼ 64
threads) that share eight to 12 memory chan-
nels (>100 GBps of bandwidth).

Evaluation
We evaluate REF from three perspectives.

First, we show that Cobb-Douglas utilities
accurately model chip multiprocessor per-
formance. We apply a log transformation to

linearize the Cobb-Douglas function and to
accurately fit to the empirical data with least
squares. Second, we show that REF provides
game-theoretic desiderata, whereas equalizing
slowdowns does not. Beyond the proofs in
our prior work,8 we illustrate SI and EF with
examples. Finally, we show that REF guaran-
tees game-theoretic definitions of fairness
with little impact on performance.

Fitting Cobb-Douglas utility
Performance for each user’s application is

measured in terms of instructions per cycle,
which we profile with cycle-accurate simula-
tion. Given profiles for varied cache size and
memory bandwidth allocations, we construct
a model, u ¼ a0xax yay , where u is application
performance, x is memory bandwidth, and y
is cache size. Although a nonlinear relation-
ship exists between Cobb-Douglas utility and
resource allocations, a logarithmic transfor-
mation produces a linear model. Least-
squares regression provides an estimate for
each elasticity parameter a�.

We evaluate the regression fit by reporting
the coefficient of determination (R-squared),
which measures how much variance in the
empirical data is captured by the model.
R-squared approaches 1.0 as fit improves.
Figure 3 shows that Cobb-Douglas accurately
models performance with R-squared of 0.7
to 1.0 for most applications. Applications
such as radiosity whose models exhibit
low R-squared exhibit negligible perform-
ance variance as allocations change and have
no trend for Cobb-Douglas to capture.

Interpreting Cobb-Douglas utility
Elasticities quantify the extent to which a

user demands a resource. In a multiresource
setting, elasticities quantify the relative
importance of each resource to user perform-
ance. We rescale Cobb-Douglas elasticities as
described in Equation 7 and plot them in
Figure 4. An application derives more utility
from cache than it does from memory band-
width when acache > amem (for example,
raytrace). In contrast, an application
finds memory bandwidth more useful when
amem > acache (for example, dedup). Thus,
we can classify applications into two groups
on the basis of their resource elasticities.
Applications in group M demand memory

1.0

0.9

0.8

0.7

0.6

C
oe

ffi
ci

en
t o

f
d

et
er

m
in

at
io

n

0.5

0.4

0.3

0.2

0.1

0.0

ra
yt

ra
ce

w
at

er
_s

p
at

ia
l

hi
st

og
ra

m
lu

_n
cb

lin
ea

r_
re

g
re

ss
io

n
fre

q
m

in
e

w
at

er
_n

sq
ua

re
d

b
od

yt
ra

ck
ra

d
io

si
ty

w
or

d
_c

ou
nt

ch
ol

es
ky

vo
lre

nd
sw

ap
tio

ns
fm

m
b

ar
ne

s
fe

rr
et

x2
64

b
la

ck
sc

ho
le

s fft
st

re
am

cl
us

te
r

ca
nn

ea
l

et
vi

ew
lu

_c
b

flu
id

an
im

at
e

fa
ce

si
m

d
ed

up
st

rin
g

_m
at

ch
oc

ea
n_

cp

Figure 3. Coefficient of determination measures goodness of fit for Cobb-

Douglas utility. Larger values are better.
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bandwidth intensely ðamem > 0:5Þ, and those
in group C demand cache intensely
ðacache > 0:5Þ.

REF versus equal slowdown
The REF mechanism uses Cobb-Douglas

elasticities to allocate multiple resources in a
coordinated fashion, ensuring game-theoretic
desiderata. We compare REF against a mech-
anism that allocates to equally distribute the
performance penalties (that is, slowdowns)
from sharing, a common objective in com-
puter architecture.11,12 We find that equal
slowdowns fail to incentivize sharing and
mitigate envy between strategic users.

Figure 5 presents an example with two
applications in different groups—barnes
(C) and canneal (M). Barnes prefers
cache to bandwidth, whereas cannel prefers
bandwidth to cache. This example shows
how a mechanism that equalizes slow-downs
fails to satisfy SI and EF for canneal, which
receives less than half of both resources in the
system. In this setting, canneal would be
unwilling to participate in a shared system
that equalizes slow-downs. Canneal would

rather receive a static allocation with half
the hardware. Moreover, canneal envies
barnes’ allocation. In contrast, REF allo-
cates more than half of the memory band-
width to canneal, giving it an incentive to
share. REF also ensures EF by exploiting sub-
stitution effects, which are modeled by
Cobb-Douglas, as canneal is offered more
cache in exchange for less bandwidth.

Figure 6 presents a second example with
applications from the same group—freq-
mine (C) and linear regression (C),
which both prefer cache capacity to memory
bandwidth. However, because linear exhib-
its far more memory activity than freq-
mine, a mechanism that equalizes slowdowns
must allocate far more of both resources to
linear. In this setting, freqmine prefers a
static, equal division of resources over an allo-
cation policy that equalizes slowdown. Freq-
mine will not share the system with dynamic
resource allocation; the system does not pro-
vide SI. Even if freqmine were willing to
share resources with linear, it would prefer
linear’s allocation over its own; the system
does not provide EF. In contrast, REF divides
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Figure 4. Resource elasticities from Equation 7 show the relative importance of cache size

and memory bandwidth. Workloads for which amem >0:5 are classified M. Otherwise, they

are classified C.
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resources almost equally between benchmarks
to ensure SI and EF, even when linear
demands those resources more intensely. REF
ensures game-theoretic fairness at the expense
of performance in this setting.

Fairness versus efficiency
Tradeoffs between fairness and efficiency

are inevitable, yet we find that REF guaran-
tees game-theoretic desiderata with only

modest performance penalties. We evaluate
performance in terms of weighted through-
put,3 which is defined as an application’s util-
ity when sharing divided by the utility when
not. Specifically, U ðxÞ ¼ uðxÞ=uðCÞ, in
which x is an allocation from the shared sys-
tem, and C is the total system capacity. To
evaluate REF, we compare and contrast
weighted throughput for several allocation
policies that make very different tradeoffs:
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1. Max welfare without fairness. This
policy allocates resources to maxi-
mize welfare, subject to capacity con-
straints. We maximize Nash social
welfare, PiUiðxiÞ, with geometric
programming to obtain an empirical
upper bound on performance.

2. Equal slowdown without fairness. This
policy allocates resources to maximize
minimum welfare across all users. We
optimize a max-min objective func-
tion on UiðxiÞ for users i, which mini-
mizes the gap between the best and
worst performing users and is equiva-
lent to equalizing slowdown.

3. Max welfare with fairness. This policy
allocates resources to maximize wel-
fare, subject to SI, EF, and PE con-
straints. We maximize Nash social
welfare, PiUiðxiÞ, with geometric
programming to obtain an empirical
upper bound on performance with
game-theoretic fairness.

4. Resource elasticity fairness. This policy
allocates resources according to REF.
We fit Cobb-Douglas models, rescale
elasticities, and allocate resources in
proportion to elasticities.

Policies that maximize welfare (1 and 3)
provide upper bounds on performance, but
their implementation is impractical, requiring
geometric programming and convex optimi-
zation. Although less computationally inten-
sive, a policy that equalizes slowdowns (2) also
requires iterative optimization. In contrast,
resource elasticity fairness (4) uses closed-form
expressions to calculate each user’s share of the
resources in a computationally trivial mecha-
nism. This comparison emphasizes online
analysis during allocation and neglects offline
analysis for fitting Cobb-Douglas models,
which does not affect the critical path.

Policies that neglect fairness can perform
well. Maximizing welfare without fairness (1),
the least restrictive policy, allocates resources to
maximize aggregate throughput and provides
an empirical upper bound on performance.
Relative to this bound, equalizing slowdowns
(2) penalizes performance by optimizing
worst-case performance. These penalties grow
as the number of users increases, because equal-
izing slowdowns allocates resources to favor

the least satisfied user. A larger system is more
likely to include a dissatisfied user who is very
different from the others and demands a large
share of the resources. Recall, however, that
equalizing slowdowns fails to ensure SI and EF.

The two policies that ensure game-
theoretic fairness (3, 4) perform comparably,
which is a compelling finding because REF
allocations perform as well as those resulting
from explicitly optimizing performance, sub-
ject to SI, EF, and PE constraints. Although
fairness penalizes performance, the penalties
are modest. REF performance is often within
90 percent of policies that pursue performance
alone (1) or equalize slowdowns (2). Indeed,
REF can outperform policies that equalize
slowdown as the number of users increases;
our simulations indicate superior REF per-
formance for systems with as few as eight users.

W e introduce computer architects to a
rich body of knowledge of economics

and game theory, permitting qualitatively
new performance guarantees in hardware
platforms shared by strategic users. Without
loss of generality, we evaluate our multire-
source allocation mechanism for cache size
and memory bandwidth. We expect Cobb-
Douglas utility functions to generalize beyond
cache size and memory bandwidth. In the
future, computer architects might extend REF
to support additional resources, such as the
number of processor cores.

REF provides a policy and mechanism for
single (that is, one) resource allocation for a
system in which user participation and
behavior is static. However, in practice, sys-
tems are dynamic—users arrive and leave,
and software behavior exhibits phases.
Extending notions of sharing incentives and
envy-freeness to accommodate temporal var-
iations is daunting. We will need new policies
that define game-theoretic desiderata across
multiple time periods, new mechanisms that
adapt to the past and anticipate the future,
and new solution concepts to model strategic
behaviors and system dynamics. Collectively,
we argue for new thinking in the fair alloca-
tion of computational resources. Rather than
assume users must share, we argue that
polices must encourage sharing. As distrib-
uted computing proliferates, whether in the
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cloud or between mobile devices, game theory provides an essential framework for
shaping user behavior in shared systems. MICRO
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