
Amdahl’s Law in the Datacenter Era: A Market for Fair Processor Allocation

Seyed Majid Zahedi,∗† Qiuyun Llull,∗†‡ Benjamin C. Lee†
†Duke University, Durham, NC, USA
‡VMware Inc., Palo Alto, CA, USA

seyedmajid.zahedi@duke.edu, qllull@vmware.com, benjamin.c.lee@duke.edu

Abstract—We present a processor allocation framework that
uses Amdahl’s Law to model parallel performance and a
market mechanism to allocate cores. First, we propose the
Amdahl utility function and demonstrate its accuracy when
modeling performance from processor core allocations. Second,
we design a market based on Amdahl utility that optimizes
users’ bids for processors based on workload parallelizability.
The framework uses entitlements to guarantee fairness yet
outperforms existing proportional share algorithms.

Keywords-Proportional Sharing, Processor Allocation, Am-
dahl’s Law, Karp-Flatt Metric, Market Mechanisms

I. INTRODUCTION

Shared computer systems present resource allocation chal-
lenges. Users and jobs, which vary in their demands and im-
portance, must divide limited resources to balance competing
performance, efficiency, and fairness objectives. Fairness is
particularly relevant for non-profit systems in which users
share capital and operating costs. Such systems often serve
business units within a technology company or research
groups within a university [1], [2], [3]. Allocations are
determined by organizational priorities and service classes
rather than explicit payments.

Systems determine users’ shares with one of three mech-
anisms. With reservations, users request and pay for re-
sources. Allocations depend on users’ requests but are
inefficient when requests are over-sized and resources are
under-utilized [4], [5]. With priorities, allocations depend
on users’ computation and relative importance, exposing
users to interference and non-deterministic performance [6],
[2]. Finally, with entitlements, each user is guaranteed a
minimum allocation and under-utilized resources are redis-
tributed [6], [1], [7], [3]. Entitlements, unlike alternatives,
provide isolation and efficiency.

Entitlements for datacenters differ from those for a server.
Within a server, proportional share schedulers allocate divis-
ible resources [6], [7]. In theory, the datacenter provides a
similar abstraction—a warehouse-scale machine with logi-
cally divisible resources. In practice, however, resources are
physically distributed across servers in ways that constrain
allocation. Jobs are assigned to servers and resources are

*Seyed Majid Zahedi and Qiuyun Llull contributed equally to this work.
Qiuyun contributed during her doctoral studies at Duke and is currently
employed by VMware.

partitioned along server boundaries. Because processor al-
locations perform differently depending on which servers
provide the cores, users often prefer specific allocations on
specific servers.

We design a market mechanism that divides a user’s
datacenter-wide entitlement across the servers that run her
jobs. Users receive budgets in proportion to their entitle-
ments and bid for processor cores on each server. The market
sets prices based on bids and users bid based on prices. The
market’s centerpiece is the Amdahl utility function, which
we derive from Amdahl’s Law to model the value of each
server’s cores and calculate bids [8], [9]. In equilibrium,
all cores are allocated and allocations are optimal. This
equilibrium is fair because budgets satisfy entitlements and
performs well because bids shift more resources to more
parallelizable workloads.

The market for processors offers several attractive prop-
erties. First, allocations incentivize sharing as each user
always receives her entitlement and sometimes receives
more. Second, allocations are Pareto-efficient, which means
no other allocation can benefit one user without harming
another. Third, the market is strategy-proof when the user
population is large and competitive, which means no user
can benefit by misreporting utility from processors.

The market has modest management overheads. Sampled
profiles are sufficient to fit Amdahl’s Law. Moreover, a
market that is customized for processor allocation and Am-
dahl utility is computationally efficient. We derive closed-
form equations to calculate bids that lead to a market
equilibrium. In contrast, markets for generic utility functions
can accommodate varied resources, from memory to power,
but require expensive optimization and search to determine
allocations [10], [11], [12], [13].

In this paper, we co-design a utility function and market
mechanism for processor allocation (§II). We estimate the
utility function’s parameter, the workload’s parallelizable
fraction, by inverting Amdahl’s Law (§III–§IV). We derive a
procedure for calculating bids and allocations that produce
a market equilibrium (§V). Finally, we find that equilibrium
allocations satisfy entitlements and perform well. (§VI).

II. MOTIVATION AND OVERVIEW

A. Entitlements

Shared computer systems must allocate resources to sat-
isfy entitlements, which specify each user’s minimum allo-
cation relative to other users’. Different entitlements could
arise from differences in organizational priorities or users’
contributions to shared resources. When an Internet services
company colocates interactive and batch jobs, entitlements
may specify more resources for online jobs to meet service
targets. When users contribute funds to procure and operate
a cluster, entitlements may specify shares in proportion to
contributions to ensure fairness.

For decades, entitlements have been a basis for resource
management. Henry designs the Unix Fair Share Scheduler
to assign shares to users and mitigate non-determinism
in performance from the Unix priority scheduler [6]. Kay
and Lauder define fairness in terms of users rather than
processes, which mitigates strategic behavior during heavy
system activity [1]. Waldspurger and Weihl propose lottery
scheduling, which allocates resources probabilistically based
on users’ holdings of a virtual currency [7]. Randomization
permits fine-grained shares that are fair and efficient.

Entitlements have several advantages. First, entitlements
provide isolation by explicitly defining minimum shares,
unlike priority-based mechanisms that allocate differently
depending on user colocation and system activity. Second,
entitlements are efficient. When a user requires less than
her share, unused resources are redistributed to others.
Redistribution incentivizes sharing by providing not only a
minimum allocation but also the possibility of additional
resources. Finally, entitlements mitigate strategic behavior
by specifying shares for users, not jobs, such that no user
gains resources by launching more jobs.

Entitlements are relevant for any user community that
shares a non-profit system and its capital and operating
costs. Early examples include high-performance computing
systems [1], [14], [15]. Today’s examples include academic
and industrial datacenters. An academic cluster combines
servers purchased by researchers who have preferred access
to their own machines and common access to others’ idle
machines [16]. Microsoft uses tokens, a form of lottery
scheduling, to specify and enforce shares [3]. Google does
not use entitlements and, consequently, suffers from the
same challenges as other priority schedulers, which cannot
guarantee performance isolation between users [2], [6].

B. Processor Allocation

We require new entitlement mechanisms for datacenter
processors because each user’s allocation is distributed
across multiple servers. Users may demand more cores
on certain servers that run jobs with greater parallelism.
But satisfying demands for specific servers while enforcing
datacenter-wide entitlements is difficult. Moreover, simply

allocating proportional shares in each server may violate
entitlements depending how jobs are assigned to servers.

For example, three users have equal entitlements but
varied demands for specific servers. Three servers–A, B, and
C–each have 12 processor cores. User 1 demands 8 cores on
A, 4 cores on B, and 0 cores on C, which we denote with
vector (8, 4, 0). Users 2 and 3 have demand vectors of (0,
4, 8) and (8, 8, 8), respectively.

Classical approaches, which enforce proportional shares
on each server, violate entitlements. On each server, a user
receives her demand or entitlement, whichever is smaller.
When entitlement exceeds demand, excess cores are re-
distributed to other users on the server according to their
relative entitlements. For example, the Fair Share Scheduler
would allocate as follows:

User 1← (6A, 4B, 0C) ,

User 2← (0A, 4B, 6C) ,

User 3← (6A, 4B, 6C) .

Because users 1 and 3 both demand 8 cores on A, they
receive their 4-core entitlements and equally divide the
remaining 4 cores. Across servers, users 1 and 2 receive 10
cores while user 3 receives 16, which satisfies entitlements
in each server but violates them in aggregate. The equally
entitled users should have received 12 cores each.

Alternatively, the system could relax entitlements within
servers while preserving them across the datacenter. Users
would start with their proportional shares distributed uni-
formly across servers (i.e., 12 cores across 3 servers). Users
would then trade according to their demands on each server.

User 1← (8A, 4B, 0C) ,

User 2← (0A, 4B, 8C) ,

User 3← (4A, 4B, 4C) .

In the example, user 1 trades its 4 cores on C for user
2’s 4 cores on A. Resulting allocations violate entitlements
within each server but satisfy them in aggregate. Moreover,
these allocations are efficient and match users’ demands
better. This example motivates a holistic trading algorithm
that finds high-performance allocations subject to datacenter-
wide entitlements.

C. Market Mechanisms

A market is a natural framework for trading cores in users’
entitlements. Users spend their budgets on cores that are
most beneficial. In effect, users trade their spare cores on
one server for extra cores on others. The market sets prices
for cores according to server capacities and user demands.
Given prices, users bid for servers’ cores based on their jobs’
demands. The market collects bids, sets new prices, and
permits users to revise bids. This process repeats until prices
converge to stationary values. When users’ budgets are set in
proportion to their datacenter-wide entitlements, the market
guarantees proportional shares across the datacenter.

Bids require accurate models of performance given pro-
cessor allocations on each server. The example in §II-B

assumes that demand and utility could be represented with
a single number, a popular approach in systems research
[17], [18], [19]. But to understand its limits, suppose a user
demands four cores. Hidden in this demand is a significant
implication: increasing an allocation by one core provides
constant marginal returns to performance up to four cores
and a fifth core provides no benefit. This assumption is
unrealistic for many parallel workloads.

D. Amdahl’s Law and Karp-Flatt Metric

Amdahl’s Law sets aside the constant marginal returns
implied by a user’s numerical request for cores. Instead, it
models diminishing marginal returns as the number of cores
increases [8], [9]. Amdahl’s Law models execution time on
one core, T1, relative to the execution time on x cores, Tx.
If fraction F of the computation is parallel, speedup is:

sx =
T1
Tx

=
T1

(1− F)T1 + T1F/x
=

x

x(1− F) + F
(1)

Computer architects use Amdahl’s Law for first-order anal-
ysis of parallel speedup. The Law assumes the parallel
fraction benefits linearly from additional cores and the serial
fraction does not benefit. Because these assumptions hold
to varying degrees in real workloads, architects often use
Amdahl’s Law to estimate upper bounds on speedups.

In this paper, we use Amdahl’s Law directly to assess
utility from core allocations. We find that actual performance
often tracks Amdahl’s upper bound for modern datacenter
workloads, which exhibit abundant, fine-grained parallelism
and few serial bottlenecks. For example, Spark partitions
jobs into many small tasks and caches data in memory to
avoid expensive I/O [24], [25].

Using Amdahl’s Law is challenging because the parallel
fraction F is often unknown. Expert programmers rarely
know exactly what fraction of their algorithm or code
is parallel. Fortunately, we can measure speedup sx and
estimate F with the inverse of Amdahl’s Law, which is
known as the Karp-Flatt metric [26].

F =

(
1− 1

sx

)(
1− 1

x

)−1

(2)

But for which processor count x should we measure
speedup? When Amdahl’s Law is perfectly accurate, the
answer would not matter as measured speedups from varied
x’s would all produce the same estimate of F . In practice,
Amdahl’s Law is an approximation and estimates of F may
vary with x.

E. Mechanism Overview

We design a two-part mechanism for allocating datacenter
processors given users’ entitlements. First, the mechanism
requires a utility function (§IV). We propose Amdahl utility,
a new class of utility functions based on Amdahl’s Law. We
determine each user’s Amdahl utility with new methods for

profiling performance and estimating a workload’s parallel
fraction, the key parameter in the function.

Second, the mechanism requires a market (§V). We design
a market to allocate processors when users are characterized
by Amdahl utility functions. New utility functions require
new bidding algorithms. Our algorithm calculates bids from
workloads’ parallel fractions, which are estimated when
fitting Amdahl utility. Bids are calculated efficiently with
closed-form equations.

The mechanism tightly integrates a new utility function
that models performance and a new market that allocates
cores. Its two parts are co-designed to quickly find the
market equilibrium. In equilibrium, users perform no worse,
and often better, than they would with their entitlements
narrowly enforced in each server (§VI).

III. EXPERIMENTAL METHODOLOGY

We construct Amdahl utility functions by profiling parallel
workloads on physical machines. We measure speedups
for varied core counts, use Karp-Flatt to estimate each
workload’s parallel fraction, and assess variance in those
estimates.

Workloads. Table I summarizes our PARSEC [27]
and Spark benchmarks [25] with their representative
datasets. PARSEC benchmarks represent conventional,
multi-threading whereas Spark applications represent
datacenter-scale task parallelism.

Each Spark job is divided into stages and each stage has
multiple tasks. The number of tasks in each stage usually
depends on the size of the input data. The first stage typ-
ically reads and processes the input dataset. Given Spark’s
default 32MB block size, a 25GB dataset is partitioned into
approximately 800 blocks. The run-time engine creates one
task to read and process each block. It then schedules tasks
on cores for parallel processing. We run Spark applications
in standalone mode.

Physical Server Profiling. Table II describes the Xeon
E5-2697-v2 nodes in our experiments. Each node has 24
cores on two chip-multiprocessors. The local disk holds
workload data. We deploy Docker containers for resource
isolation [28]. We use cgroup to allocate processor cores
and memory to containers.

We measure parallel speedups to fit the Amdahl utility
function. We profile execution on varied core counts using
Linux perf stat for PARSEC and the run-time engine’s
event log for Spark. To efficiently determine how execution
time scales with dataset size, we sample uniformly and
randomly from original datasets to create smaller ones and
construct simple, linear models.

IV. PERFORMANCE MODEL

Equation (2) is an idealized estimate of a workload’s
parallel fraction. In principle, inherent properties of the
algorithm or code determine parallelizability. The processor

Table I: Workloads and datasets

ID Spark Name Application Dataset (Size) ID PARSEC Name Application Dataset

1 Correlation Statistics webspam2011 [20] (24GB) 13 Blackscholes Finance native
2 Decision Tree Classifier webspam2011 (24GB) 14 Bodytrack Vision native
3 Fpgrowth Mining wdc’12 [21] (1.4GB) 15 Canneal Engineering native
4 Gradient Des. Classifier webspam2011 (6GB) 16 Dedup Storage native
5 Kmeans Clustering uscensus [22] (327MB) 17 Ferret Search native
6 Linear Reg. Classifier webspam2011 (24GB) 18 Raytrace Visualization native
7 Movie Recommender movielens [23] (325MB) 19 Streamcluster Data Mining native
8 Naive Bayes Classifier webspam2011 (6GB) 20 Swaptions Finance native
9 SVM Classifier webspam2011 (24GB) 21 Vips Media Proc. native
10 Page Rank Graph Proc. wdc’12 [21] (5.3GB) 22 X264 Media Proc. native
11 Connected Cmp. Graph Proc. wdc’12 (6GB)
12 Triangle Cnt. Graph Proc. wdc’12 (5.3GB)

Table II: Server Specification

Component Specification
Processor Intel Xeon CPU E5-2697 v2
Sockets 2 Sockets, NUMA Node
Cores 12 Cores per Socket, 2 Threads per Core
Cache 32 KB L1 ICache, 32 KB L1 DCache

256 KB L2 Cache, 32 MB L3 Cache
Memory 256 GB DRAM

0.
5

0.
8

1.
1

correlation

Number of Cores

F

●
● ● ● ●

● ● ● ● ● ● ● ● ● ● ●

3 15 27 39

0.
5

0.
8

1.
1

decision

Number of Cores

F

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

3 15 27 39

0.
5

0.
8

1.
1

fpgrowth

Number of Cores

F

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

3 15 27 39

0.
5

0.
8

1.
1

gradient

Number of Cores

F

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

3 15 27 39

0.
5

0.
8

1.
1

kmeans

Number of Cores

F

● ● ● ●
● ●

● ● ● ● ● ● ● ● ● ●

3 15 27 39

0.
5

0.
8

1.
1

linear

Number of Cores

F

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

3 15 27 39

Figure 1: Calculated parallel fraction (F) for representative
Spark workloads as processor count varies.

count does not affect the parallel fraction but only deter-
mines how much of it is exploited for speedup. Note that
Amdahl’s Law assumes the parallel fraction is accelerated
linearly with processor count.

F (x) =

(
1− 1

s(x)

)(
1− 1

x

)−1

(3)

In Equation (3), however, we describe the practical link
between the workload’s parallel fraction and system’s pro-
cessor count. We express parallel fraction F in terms of mea-
sured speedup s(x) on x cores. The difference with Equation
(2) is subtle but important. If the linearity assumption behind
Amdahl’s Law fails, the number of processors deployed to
profile speedup will affect the estimated parallel fraction.

Figure 1 empirically estimates the parallel fraction for
representative workloads. We allocate x processors, mea-

1 3 5 7 9 11 13 15 17 19 21

Parallel Fraction (Expected Value)

Application ID
E

 [F
]

0.
5

0.
7

0.
9

Figure 2: Expected parallel fraction, F̄ = |x|−1
∑

xF (x).

1 3 5 7 9 11 13 15 17 19 21

Parallel Fraction (Variance)

Application ID

V
ar

(F
)

0.
00

0.
04

0.
08

0.
12

Figure 3: Variance in parallel fraction, Var(F) =
|x|−1

∑
x(F (x)− F̄)2. Lower variance indicates a better fit

with Amdahl’s Law.

sure speedup s(x), and evaluate the Karp-Flatt equation
for F (x). The estimate is unaffected by processor count,
indicating that Amdahl’s Law accurately models speedup
for most workloads. However, for some workloads, the
estimate decreases as processor count increases, indicating
parallelization overheads such as communication, shared
locks, and task scheduling.

We report summary statistics for the estimated parallel
fraction. Figure 2 presents average estimates from varied
processor counts. The parallel fraction ranges from 0.55 to
0.99 for Spark and PARSEC workloads. Figure 3 presents
variance in the estimate. For most workloads, variance
is small and the Karp-Flatt analysis is useful. Estimates
are consistent across processor counts and Amdahl’s Law
accurately models parallel speedups.

Although Karp-Flatt characterizes most workloads, it
falls short when overheads increase with processor count.
It is inaccurate for graph processing (e.g., pagerank,
connected components, triangle) since tasks for
different parts of the graph communicate more often as
parallelism increases. Karp-Flatt is also inaccurate for com-
putation on small datasets that require few tasks (e.g.,
kmeans’s 11 tasks) because adding processors rarely re-
duces latency and often increases scheduling overheads.
Finally, it is inaccurate for workloads with intensive inter-
thread communication (e.g., dedup) [27] because adding
processors increases overheads.

A. Profiling Sampled Datasets

Estimating the parallel fraction requires profiling perfor-
mance for varied processor counts. For efficiency, we reduce
dataset sizes by sampling uniformly and randomly from
the original dataset to create varied smaller ones. Sampled
datasets are small enough that we can profile workloads’
complete executions with all computational phases. Profiled
speedups drive the Karp-Flatt analysis.

Sampled profiles reveal broader performance trends. Fig-
ure 4 shows how execution time scales linearly with dataset
size when a representative workload, correlation, com-
putes on 1GB to 6GB, 12GB, and 24GB of data.1 Each line
shows the model for a given processor count. Models are
more accurate and data collection is faster when profiling
computation on more processors (e.g., 48 cores). Venkatara-
man et al. similarly fit linear models using sampled datasets
to predict performance on other datasets [29].

Although many workloads are well suited to linear per-
formance models, some require polynomial models be-
cause their execution time scales quadratically with dataset
size (e.g., QR decomposition). Although many datasets
are amenable to uniform sampling, skewed and irregular
datasets (e.g., those for sparse graph analytics) require more
sophisticated sampling.

B. Predicting Parallel Performance

Figure 5 combines Karp-Flatt and linear models to predict
parallel performance. Karp-Flatt estimates parallel fraction
from speedups (horizontal flow) and linear models estimate
execution time from dataset size (vertical flow). Specifically,
the procedure is:

• Parallel Fraction F. For each sampled dataset size d,
estimate expected parallel fraction F̄d for sampled core
allocations. Report mean of F̄d’s.

• Execution Time T. For each sampled core allocation
x, measure execution time Tx for sampled dataset sizes.
Report linear model fitted to Tx’s.

1Sampled datasets could be smaller than these as long as the number of
partitions, which dictate the number of tasks, is greater than the number of
processors. Otherwise, there is insufficient parallelism.

0
10

0
30

0
50

0

correlation

Dataset Size (GB)

E
xe

cu
tio

n
T

im
e

(s
)

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

● ● ●
●

●

●
● ● ● ● ●

●

●
● ● ●

● ●

●

1 3 5 7 9 12 15 18 21 24

●

●

●

●

●

Core Count

3
6
12
24
48

Figure 4: We sample the dataset size and measure perfor-
mance for varied processor allocations. We fit linear models
to estimate execution time from dataset size. Data shown for
representative workload, correlation.

1GB

2GB

3GB

1 2 47 48

Core Allocations

S
am

p
le

d
 D

at
as

et
s

24GB

R
ea

l
D

at
as

et
s

Linear Model

F1GB

F2GB

F3GB

GeometricMean

. . .

Amdahl's Performance

Model

T1 T2 T47
. . . T48 Fest

Core Allocation

Mechanisms

Figure 5: Use linear models to estimate effect of dataset size.
Use Karp-Flatt analysis to estimate effect of processor count.
Estimates can predict execution time or allocate processors.

The procedure’s outputs serve two purposes. First, we
can estimate execution time for any processor count x and
dataset size d from sparse profiles. Time measurements are
scaled twice, by the linear model to account for the target
dataset size and then by Amdahl’s Law to account for the
target processor count. Such scaling is accurate for varied
parallel workloads—see §IV-C. Second, we can construct
Amdahl utility functions with estimated parallel fractions.
Accurate functions enable markets that efficiently allocate
processors to users according to entitlements—see §V.

C. Assessing Prediction Accuracy

We find that profiles on reduced inputs supply enough
data for analysis. We can estimate workloads’ parallel frac-
tions, laying the foundation for markets with Amdahl utility
functions. Moreover, we can estimate execution time for a

 Estimated F

P
ar

al
le

l F
ra

ct
io

n
0.

6
0.

8
1.

0

sv
m

co
rre

.
lin

ea
r

de
cis

io
n

bl
ac

ks
ch

.
bo

dy
.

ca
nn

ea
l

fe
rre

t
vip

s

x2
64

Measured with Real Dataset
Estimated with Sampled Dataset

Figure 6: Accuracy of predicted parallel fraction F when
using sampled datasets.

variety of workload inputs and processor allocations.
Parallel Fraction. Figure 6 evaluates accuracy for the

estimated parallel fraction. The estimated value is the ge-
ometric mean of Karp-Flatt analyses for multiple, sampled
datasets. The measured value is the same but for the original
dataset. For Spark, sampled datasets include 1GB to 6GB
drawn randomly from the original dataset. For PARSEC,
simlarge and native correspond to sampled and com-
plete datasets, respectively.

Errors are small (i.e., absolute accuracy) and estimates
track measurements across workloads (i.e., relative accu-
racy). Relative accuracy is particularly important for pro-
cessor allocation. Karp-Flatt estimates the key parameter for
Amdahl utility functions. And these utilities determine bids
in the market for processors. Relative accuracy ensures more
processors are allocated to users that benefit more, enhancing
efficiency.
Canneal reports particularly high error because it is

memory-intensive. Its memory bandwidth utilization on
small datasets is not representative of that on larger datasets.
When smaller datasets under-estimate bandwidth constraints,
they over-estimate speedups from additional processors. The
estimated parallel fraction is much larger than the one
measured on the full dataset.

Execution Time. Figure 7 evaluates accuracy for execu-
tion time. Good predictions rely on accurate scaling in two
dimensions, by the linear model to account for the target
dataset size and by Amdahl’s Law to account for the tar-
get processor allocation. For the representative Decision
Tree workload, we demonstrate accurate predictions for the
target dataset and varied processor allocations.

Figure 8 broadens the evaluation to our workload suite.
For each workload, a boxplot illustrates the range of errors
when predicting execution time on varied processor allo-
cations. Our models see 5-15% error, on average, and 30%
error in the worst case. Cache- or memory-intensive applica-
tions (e.g., canneal) are poorly modeled as small, sampled

3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48

Execution Time Prediction Accuracy

Core Allocation

E
xe

cu
tio

n
T

im
e

(s
)

0
20

0
40

0 Measured with Real Dataset
Estimated with Sampled Dataset

Figure 7: Accuracy of predicted execution time given varied
processor counts. Data for Decision Tree.

●

●

●

●

●

●

0
20

60
10

0

Execution Time Prediction Accuracy

 E
rr

or
 (

%
)

sv
m

co
rr

e.

lin
ea

r

de
ci

si
on

bl
ac

ks
.

bo
dy

.

ca
nn

ea
l

fe
rr

et

vi
ps

x2
64

Figure 8: Accuracy of predicted execution time for varied
applications. Boxplots show distribution of errors given
varied processor allocations.

datasets cause the predictor to over-estimate benefits from
parallelism.

Although we evaluate execution time predictions, the
broader goal is estimating parallelizability. The workload’s
parallel fraction concisely describes benefits from proces-
sors. Accurately estimating this fraction is a prerequisite
for Amdahl utility functions. And these functions enable a
market for processors.

V. MARKET MECHANISM

We begin by formalizing the processor allocation problem.
The system has n users and m servers that hold varied
numbers of cores; server j has Cj cores. A user runs
multiple jobs and each job has been assigned to a server.
The problem is allocating the cores on each server given
users’ preferences and entitlements.

Our solution has two elements. First, we define the Am-
dahl utility function to describe users’ preferences for cores.
Second, we design a market in which users bid for cores
according to utilities. We derive a new bidding algorithm
to find the market equilibrium because there is no existing
theory for Amdahl utility functions.

A. Amdahl Utility Function

Let fij denote the parallel fraction for user i’s job on
server j. From Amdahl’s Law, allocating xij≤Cj cores to
user i on server j produces speedup sij .

sij(xij) =
xij

fi + (1− fi)xij
Suppose that user i’s job on server j completes wij units
of work (e.g., tasks) per unit time. We define the Amdahl
utility function as user i’s weighted average utility from
cores across m servers.

ui(xi) =

∑m
j=1 wijsij(xij)∑m

j=1 wij
(4)

Amdahl utility is consistent with architects’ views of per-
formance. Its parameters model important determinants of
performance—exploitable parallelism (f) and work com-
pleted (w).

Although Amdahl utility resembles a weighted average of
speedups, it actually measures normalized progress across
multiple servers. Per unit time, a job completes wij units
of work with one core and wijsij(xij) units with xij cores.
Utility is total work completed normalized by that when
allocated one core. Utility is one when the user receives one
core per server as speedup is one on each server.

B. Market Model

We design a Fisher market with n participants described
by Amdahl utility functions. Utility ui(xi) describes user
i’s value from her allocation of xi = (xi1, . . . , xim)
cores on each of m servers. After the market sets prices
p = (p1, . . . , pm) for servers’ cores, each user maximizes
utility subject to her budget bi, which is proportional to her
entitlement.

max ui(xi), (5)

s.t.
m∑
j=1

xijpj ≤ bi.

We illustrate market dynamics with an example. Suppose
Alice and Bob share servers, C and D, each of which has ten
cores. Alice runs dedup (f = 53%) and bodytrack (f =
93%) on C and D, respectively. Bob runs x264 (f = 96%)
and raytrace (f = 68%) on C and D, respectively. When
Alice receives core allocation xA = (xAC , xAD) and Bob
receives xB = (xBC , xBD), their utilities are as follows.2

uAlice = 0.5

(
xAC

0.53 + 0.47xAC
+

xAD

0.93 + 0.07xAD

)
,

uBob = 0.5

(
xBC

0.96 + 0.04xBC
+

xBD

0.68 + 0.32xBD

)
.

2Without loss of generality, this example assumes jobs complete one unit
of work per unit of time (i.e., wij = 1).

Suppose Alice and Bob have equal entitlements and
budgets (i.e., b = 1). When prices are p = (0.04, 0.16),
Alice determines her demand for processors as follows.

max
xAC

0.53 + 0.47xAC
+

xAD

0.93 + 0.07xAD
,

s.t. 0.04 xAC + 0.16 xAD ≤ 1.

C. Market Equilibrium

In market equilibrium, all users receive their optimal
allocations and there is no surplus or deficit of processors.
Formally, price vector p∗ = (p∗j) and allocation vector
x∗ = (x∗ij) comprise an equilibrium under the following
conditions.

1) Market Clears. All cores are allocated in each server
j. Formally,

∑n
i=1 x

∗
ij = Cj .

2) Allocations are Optimal. Allocation maximizes util-
ity subject to budget for each user i. Formally, x∗i
solves Optimization (5) at prices p∗.

In the example, equilibrium prices are p = (0.100, 0.099)
for the two servers. At these prices, Alice receives xA =
(1.34, 8.68) cores. She requests more processors on server D
because her bodytrack computation has more parallelism.
Bob receives xB = (8.66, 1.32).

Importantly, in a market equilibrium, users perform no
worse than they would under their entitlements. We sketch
the proof. First, under some mild conditions on utilities,3

users exhaust their budgets in equilibrium. This, combined
with the market-clearing condition, implies∑

j

Cjp
∗
j = B, (6)

where B is the sum of users’ budgets.
Next, since budgets are proportional to entitlements, user

i is entitled to xentij = (bi/B)Cj cores on server j. Given
Equation (6), it can be shown that users afford their entitle-
ment allocation under equilibrium prices.∑

j

xentij p∗j = (bi/B)
∑
j

Cjp
∗
j = bi.

Thus, xenti is a feasible solution of Optimization (5)
for user i and price vector p∗. But since the equilibrium
allocation x∗i is the optimal solution,

ui(x
∗
i) ≥ ui(xentli).

D. Finding the Market Equilibrium

Several cluster managers have designed markets and
used a particular algorithm—proportional response dynam-
ics (PRD)—to find their equilibria[31], [32], [33]. PRD
is an iterative algorithm that uses simple and proportional
updates for bids and prices [34], [35]. It is decentralized,
inexpensive, and avoids optimization.

3For strictly monotonic, continuous and non-satiable utility functions,
optimal allocation exhausts user’s budget [30].

In each PRD iteration, users bid by dividing their budget
across resources in proportion to the utility from them.
Then, the market allocates by dividing resources across
users in proportion to their bids for them. In response to
allocations, users update bids. PRD ends when bids converge
to stationary values.

The Fisher market equilibrium always exists because
Amdahl utility is continuous and concave [36]. And we
know that PRD converges to the equilibrium when utility
functions have constant elasticity of substitution (CES)
[37].4. But Amdahl utility is not a CES utility and existing
PRD procedures do not apply.

We extend PRD to Fisher markets with Amdahl utilities,
detailing the derivation here and summarizing the algorithm
in §V-E. Our derivation re-writes the utility optimization
problem and then assesses the effect on market equilibrium
conditions (i.e., market clears and allocations are optimal).

First, we turn the problem of finding the market equilib-
rium into a bidding problem. We re-write Optimization (5)
with a new variable bij = xijpj , which is user i’s bid for
cores on server j.

max. ui(xi), (7)
s.t. xij = bij/pj , ∀j,

m∑
j=1

bij ≤ bi,

bij ≥ 0, ∀j.

The first constraint states that user i is allocated bij/pj
processors. The second constraint ensures that user i’s bids
across servers do not exceed her budget.

Next, we re-write the market-clearing condition in terms
of equilibrium bids. The sum of users’ allocations on server
j must equal the server’s capacity.∑

i

x∗ij =
∑
i

b∗ij/p
∗
j = Cj .

The condition implies that, in equilibrium, server j’s price
is the sum of its bids divided by its capacity.

p∗j =
∑
i

b∗ij/Cj . (8)

Finally, the second equilibrium condition states that, given
prices p∗, allocations x∗ and bids b∗ should be the optimal
solution for Optimization (7). Using Lagrangian multipliers,
for user i, there exists λi such that if x∗ij > 0, then
∂ui/∂x

∗
ij = λip

∗
j . Using algebra and the fact that b∗ij =

x∗ijp
∗
j , we conclude

b∗ij
2

b∗ik
2 =

fij p
∗
j u

2
ij(x

∗
ij)

fik p∗k u
2
ik(x∗ik)

. (9)

4The CES utility function has the form ui(xi) =
∑
j(wijxij)

ρ
i .

In equilibrium, b∗ij must be proportional to wij sij(x
∗
ij) and√

f . Users bid more when the parallel fraction is larger and
allocated cores provide larger speedups. Users also bid more
when prices are higher, which indicates more competition
for the server’s cores.

E. Amdahl Bidding Procedure

Equations (8) and (9) define the Amdahl Bidding pro-
cedure. Users iteratively bid for servers’ cores. In iteration
t, server j’s price is the sum of users’ bids divided by its
capacity.

pj(t) =
∑
i

bij(t)/Cj

Given these prices, user i’s allocation of cores on server j is
xij(t) = bij(t)/pj(t). She updates her bid by dividing her
budget bi across servers in proportion to utility from them.

bij(t+ 1) = biUij(t)/Ui(t),

Uij(t) =
√
fijpj(t) wij sij(xij(t)),

Ui(t) =
∑
j

Uij(t).

Updated bids lead to updated prices. The procedure contin-
ues until bids and prices converge to stationary values. We
terminate when prices change by less than a small threshold
ε. We can prove, using KKT conditions, that any fixed point
of this procedure is a market equilibrium and vice versa.

VI. PROCESSOR ALLOCATION

We deploy workloads on physical servers (§III), profiling
execution time on varied core allocations and datasets to
fit Amdahl utility functions (§IV). Then, we construct a
population of users that shares datacenter servers and run the
market to allocate cores (§V). Finally, we measure allocation
performance on physical servers.

User Populations. We construct a population of users
and define key datacenter parameters. The number of users
n is drawn uniformly from 40 to 1000, in increments of 80.
Each user’s budget and entitlement is drawn uniformly from
1 to 5. The number of servers m is defined in terms of a
multiplier on the number of users. Specifically, m = sn and
s is drawn from {0.25, 0.5, 1, 2, 4}.

The workload density d is the maximum number of
colocated jobs on a server. For each server, the number
of jobs is drawn from {d/2, . . . , d} and the job itself is
drawn from Table I. Each job is randomly assigned to a
user and every user runs at least one job. The competition
for processors increases with density.

We construct 50 populations. Each population represents
a different mix of workloads and their assignment to servers
and users. We assess system performance and allocation out-
comes for each population. Finally, we report data averaged
across populations.

Rounding Allocations. Fair policies may produce frac-
tional allocations. We use Hamilton’s method to round
fractional allocations to integral ones. Initially, we assign
bxijc cores to user i on server j. Then, we allocate any
excess cores, one at a time, to users in descending order of
their fractional parts.

Metrics. Let timeij(xij) denote measured execution time
for user i’s job on server j when allocated xij cores. Let wij

denote work completed per unit time when the job computes
with one core. Because multiple cores reduce execution
time and increase work rate, we measure a job’s normalized
progress as follows.

JobProgressij(xij) = wij × timeij(1) / timeij(xij)

User i distributes multiple jobs across datacenter servers and
her aggregate progress is as follows.

UserProgressi =

∑
j wij × timeij(1) / timeij(xij)∑

j wij

The numerator sums work completed across servers given
the user’s core allocation. The denominator sums work
completed when the user receives only one core per server.
This definition of progress matches the Amdahl utility
function in §V. It also corresponds to the weighted speedup
metric, which is used to study multi-threaded and multi-core
systems [38], [39].

Finally, we define system progress as the weighted aver-
age of user progress. Weights reflect system priorities and
are defined by users’ budgets (i.e., entitlements). Let bi and
B denote user i’s budget and sum of all users’ budgets,
respectively. User i has weight bi/B and system progress is
as follows.

SysProgress = (1/B)
∑
i

bi UserProgressi (10)

A. Allocation Mechanisms

We evaluate our mechanism, which fits Amdahl utilities
and invokes the Amdahl Bidding (AB) procedure. For
each user, the mechanism instantiates an agent that bids
for processors based on users’ utilities and servers’ prices.
Bidding allows agents to shift cores from less parallelizable
jobs to more parallelizable ones. Allocations are efficient and
guarantee entitlements. We compare (AB) against several
alternatives.

• Greedy (G) is a performance-centric mechanism that
greedily allocates each core to the workload that yields
the greatest speedup or progress. (G) uses an oracle to
predict speedup for varied core allocations. This policy
ignores entitlements when pursuing performance.

• Upper-Bound (UB) is a performance-centric mecha-
nism that allocates cores to maximize system progress;
see Equation (10). This policy favors users with larger
budgets and entitlements when pursuing performance.

4 App/Ser 8 App/Ser 12 App/Ser 16 App/Ser 20 App/Ser 24 App/Ser

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0.
95

1.
05

1.
15

1.
25

G
PS

AB
BR

UB

Figure 9: Average System Performance.

• Proportional Sharing (PS) is a fair mechanism that
allocates each servers’ cores in proportion to users’
entitlements. If a user does not compute on a server,
her share is reassigned to other users on that server in
proportion to entitlements. (PS) enforces entitlements
server by server but may violate them in aggregate. It
neglects performance, ignoring users’ unique demands
for specific servers.

• Best Response (BR) is a market mechanism, like
(AB), that balances fairness and performance. Users
iteratively bid for resources, the market announces new
prices, and users optimize bids with the interior point
method [40]. Since Amdahl utilities are concave, the
interior point method finds globally optimal bids in
polynomial time.

(AB) differs from (BR) in several regards. First, (AB) has
lower overheads. (AB)’s bidding process evaluates closed-
form equations to update bids given new prices whereas
(BR)’s solves an optimization problem. In large systems,
(BR) could incur prohibitively high overheads.

Second, (AB) is better suited to highly competitive sys-
tems. (AB) finds the Fisher market equilibrium when users
are price-taking, which means users assume bids cannot
change prices. This assumption is realistic in large systems.
When many users share each server, an individual bid cannot
significantly change the prices.

(BR), on the other hand, finds the Nash equilibrium
when users are price-anticipating. Users realize their bids
can change prices and that realization affects their bidding
strategies. Individual bids are more likely to change prices
in small systems.

B. System Performance

Figure 9 presents performance for varied allocation poli-
cies and workload densities. Performance is measured in
terms of system progress and averaged over sampled user
populations. Data is normalized relative to that from pro-
portional sharing (PS). The figure illustrates the trade-offs
between guaranteeing entitlements and pursuing progress.

(AB) outperforms (PS), the state-of-the-art in enforcing
entitlements within each server. (PS) allocates cores in pro-
portion to users’ entitlements and redistributes any unused
cores [6]. By focusing exclusively on entitlements, (PS) may
allocate beyond the point of diminishing marginal returns
from parallelism. Cores allocated to one user could have
contributed more to another’s progress.

(AB) achieves more than 90% of (UB)’s performance.
(UB) allocates cores to maximize Equation (10). Its perfor-
mance advantage increases with the competition for cores.
When many workloads share the server, users rarely receive
more than a few cores. (UB) allocates these scarce cores
to users that contribute most to system progress, which
improves performance disproportionately because the small
allocations have not yet produced diminishing marginal
returns. For example, the first three cores allocated to a
workload has a larger impact than the next ten.

For similar reasons, (G)’s progress decreases with work-
load density. (G) allocates cores to the “wrong” user when
the objective is system progress because entitlements are
prominent in our measure of progress but ignored by the
allocation policy. This effect gets worse when more users
share each server. When cores are scarce and no workload
reaches the point of diminishing returns, every core matters.

(AB) performs comparably with (BR), which has much
higher implementation costs. (AB) finds the market equilib-
rium using closed-form equations and computational costs
are trivial. In contrast, (BR) requires optimization with costs
that scale with the number of users, workloads, and servers.
Our (BR) implementation optimizes bids with the interior
point method, but related studies use hill climbing [12].

(AB) produces a market equilibrium when users are price-
taking whereas (BR) produces a Nash equilibrium when
users are price-anticipating. Although (BR) is more robust
to strategic behavior, price-anticipating users become price-
taking ones when many users share the server and com-
petition for resources is high. As density increases, (AB)’s
market equilibrium approaches (BR)’s Nash equilibrium.

C. Entitlements and Performance

Figure 10 presents performance for users with varied
entitlement classes. Budgets are proportional to class. For
example, budgets for class 4 users are twice that of class 2
users. We report average performance over users within a
class and normalize it by (PS)’s.

(G) neglects entitlements and disadvantages high-class
users relative to (PS), which satisfies entitlements. In con-
trast, (UB) favors high-class users because their progress is
weighted more heavily in Equation (10). Thus, performance-
centric policies benefit high-class users while harming low-
class ones or vice versa.

(AB) and (BR) guarantee entitlements for all classes.
Users in all classes make similar progress because they have
the budget to afford entitled allocations. We sketch the proof

Class 1 Class 2 Class 3 Class 4 Class 5

N
or

m
al

iz
ed

 P
er

fo
rm

an
ce

0.
0

1.
0

2.
0

G
PS

AB
BR

UB

Figure 10: Per-class performance measured in terms of user
utility.

4 App/Ser 8 App/Ser 12 App/Ser 16 App/Ser 20 App/Ser 24 App/SerA
vg

 a
bs

 %
 E

rr
 in

 C
or

e
A

llo
ca

tio
n

0
10

20
30

40
50 G

PS
AB
BR

UB

Figure 11: Mean Absolute Percentage Error (MAPE) of core
allocations under different allocation policies and global core
entitlements.

for (AB) in §V and a similar one applies to (BR). Figure 10
presents the same finding empirically.

Moreover, (AB) and (BR) outperform (PS). Dividing
budgets into bids for cores on specific servers is equivalent to
trading cores on servers running less parallel jobs in return
for cores on servers with more parallelism. These trades
cause (AB) and (BR) to outperform (PS), which enforces
proportional shares independently on each server.

D. Entitlements and Allocations

Figure 11 compare allocations against datacenter-wide
entitlements by reporting the Mean Absolute Percentage
Error (MAPE). Error is high, regardless of policy, when
users run jobs on a few servers. Each user’s allocated cores
are drawn from the servers she computes on. Computing
on fewer servers constrain allocation and make satisfying
entitlements more difficult.

(G) and (UB)’s errors are large because they disregard
entitlements. Under (G), users who have similar utilities
receive similar core allocations despite reporting different
entitlements. Under (UB), users that contribute more to
system progress receive more cores, especially when density
is high and cores are scarce.

(PS)’s errors are significant due to its proportional shares

4 App/Ser 8 App/Ser 12 App/Ser 16 App/Ser 20 App/Ser 24 App/Ser

C
or

e
A

llo
ca

tio
n

M
A

E
0

1
2

3
4 5−10%

10−15%
15−20%
20−25%

25−30%
30−35%

Figure 12: Mean Abs Err (MAE) in core allocation due to
over-estimation of F̄ .

within each server. Users receive no more than their share
on each server that runs their jobs, and users receive no
compensating credit for servers that they do not use. This
effect, first seen in §II, explains the gap between (PS)’s
allocations and entitlements. In theory, (PS)’s errors fall to
zero when users run jobs on every server in the system, but
this scenario is practically impossible.

(AB) and (BR) address (PS)’s challenges by permitting
users to shift and trade entitlements across servers even in
violation of proportional shares within servers. The ability
to trade freely increases with workload density. Although
(AB) and (BR) report similarly low errors, their allocations
are different.

Suppose a user runs two jobs, one on server C without co-
runners and another on server D with multiple co-runners.
Under (AB), the user is price-taking and divides her budget
between servers. Under (BR), the user anticipates the effect
of her bid on C’s price, assigns a small fraction of her budget
to C, and assigns the rest to D. (BR)’s strategic bids do not
affect the user’s allocation on C. But they do increase her
allocation on D relative to what she would have received
from (AB).

E. Interference Sensitivity

We estimate parallel fraction F̄ by profiling workloads in
isolation. However, workloads in real systems see interfer-
ence from colocated computation. Colocation degrades per-
formance, which implies smaller speedups from parallelism
and smaller effective values for F̄ . By profiling workloads
in isolation, we may over-estimate F̄ .

We assess (AB)’s sensitivity to colocation. We select a
random user and reduce her jobs’ parallel fractions by some
percentage to reflect contention and corresponding estima-
tion error for F̄ . In chip multiprocessors, competition for
shared cache and memory typically degrades performance
by 5 to 15% [41]. Finally, we compare market allocations
when using original and adjusted estimates.

Figure 12 shows that over-estimating F̄ may cause users
to bid more and receive larger allocations. However, because

contention causes the user to over-estimate F̄ for all of her
jobs, the net effect on how she divides her budget across jobs
is small. For moderate workload densities, over-estimating
F̄ by 5 to 15% shifts an allocation by one or two cores.

F. Overheads

Finding equilibrium allocations is computationally effi-
cient and requires 12.35ms, an average over 600 mea-
surements. In each iteration, users spend 0.10ms updating
bids and the market spends 0.85ms updating prices and
checking the termination condition. Users communicate with
the market and round-trip network delay ranges from 0.20
to 0.30ms.

After prices converge, often within ten iterations, the
market distributes equilibrium bids to servers. Each server
calculates equilibrium allocations, in parallel, with an over-
head of 0.35ms. Of this time, 0.3ms is needed to receive
bids and 0.05ms is needed to calculate and round fractional
allocations.5

In BR, users spend on average 22× more time to update
their bids than they do in AB. These overheads are prob-
lematic when architects opt for a centralized implementation
of the market to avoid congesting networks with thousands
of bidding messages. In centralized implementations, BR’s
procedure for updating bids produces prohibitively high
overheads as network communication and calculating final
allocations becomes a smaller share of total overhead and
updating bids becomes a larger share.

Figure 13 shows how the number of iterations depends on
system parameters. First, overhead increases with the user
population size. As more users bid, the market requires more
time to find stationary prices. Second, more servers implies
more jobs per user and smaller shares of the budget for each
job. Smaller bids cause smaller price updates, which lowers
overheads.

Third, workload density affects overheads in non-
monotonic ways. (AB) converges faster when workload
density is low and only a few users bid for each server.
As density increases, the number of bidders and overheads
increases. But even further increases in density imply the
system has users with many jobs, each with a small share
of the budget and small bids that reduce overheads.

VII. RELATED WORK

Numerous studies cast hardware management as a market
problem in which users bid for resources [12], [10], [42].
XChange, the study that inspires our best-response (BR)
baseline, is a market for allocating cache capacity, mem-
ory bandwidth, and power in a chip multiprocessor [12].
XChange supports piecewise-linear models that can take any
shape and thus support more resource types. But the flexible
models require search heuristics, which may get caught

512.35ms = 10×(0.10ms + 0.85ms + 0.25ms) + 0.35ms.

●

●

●

●

● ●

● ●

●
● ●

●
●

200 400 600 800 1000

10
12

14
16

Number of Agents

N
um

be
r

of
 It

er
at

io
ns

●

●

●

●

●

200 400 600 800

12
14

16
18

20

Number of Servers

N
um

be
r

of
 It

er
at

io
ns

●

●

● ●
● ● ●

● ● ●

●

●

5 10 15 20

9.
0

9.
5

10
.0

10
.5

11
.0

Density (App/Ser)

N
um

be
r

of
 It

er
at

io
ns

●●●
●

●

●

●

0
10

0
20

0
30

0
40

0

Epsilon

N
um

be
r

of
 It

er
at

io
ns

10e−7 10e−5 10e−3 10e−1

Figure 13: Convergence rate of (AB).

in local optima, to find the bids and prices that produce
a Nash equilibrium. In contrast, we define Amdahl utility
functions and propose a closed-form bidding mechanism that
guarantees a market equilibrium.

Other studies explore game theory for systems manage-
ment. Many researchers use the Leontief utility function
to allocate datacenter cores and memory [17], [43], [19].
Zahedi et al. use the Cobb-Douglas utility function to
allocate cache capacity and memory bandwidth [44]. Both
studies guarantee game-theoretic desiderata such as sharing
incentives, envy-freeness, Pareto efficiency, and strategy-
proofness. The Fisher market in our study generalizes shar-
ing incentives with entitlements, guarantees Pareto efficiency
with its market equilibrium, and is strategy-proof for a large
user population.

Our analysis compares two solution concepts—market
and Nash equilibria—but others are relevant to systems and
architecture. For datacenter power management, Fan et al.
study mean field equilibria in which best responses are opti-
mized against statistical expectations of competitors’ actions
[45]. For workload colocation in servers, Llull et al. study
stable matches, a solution concept for cooperative games in
which users’ interactions determine a shared outcome [41].

Cloud infrastructure providers often require reservations,
asking users to specify their desired resources such as the
number of cores, amount of memory, and number of virtual
machines. For example, Hindman et al. implement a request-
grant abstraction among heterogeneous parallel frameworks
[46]. Such systems rely on users to report resource usage,
introducing opportunities for strategic action.

Finally, Gulati et. al enforce entitlements in a virtualized
environment with VMware DRS, which allocates processors
and memory to virtual machines across a distributed cluster
[47]. Allocations are determined based on entitlements and
demands based on actual consumption, which is vulnerable
to manipulation and users’ strategic behaviors. In contrast,
we use Amdahl utility functions and Karp-Flatt metric
to estimate users’ demands on each server. The Amdahl
bidding mechanism is theoretically strategy-proof in large
systems.

VIII. CONCLUSION AND FUTURE WORK

We introduce the Amdahl utility function, which concisely
models user value from processor core allocations. We
present a profiling framework that operationalizes Amdahl’s
Law, using its inverse—the Karp-Flat metric—to estimate
the parallelizable fraction of a workload. Finally, we design
a market mechanism that uses Amdahl utilities and a novel
bidding procedure to allocate processors. Allocations ensure
entitlements in a shared datacenter.

We design and evaluate the mechanism for processor
cores. In the future, we will look beyond a single resource
type. Amdahl’s Law has been extended for heterogeneous
core and can be generalized to reason about the diminishing
returns from allocations of any hardware resource [9].

ACKNOWLEDGMENTS

This work is supported by the National Science Founda-
tion under grants CCF-1149252 (CAREER), CCF-1337215
(XPS-CLCCA), SHF-1527610, and AF-1408784. This work
is also supported by STARnet, a Semiconductor Research
Corporation program, sponsored by MARCO and DARPA.
Any opinions, findings, conclusions, or recommendations
expressed in this material are those of the author(s) and do
not necessarily reflect the views of these sponsors.

REFERENCES

[1] J. Kay and P. Lauder, “A fair share scheduler,” Communica-
tions of the ACM, vol. 31, no. 1, pp. 44–55, 1988.

[2] A. Verma, L. Pedrosa, M. Korupolu, D. Oppenheimer,
E. Tune, and J. Wilkes, “Large-scale cluster management at
Google with Borg,” in Proceedings of the 10th European
Conference on Computer Systems (EuroSys), 2015, pp. 18:1–
18:17.

[3] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian,
M. Wu, and L. Zhou, “Apollo: Scalable and coordinated
scheduling for cloud-scale computing,” in Proceedings of the
11th USENIX Conference on Operating Systems Design and
Implementation (OSDI), 2014, pp. 285–300.

[4] “Amazon EC2,” https://aws.amazon.com/ec2/.

[5] “Microsoft azure,” https://azure.microsoft.com.

[6] G. J. Henry, “The UNIX system: The fair share scheduler,”
AT&T Bell Laboratories Technical Journal, vol. 63, no. 8, pp.
1845–1857, 1984.

[7] C. A. Waldspurger and W. E. Weihl, “Lottery Scheduling:
Flexible proportional-share resource management,” in Pro-
ceedings of the 1st Symposium on Operating Systems Design
and Implementation (OSDI), 1994, pp. 1–11.

[8] G. M. Amdahl, “Validity of the single processor approach to
achieving large scale computing capabilities,” in Proceedings
of the April 18-20, 1967, Spring Joint Computer Conference,
ser. AFIPS ’67 (Spring), 1967, pp. 483–485.

[9] M. D. Hill and M. R. Marty, “Amdahl’s Law in the multicore
era,” Computer, vol. 41, no. 7, 2008.

[10] M. Guevara, B. Lubin, and B. C. Lee, “Navigating heteroge-
neous processors with market mechanisms,” in Proceedings of
the 19th IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2013, pp. 95–106.

[11] ——, “Strategies for anticipating risk in heterogeneous sys-
tem design,” in Proceedings of the 20th IEEE International
Symposium on High Performance Computer Architecture
(HPCA), 2014, pp. 154–164.

[12] X. Wang and J. F. Martı́nez, “XChange: A market-based
approach to scalable dynamic multi-resource allocation in
multicore architectures,” in Proceedings of the 21st IEEE
International Symposium on High Performance Computer
Architecture (HPCA), 2015, pp. 113–125.

[13] ——, “ReBudget: Trading off efficiency vs. fairness in
market-based multicore resource allocation via runtime bud-
get reassignment,” in Proceedings of the 21st International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2016, pp. 19–32.

[14] S. H. Clearwater and S. D. Kleban, “ASCI Queuing systems:
Overview and comparisons,” in Proceedings of the 16th
International Parallel and Distributed Processing Symposium
(IPDPS), 2002, p. 49.

[15] J. A. Ang, R. A. Ballance, L. A. Fisk, J. R. Johnston, and K. T.
Pedretti, “Red storm capability computing queuing policy,”
2005.

[16] Duke University, “The Duke Computer Cluster,” https://rc.
duke.edu/the-duke-compute-cluster.

[17] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski,
S. Shenker, and I. Stoica, “Dominant resource fairness: Fair
allocation of multiple resource types,” in Proceedings of the
8th USENIX Conference on Networked Systems Design and
Implementation (NSDI), 2011, pp. 323–336.

[18] M. Chowdhury, Z. Liu, A. Ghodsi, and I. Stoica, “HUG:
Multi-resource fairness for correlated and elastic demands,”
in Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation (NSDI), 2016, pp. 407–
424.

[19] D. C. Parkes, A. D. Procaccia, and N. Shah, “Beyond domi-
nant resource fairness: Extensions, limitations, and indivis-
ibilities,” in Proceedings of the 13th ACM Conference on
Electronic Commerce (EC), 2012, pp. 808–825.

[20] D. Wang, D. Irani, and C. Pu, “Evolutionary study of web
spam: Webb Spam Corpus 2011 versus Webb Spam Corpus
2006,” in Proceedings of the 8th International Conference
on Collaborative Computing: Networking, Applications and
Worksharing (CollaborateCom), 2012, pp. 40–49.

[21] “Web data commons: Hyperlink graphs,” http:
//webdatacommons.org/hyperlinkgraph/index.html.

[22] “US Census Data (1990) data set,” https://archive.ics.uci.edu/
ml/datasets/US+Census+Data+(1990).

[23] “Movielens dataset,” http://grouplens.org/datasets/movielens/.

[24] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica, “Spar-
row: Distributed, low latency scheduling,” in Proceedings of
the 24th ACM Symposium on Operating Systems Principles
(SOSP), 2013, pp. 69–84.

[25] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and
I. Stoica, “Spark: Cluster computing with working sets,” in
Proceedings of the 2nd USENIX Conference on Hot Topics
in Cloud Computing (HotCloud), vol. 10, 2010, p. 10.

[26] A. Karp and H. Flatt, “Measuring parallel processor perfor-
mance,” Communications of the ACM, 1990.

[27] C. Bienia, “Benchmarking modern multiprocessors,” Ph.D.
dissertation, Princeton University, January 2011.

[28] “Docker,” http:/docs.docker.com.

[29] S. Venkataraman, Z. Yang, M. Franklin, B. Recht, and I. Sto-
ica, “Ernest: Efficient performance prediction for large-scale
advanced analytics,” in Proceedings of the 13th Usenix Con-
ference on Networked Systems Design and Implementation
(NSDI), 2016, pp. 363–378.

[30] A. Gutman and N. Nisan, “Fair allocation without trade,”
in Proceedings of the 11th International Conference on Au-
tonomous Agents and Multiagent Systems (AAMAS), 2012,
pp. 719–728.

[31] “Tycoon: Market-based resource allocation,” http://www.hpl.
hp.com/research/tycoon/index.html, last visited: June 2017.

[32] B. N. Chun and D. E. Culler, “Market-based proportional
resource sharing for clusters,” Berkeley, CA, USA, Tech.
Rep., 2000.

[33] K. Lai, L. Rasmusson, E. Adar, L. Zhang, and B. A. Huber-
man, “Tycoon: An implementation of a distributed, market-
based resource allocation system,” Multiagent Grid Systems,
vol. 1, no. 3, pp. 169–182, August 2005.

[34] F. Wu and L. Zhang, “Proportional response dynamics leads
to market equilibrium,” in Proceedings of the 39th Annual
ACM Symposium on Theory of Computing, 2007, pp. 354–
363.

[35] L. Zhang, “Proportional response dynamics in the Fisher
market,” Theoretical Computer Science, vol. 412, no. 24, pp.
2691–2698, 2011.

[36] K. J. Arrow and G. Debreu, “Existence of an equilibrium
for a competitive economy,” Econometrica: Journal of the
Econometric Society, pp. 265–290, 1954.

[37] L. Zhang, “Proportional response dynamics in the Fisher
market,” Theoretical Computer Science, vol. 412, no. 24, pp.
2691–2698, 2011.

[38] S. Eyerman and L. Eeckhout, “System-level performance
metrics for multiprogram workloads,” IEEE Micro, vol. 28,
no. 3, pp. 42–53, 2008.

[39] A. Snavely and D. M. Tullsen, “Symbiotic job scheduling for
a simultaneous multithreaded processor,” in Proceedings of
the 9th International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
2000, pp. 234–244.

[40] S. Boyd and L. Vandenberghe, Convex optimization. Cam-
bridge university press, 2004.

[41] Q. Llull, S. Fan, S. M. Zahedi, and B. C. Lee, “Cooper: Task
colocation with cooperative games,” in Proceedings of the
23rd IEEE International Symposium on High Performance
Computer Architecture (HPCA), 2017, pp. 421–432.

[42] O. Agmon Ben-Yehuda, E. Posener, M. Ben-Yehuda,
A. Schuster, and A. Mu’alem, “Ginseng: Market-driven
memory allocation,” in Proceedings of the 10th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution
Environments, 2014.

[43] Q. Pu, H. Li, M. Zaharia, A. Ghodsi, and I. Stoica, “FairRide:
Near-optimal, fair cache sharing,” in 13th USENIX Sym-
posium on Networked Systems Design and Implementation
(NSDI), 2016.

[44] S. M. Zahedi and B. C. Lee, “REF: Resource elasticity fair-
ness with sharing incentives for multiprocessors,” in Proceed-
ings of the 19th International Conference on Architectural
Support for Programming Languages and Operating Systems
(ASPLOS), 2014, pp. 145–160.

[45] S. Fan, S. M. Zahedi, and B. C. Lee, “The computational
sprinting game,” in Proceedings of the 21st International Con-
ference on Architectural Support for Programming Languages
and Operating Systems (ASPLOS), 2016, pp. 561–575.

[46] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D.
Joseph, R. Katz, S. Shenker, and I. Stoica, “Mesos: A
platform for fine-grained resource sharing in the data center,”
in Proceedings of the 8th USENIX Conference on Networked
Systems Design and Implementation (NSDI), 2011, pp. 295–
308.

[47] A. Gulati, A. Holler, M. Ji, G. Shanmuganathan, C. Wald-
spurger, and X. Zhu, “VMware distributed resource manage-
ment: Design, implementation, and lessons learned,” VMware
Technical Journal, vol. 1, no. 1, pp. 45–64, 2012.

