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Ensuring fairness in a system with scarce, preferred resources requires time sharing. We consider a hetero-
geneous system with a few “big” and many “small” processors. We allocate heterogeneous processors using
a novel token mechanism, which frames the allocation problem as a repeated game. At each round, users
request big processors and spend a token if their request is granted. We analyze the game and optimize users’
strategies to produce an equilibrium. In equilibrium, allocations balance performance and fairness. Our mech-
anism outperforms classical, fair mechanisms by 1.7×, on average, in performance gains, and is competitive
with a performance maximizing mechanism.
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1 INTRODUCTION

Processor heterogeneity is a fundamental design strategy at all scales, from chip multiprocessors
to warehouse-scale datacenters. Heterogeneity improves performance and energy efficiency when
tasks compute in their best suited setting. But managing heterogeneity is challenging. Prior efforts
pursue energy efficiency [35, 37], instruction throughput in chip multiprocessors [11], or service
quality in datacenters [8, 21, 22, 46].

The pursuit of fairness in heterogeneous systems is equally important but less understood. Fair-
ness encourages users to dynamically share systems. If a user dislikes an allocation policy, then he
or she may prefer private or statically partitioned systems, which are less efficient than dynam-
ically shared ones. Users seek at least two assurances—sharing incentives (SI) and envy-freeness
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(EF) [62]. SI ensure that users perform at least as well as they would have under equal division. EF
ensures that users prefer their own allocation over other users’.

Recently, researchers have turned to microeconomics and game theory for fair, multi-resource
allocation [10, 19, 24, 30, 69]. These studies pursue fairness in space, dividing hardware resources
that outnumber software tasks. In contrast, we pursue fairness in time for heterogeneous systems
that multiplex scarce hardware to satisfy simultaneous, competing demands. For example, consider
a system where the majority of processors are “small” and only a few are “big.”

Fairness versus performance. Round-robin is the classic policy for managing scarce resources
over time. It divides time into rounds and assigns each user their fair share of rounds in fixed
rotation. Although round-robin guarantees users equal time on preferred processors, as we show in
this article, it fails to ensure EF. Moreover, round-robin performs poorly in heterogeneous systems,
because it ignores phases in users’ workloads. Some workloads receive big processors when small
ones would have sufficed.

Randomized and proportional shares, with a mechanism like lottery scheduling [63], ensure that
users receive equal shares over time. In a system with n users and m big processors, m < n, each
user receives a big processor with probabilitym/n in each round. Ex ante, allocations guarantee SI
and EF in expectation over multiple rounds. However, performance suffers in much the same way
it does with round-robin.

Equal-progress is another classic policy that balances performance across parallel tasks, which
helps manage a job’s critical path. However, it fails to produce the requisite conditions for sharing
in multi-user, multi-program settings. Specifically, equal-progress unfairly favors tasks that require
large allocations for progress, which provides neither SI nor EF [17, 69].

Allocation games. Performance losses from fair allocation are inevitable when there is no
information about workloads’ utilities for big processors. But what if users know their workloads’
utility distributions from resources over time? What if users know their workloads’ utilities for a
resource in the current round? Our answer is a repeated game that extracts and uses information
about workloads’ utilities to simultaneously improve performance and ensure fairness.

We frame heterogeneous processor allocation as a repeated game and study users’ strategies
for requesting processors. In equilibrium, the game improves performance by increasing system
flexibility. It allocates resources to users that benefit most in each round and compensates those
that are unfairly treated with more resources in later rounds. For a case study, the game manages
processors with heterogeneous power budgets—“small” processors operate within a modest budget
and “big” processors operate within an augmented one. The following lists our contributions.

• Repeated game for managing heterogeneity. We propose a repeated game in which
users spend tokens when allocated big processors. We apply the game to allocate power
boosts. (Sections 2 and 3)

• Tokens and game theory. We formulate the repeated game for heterogeneous processor
allocation. We optimize users’ strategies for spending tokens and identify conditions for
equilibria. (Section 4)

• Tokens in practice. We describe a framework that profiles tasks, optimizes strategies,
and allocates power. Profiling and optimization are offline whereas allocation is online.
(Section 5)

• Fairness and performance. The allocation game incentivizes sharing and mitigates ex
post envy over time. The game performs much better than other fair policies (e.g., 1.7×
better than round-robin) and performs comparably to performance-maximizing policies.
(Sections 6 and 7)
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Collectively, the results suggest potential for economic game theory in systems resource man-
agement. The game extends naturally to any setting in which applications compete for scarce,
preferred hardware.

2 MOTIVATION AND BACKGROUND

System setting. We study systems with many small processors and a few big ones. Each user can
receive a processor, just not necessarily a big one. Big and small processors arise in many settings,
from chip multiprocessors to warehouse scale datacenters. Our mechanism is particularly well
suited to managing processors that dynamically re-configure between big and small capability
(e.g., with dynamic voltage/frequency scaling).

Allocation games. We formulate the allocation of heterogeneous processors as a repeated
game between strategic users. Rather than burden human users with a complex space of actions,
we design agents to represent users and their jobs in the shared system. Each agent selfishly re-
quests processors to maximize individual performance subject to the rules of the game.

Agents analyze workload phases, which cause their utility from heterogeneous processors to
vary over time. Ideally, agents request big processors when they are most beneficial and, all else
being equal, prefer a big processor in the present over one in the future. Responding to agents’
requests in each round, the game (re-)allocates processors. Allocations in the present affect those
in future. In turn, agents adapt their strategies for requesting resources according to competitive
dynamics. Over time, strategic game play can produce an equilibrium.

Game-theoretic desiderata. We focus on fair resource allocations that encourage participation
in shared systems. In microeconomic theory [62], fairness is defined by sharing incentives (SI),
when every agent’s allocation performs at least as well as it would have under equal division, and
envy-freeness (EF), when every agent prefers its own allocation over another’s. Without these
axiomatic properties, strategic users may prefer private or statically partitioned systems.

Finding allocations that incentivize sharing in practical systems is challenging, and two recent
studies are representative. Ghodsi et al. propose Dominant Resource Fairness when allocating pro-
cessor cores and memory capacity in distributed systems. [19]. Zahedi et al. propose Resource
Elasticity Fairness when allocating cache capacity and memory bandwidth in chip multiproces-
sors [69]. These algorithms guarantee SI and EF for very different performance models, pursuing
fairness in space.

Repeated games. In this article, we pursue fairness in time. We design a game that encourages
sharing and mitigates envy across repeated allocations of heterogeneous processors. Because each
agent’s allocation is a sequence of big and small processors, we add a temporal dimension to SI and
EF. The allocation sequence provides repeated sharing incentives (SIR) when every agent performs
at least as well as it would have under equal division of time on big processors. And it provides
repeated envy-freeness (EFR) when every agent prefers its allocation sequence over another’s.
Repeated games that flexibly pursue these properties in expectation (i.e., averaged) over rounds
are fair and perform better than mechanisms, such as lottery scheduling [63], that rigidly enforce
SI and EF in every round.

3 REPEATED GAME WITH TOKENS

The repeated game is implemented with a token mechanism. Tokens determine the allocation of
boosts, the acceleration from a big processor over a small one. Boosts can be defined by hetero-
geneity across design generations [29, 47, 50], adaptive microarchitectures [27, 33, 44], and power
budgets [12, 16, 54].

Without loss of generality, we describe our token mechanism with a case study in power. Con-
sider a datacenter power delivery unit (PDU) that supplies limited power tom chip multiprocessors.
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Each multiprocessor runs with nominal power. Additionally, the supply can support n simultane-
ous power boosts (n << m).

Each user runs her job on a chip multiprocessor. Agents represent users and their jobs. Agents’
utilities from boosts vary across job phases and rounds. Time is divided into rounds. We assume
each agent knows its utility distribution over time and its utility at the beginning of each round,
but the management mechanism lacks this information.

3.1 Token Mechanism

In each round, agents signal preferences for boosts. The game uses agents’ signals and token hold-
ings to allocate boosts. Agents must spend tokens when allocated boosts and may receive tokens
otherwise.

Signals (Y and ¬ Y). When beginning a round, each agent signals yes (Y ) or no (¬Y ) to indicate
her preference for one of n boosts. If fewer than n agents signal Y , then each agent who prefers
a boost receives one. If more than n agents signal Y , then the n agents holding the most tokens
receive boosts.

Tokens (t). Each agent holds a number of tokens t . Agents start with an equal number of to-
kens.1 An agent must hold at least one token to signalY and must spend one token when allocated
a boost. The game prohibits hoarding and allocates boosts to agents with tmax tokens, requiring
them to spend regardless of their preference.

Token distribution (f (t)). Agents’ token holdings determine winners in the competition for
boosts. An agent with few tokens can signal Y but fail to receive a boost when others with more
tokens also signal Y . Let f (t ) describe the token distribution, which quantifies the percentage of
agents with t tokens. An agent with t ′ tokens is outranked by

∑
t>t ′ f (t ) percentage of the game’s

agents, who receive power boosts with higher priority when signaling Y .
Token redistribution (PR). In each round, the game redistributes spent tokens among agents

who do not receive a boost. When the game allocates n boosts, it redistributes n tokens to the
m − n agents who did not receive them with probability PR = n/(m − n). The game does not use
fractional tokens and redistributes tokens probabilistically, which is fair in expectation.

3.2 Threshold Strategies

Agents play the game with threshold strategies. A user signals for boosts when its utility exceeds
some threshold. Such strategies are trivial to implement at runtime. But determining the optimal
threshold requires an offline analysis of the system’s competitive dynamics. When beginning a
round, each agent’s decision to signal depends on the game’s history and competitive factors,
including the

• agent’s tokens,
• agent’s utilities from boosts,
• other agents’ tokens, and
• other agents’ utilities and strategies.

An agent’s token holdings affect her signaling strategy. An agent who holds many tokens feels
rich and signals Y even when utility from a boost is modest. An agent who holds few tokens feels
poor, hoards tokens, and signals ¬Y even when it would benefit from a boost. An agent signals
strategically, because it must spend a token if it receives a boost, which affects both its performance
in the current round and its ability to signal effectively in future rounds.

1Users could start with different token holdings if they have different weights (i.e., priorities)—see Section 9.
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Fig. 1. Probability density functions on utility (i.e., throughput gains) from power boosts.

Fig. 2. Signaling thresholds. Agents with more tokens lower thresholds and spend tokens more freely. KMeans
agents have higher utilities and thresholds when choosing rounds in which to signal.

Agents signal and exchange tokens, actions which determine how efficiently the game allocates
boosts. Suppose agents hoard tokens and rarely request boosts, or spend tokens liberally and often
request boosts. Because naive signals do not reveal agents’ relative utilities, they produce an un-
informative token distribution and the game can do no better than round-robin allocation. Agents
who signal strategically, in contrast, request boosts only for rounds that benefit.

3.3 Game Dynamics

We optimize each agent’s strategy in Section 4 but first present an extended case study that illus-
trates game play. See Section 6 for more details on experimental methods.

Suppose that the nominal power budget is 30W and a boost is an additional 50W of power. In
other words, a little processor has a 30W budget and a big processor has an 80W budget. A 35KW
datacenter rack supports 900 little processors and 100 big ones. In each round, 1000 agents compete
for 100 power boosts. These parameters reflect modern power supplies [13, 70] and our workloads’
typical power demands.

Workloads’ preferences. For insight into competing demands for power, consider two repre-
sentative Spark workloads and their utilities from boosts. Figure 1 shows each agent’s probability
density on utility u, measuring gains in normalized task throughput from power boosts. KMeans
agents strongly prefer power boosts whereas PageRank agents weakly prefer them. Specifically,
KMeans’s u ranges from 0.1 to 0.5 whereas PageRank’s ranges from 0 to 0.2.

Signaling strategies. Suppose 500 agents for KMeans and 500 agents for PageRank play the
game by signaling for power boosts when their expected utilities exceed some threshold. Figure 2
presents representative thresholds, which tend to decrease with token holdings. Poor agents signal
for boosts only when benefits are large whereas rich agents signal more freely. An agent without
tokens cannot receive boosts and a high threshold prevents it from signaling. Agents with tmax

tokens must receive a boost. A low threshold ensures they signal.
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Fig. 3. Tokens. KMeans agents have higher thresholds, signal less for boosts, receive them less frequently,

and hold more tokens.

Fig. 4. Snapshot of system dynamics.

Because the supply of power boosts is limited, KMeans agents use higher thresholds to decide
when to receive their fair share. With higher thresholds, agents signal for boosts less often and
signal when benefits are greater. With lower thresholds, users would spend tokens quickly and
exhaust their share of boosts.

Token distributions. Figure 3 illustrates the distribution of tokens after multiple rounds of
game play. Agents begin the game with one token and signal for boosts according to their threshold
strategies. KMeans agents conserve their tokens and do not signal in every round. PageRank agents
have fewer tokens, because they signal whenever their utilities is higher than their relatively low
thresholds. Among 500 PageRank agents, approximately 35% have zero tokens and 20% have one.

Game play. Figure 4 presents a snapshot of game play for a KMeans agent. The top sub-figure
superimposes utility and threshold, which vary over time. The bottom sub-figure shows token
holdings and signals for boosts. The agent signals when utility exceeds threshold. It does not signal
in rounds 0 to 30, accumulating tokens to ensure successful signals when boosts are most needed
in rounds 30 to 35, an exceptionally compute-intensive phase.

Token holdings and signaling thresholds fluctuate during game play. Holdings increase when
an agent’s utility is low and it does not signal while others do (e.g., rounds 0 to 30). Tokens spent
by other agents are redistributed. Holdings decrease when an agent’s utility is high and it signals
for boosts (e.g., rounds 30 to 35). Note that thresholds rise as token holdings fall, because the agent
signals and spends tokens more judiciously.
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Not all signals are successful. An agent may signal yet fail to receive a boost when others hold
more tokens. We observe a series of successful signals beginning in round 31 followed by an unsuc-
cessful signal in round 34. Prior successes reduce token holdings such that the agent is outranked
by others who signal.

4 STRATEGIC GAME PLAY

We optimize agents’ threshold strategies and find the game’s equilibrium. First, we derive equa-
tions that describe game play. Then, we use these equations to refine thresholds and assess out-
comes. Finally, we produce the optimal threshold for each agent. These thresholds produce an
equilibrium in which no agent benefits by deviating from its assigned strategy.

Although the analysis is sophisticated, it has low overheads. The models do not delay resource
allocation, because thresholds are optimized offline and only checked online. The offline compu-
tation requires a few seconds, using a dynamic program to refine thresholds.

The analysis is efficient despite the difficulty of the problem. Each agent must identify its best
action from a complex strategy space. And it must respond to competitors’ actions but cannot
tractably monitor every other agent (e.g., token holdings, signals) in large systems with many
participants.

Equilibrium. Addressing these challenges, we study the mean field equilibrium (MFE), a so-
lution built atop statistical summaries of the game [2–4, 23, 28]. Each agent optimizes strategies
against expectations of population behavior. We find a MFE by analyzing interdependent distribu-
tions that describe agents.

• Signaling strategy (PY (t)). Probability agent signals Y for boost when holding t tokens.
• Token distribution (f (t)). Statistical distribution measuring fraction of agents with t

tokens.
• Signaling strength (PB (t)). Probability agent holding t tokens receives boost when

signaling Y .

In equilibrium, agents are described by stationary distributions, which are invariant across time.
For example, some agents spend tokens and others receive them in a given round, but the token
distribution is unchanged with game play across rounds.

We find an equilibrium by finding the game’s stationary distributions. Specifically, we construct
an algorithm that characterizes agents and optimizes each agent’s response to the population as
follows.

• Optimize signaling strategy (PB → PY). Given signaling strength, determine strategy to
maximize utility.

• Assess token distribution (PY → f). Given signaling strategy, spend tokens and deter-
mine token distribution.

• Assess signaling strength (PY, f → P
′
B

). Given signaling strategy and token distribution,
determine signaling strength.

• Iterate (P′
B
→ PB). If PB = P ′

B
, then distributions are stationary and game is in equilibrium.

Otherwise, iterate with new PB .

The algorithm iteratively refines an agent’s strategy. In response to its expected signaling
strength, each agent optimizes its signaling strategy to maximize performance. Signals affect token
holdings, which in turn affect signaling strength. The algorithm terminates with an equilibrium
when the game converges to stationary distributions and agents find their optimal strategies.
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We detail each step of the algorithm in the following sections. Utility refers to performance gain
from power boost. Value is an agent’s expected utility in the present based on statistical estimates
of the future.

4.1 Optimize Signaling Strategy

For each agent, the Bellman equation determines whether signaling for a power boost maximizes
value V given its token holdings t and boosted utility u. VY and V¬Y are values when signaling Y
and ¬Y ,

V (t ,u) = max(VY (t ,u),V¬Y (t ,u)). (1)

IfVY (t ,u) ≥V¬Y (t ,u), then signalingY is optimal in state (t ,u). Otherwise, signaling¬Y is optimal.
We determine the optimal signal for every (t ,u) with dynamic programming. The resulting map
from state to signal specifies the optimal strategy.

Value from signal. The value from signaling Y depends on whether the signal is successful.
The signal succeeds with probability PB (t ), producing utility u from boosted performance in the
current round plus future value after spending one token γV (t − 1). Future values are discounted
by γ < 1, because agents prefer utility now over utility later, all else being equal,

VY (t ,u) = PB (t ) (u + γV (t − 1)) (2)

+(1 − PB (t )) (PRγV (t + 1) + (1 − PR )γV (t )).

The signal fails with probability 1 − PB (t ), producing no utility. After failure, future value depends
on how tokens are redistributed; the agent receives a token with probability PR .
V (t ) is the expected future value when holding t tokens. Maximizing value is complicated by

uncertainty and incomplete task profiles. Future value cannot be known precisely because utility
u varies across computational phases. However, profilers that measure performance across rounds
can supply distribution h(u), the probability that boosted performance is u,

V (t ) = E [V (t ,u)] =

∫
V (t ,u)h(u)du .

We similarly assess value from not signaling. An agent who signals ¬Y derives the same value as
an agent who signals Y but fails to receive a boost,

V¬Y (t ,u) = γ (PRV (t + 1) + (1 − PR )V (t )). (3)

Threshold strategy. Dynamic programming produces the optimal signaling strategy – a
threshold on performance gains from power boosts. Specifically, agents maximize value by signal-
ing for boosts when VY > V¬Y . From Equations (2) and (3), agents should signal if boosted utility
u exceeds threshold uthr,

u > γ (PRV (t + 1) + (1 − PR )V (t ) −V (t − 1))︸������������������������������������������������︷︷������������������������������������������������︸
uthr (t )

. (4)

Note that the threshold varies with the agent’s token holdings t and utility distribution h(u),

PY (t ) = Pr(u ≥ uthr (t )) =

∫
u≥uthr (t )

h(u)du . (5)

Given its threshold, an agent signals for boosts with probability PY (t ). This probability depends
on several factors. First, thresholduthr specifies the gains required to justify signals. Second, token
holding t affects the threshold as rich agents set lower thresholds to signal more liberally. Finally,
utility distribution h(u) affects the threshold. Agents that often benefit from boosts set higher
thresholds, judiciously signaling in rounds that benefit most.
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Fig. 5. Token exchange.

Agents implement their signaling strategies with offline analysis and online comparisons,
sketched here and detailed in Section 5. Offline, agents profile boosted performance, construct
utility distributions, and optimize thresholds. This computation requires a few seconds. Online, in
each round, the agent signals when utility exceeds threshold, a comparison that requires modest
support from hardware counters.

4.2 Assess Token Distribution

Agents exchange tokens as the game allocates power boosts. Figure 5 presents a Markov chain
that specifies possible token holdings and transitions between them. An agent with i tokens has j
tokens in the next round with probability pi, j ,

pt,t−1 = PY (t )PB (t ) (6)

pt,t = (1 − PR ) (1 − PY (t )PB (t ))

pt,t+1 = PR (1 − PY (t )PB (t )).

An agent loses a token after signaling successfully. Otherwise, it gains a token with some proba-
bility. The net change in token holdings depends on probability of signaling PY , receiving a boost
PB , or a token PR .

When agents signal using optimized thresholds, the Markov chain converges to a stationary
distribution f (t ), characterized by linear equations for t ∈ (0, tmax),

f (t ) = f (t + 1)pt+1,t + f (t )pt,t + f (t − 1)pt−1,t . (7)

We omit boundary conditions for t = 0 and t = tmax, which differ only slightly. Agents hold a non-
negative number of tokens and hold no more than tmax tokens. An agent with tmax tokens receives
a boost and spends a token.

4.3 Assess Signaling Strength

Signaling strength is the probability of successfully requesting a power boost. We calculate
strength from its signaling strategy and token holdings. First, we define the probability an agent
holds t tokens and signals Y ,

д(t ) = f (t )PY (t ).

Then, we determine the percentage of agents who signal Y and hold at least t tokens,

G (t ) =
tmax∑
t ′=t

д(t ′).

Finally, we determine the probability an agent signals successfully for one ofm boosts when hold-
ing t tokens:

PB (t ) =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

0 ifmG (t + 1) ≥ n,
1 ifmG (t ) < n,
n−mG (t+1)

mд (t ) otherwise.
(8)
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The definition of PB (t ) enumerates scenarios for an agent with t tokens. First, the agent fails to
receive a boost when agents that signal with > t tokens outnumber available boosts. Second, if
agents that signal with ≥t tokens undersubscribe boosts, all of these agents receive them. Finally,
ties are broken for agents with t tokens. The mG (t + 1) signaling agents with > t tokens receive
boosts. The remainingn −mG (t + 1) boosts are assigned with equal probability to themд(t ) agents
with t tokens.

4.4 Equilibrium

The mean field equilibrium is defined by stationary distributions for signaling strategy, token hold-
ings, and signaling strength. The game is in equilibrium if

• PY is signaling strategy that uses threshold uthr to solve Equations (1) through (3).
• f is token distribution that satisfies consistency conditions in Equations (6) and (7).
• PB is signaling strength that satisfies consistency conditions in Equation (8).

Algorithm 1 optimizes signaling strategies to produce an equilibrium. Given an initial PB , the
outer loop optimizes threshold uthr and corresponding strategy PY . Given this strategy, the inner
loop finds stationary token distribution f and assesses signaling strength PB . The algorithm itera-
tively updates PY , f , and PB until they converge to stationary distributions and satisfy equilibrium
conditions.

ALGORITHM 1: Optimize Signaling Strategy

input: Initial tokens per agent tini ;
Utility distribution per agent h(u);
Token redistribution PR = n/(m − n)

output: Optimal threshold uthr
while PB not converged do

uthr ← DP for Equations (1)–(4) given PB

PY ← Equation (5) given h(u), uthr
f (tini ) ← 1
while f not converged do

f ← Equations (6)–(7) given PY , PB , f
PB ← Equation (8) given f , PY

end

end

To prove that the mean field equilibrium exists and Algorithm 1 finds the equilibrium, we need
to use a fixed point theorem. This is out of the scope of this article and is a future work in the field
of theoretical game theory. In practice, the algorithm converges within tens of loop iterations for
every workload we study. We cap the number of loop iterations (e.g., Imax) and, if the algorithm fails
to converge, we default to randomly signal for boosts, implementing probabilistic round-robin.

5 GAME ARCHITECTURE

Figure 6 summarizes the token system’s architecture in practice. The offline engine profiles work-
load utilities and optimizes agents’ signaling strategies by identifying their best response to other
agents. The online engine compares expected utility against thresholds that define agents’ op-
timized strategies. It then allocates boosts according to signals and relative token holdings. The
allocator enforces management decisions with power capping.
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Fig. 6. Game architecture.

5.1 Offline: Optimizing Strategies

The offline engine profiles each agent’s workload and utility over time, producing a probability
density for utility from power boost (h(u)). Our baseline profiler runs the computation twice, once
with the power boost and again under nominal power, and compares performance counters in
every round.

In future, we could enhance profilers to learn h(u) as computation progresses. Agents could
begin game play by reporting constant utility, which indicates no information about h(u). As the
game proceeds, agents would observe boosted performance and update the probability density.

Implementation. The offline engine runs Algorithm 1 to optimize threshold strategies based
on utility distributions. We implement the algorithm in R. Algorithm 1 completes within 10 seconds
on an Intel Core i7-3630QM 2.4GHz processor. The offline algorithm updates agents with newly
optimized strategies when they become available. The algorithm does not affect the critical path
in online allocation.

To solve the dynamic program (DP), we use value-iteration with computational complexity that
is linear with the number of states and actions when state transition probabilities are sparse [41].
The convergence rate of the method slows as the discount factor γ approaches 1. In the worst case,
the number of iterations grows polynomially in (1 − γ )−1.

5.2 Online: Signaling and Allocation

The online engine receives and deploys optimized threshold strategies. In each round, it predicts
agents’ utilities from boosts. Our experiments assume oracular prediction, reading utilities from
traces of computation on instrumented servers. In practice, agents could profile their workload
under nominal and boosted power budgets for a small portion of each round to predict utility in
that round.

Implementation. An agent with t tokens signals Y when its profiled or predicted utility ex-
ceeds its signaling threshold,u > uthr (t ). Profiling and predicting utility require hardware counters
but is computationally inexpensive. Comparing utility against pre-computed thresholds is trivial.

The game ranks agents by token holdings and allocates boosts to those who signal and hold the
most tokens. Sorting m agents requires O(m logm) time. A simple approach sorts agents in every
round, which takes less than 1ms for 1000 agents and less than 4ms for 10,000 agents.

The allocator implements power boosts with Intel RAPL [1]. Writing to the registers requires
milliseconds and changing the voltage/frequency requires microseconds. These latencies are neg-
ligible compared to rounds that span tens of seconds.
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Table 1. Spark Workloads

ID Applications Dataset Data Size
1 Correlation kdda2010 [59] 2.5G
2 FP Growth Webdocs [43] 1.5G
3 KMeans uscensus1990 [39] 327M
4 LinearRegression kddb2010 [59] 4.8G
5 ALS movielens2015 [25] 325M
6 SVM kdda2010 2.5G
7 Pagerank wdc2012 [48] 5.3G
8 ConnectedComponents wdc2012 5.3G
9 TriangleCounting wdc2012 5.3G

Table 2. Experimental Parameters

Description Symbol Value
# Agents m 1000
# Rounds t 3000
# Power Boosts n 100
# Initial Tokens per Agent iniT 1
Discount Factor Rate γ 0.99
Precision ϵ 0.01
Maximum # of iterations Imax 200

6 EXPERIMENTAL METHODOLOGY

Spark workloads. We evaluate task-parallel datacenter workloads from Apache Spark [68] (see
Table 1). Each user runs a Spark job on a chip multiprocessor, which is managed by an agent who
signals to request power boosts on behalf of the user and her workload.

We define performance in terms of relative progress. Specifically, for each round in the game,
a job’s performance is the number of completed tasks divided by the total number of tasks in the
job. This measure places performance on the same scale across Spark jobs, which have tasks that
vary in number and size.

We define utility as the gap between utilities under nominal and boosted power. We trace task
throughput under these power budgets in each round for each workload. Since the length of the
trace is shorter under boosted power, we extend the shorter trace with linear interpolation.

Physical server measurements. We run Spark applications on physical machines to profile
performance and trace phase behavior. Each server has two sockets, and each socket has an Intel
Xeon E5-2697 (v2) Processor. We enable power boosts using RAPL [1]. We set power limits for
sockets by writing to the MSR_PKG_POWER_LIMIT register. We trace utility from power boosts by
measuring each workload’s task throughput under nominal and boosted power limits.

Datacenter simulation methods. We use traces from physical machines to simulate allocation
at datacenter scale. Table 2 summarizes the simulation of 1,000 agents that run varied workloads
for 3,000 rounds. In each 60-second round, agents compete for 100 boosts.

Simulations assume agents enter the system at varied times and restart computation when jobs
complete. The trace-based approach reads utility from system profiles at the beginning of each
round. In effect, we assume an oracle that predicts utility from a power boost. This optimistic
assumption benefits not only our allocation mechanism but also alternatives that we compare
against.
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We simulate the case study first described in Section 3. The datacenter’s power delivery unit
(PDU) supplies 35KW of power. Power is shared by 1,000-chip multiprocessors, each running with
a 30W nominal power budget or an additional 50W boost. The power supply can support only 100
simultaneous boosts.

Workload mixes and metrics. We construct agent populations with diverse workloads. Sim-
ulating k types of agents means sampling k workloads, uniformly at random, from the broader
suite in Table 1 and launching an equal number of instances for each. We assess diversity across
agent populations by averaging results across 25 workload mixes, constructed with IID samples
from the benchmark suite. We report figures of merit averaged across workloads in the mix.

7 EVALUATION

We evaluate the repeated game and token system, referred to as the mean field (M-F) mechanism,
when workloads share a power budget and signal for power boosts. We compare against baselines
that use alternative definitions for fairness. We also compare against a baseline that optimizes
throughput without regard for fairness. The following details these alternatives:

• Round-robin (R-R). Allocate equal number of boosted rounds to each agent in fixed ro-
tation. Agents may receive boosts when less power would have sufficed or fail to receive
them when needed.

• Equal-progress (E-P). Allocate as many boosted rounds as needed for equal progress
across agents. Progress is measured by normalized throughput. In effect, E-P maximizes
minimum progress and ensures max-min fairness. Agents may lack incentives and exhibit
envy.

• Equal-division (E-D). Divide power equally across agents, eliminating heterogeneity in
power budgets (i.e., 35W for each instead of 30W for 900 and 80W for 100). E-D is fair and
avoids envy, but loses opportunities for system performance by allocating more power to
those who benefit more.

• Max-welfare (M-W). Allocate boosted rounds to maximize throughput. Sort agents by u,
using an oracle, and allocate boosts to those with higher utility. Agents with low utility may
starve.

We find that M-F performs much better than other fair policies—R-R, E-P, and E-D—yet provides
sharing incentives and mitigates ex-post envy. M-F sees only modest penalties relative to M-W,
which provides an upper bound on performance that neglects fairness and starves low-throughput
jobs.

7.1 Sharing Incentives

Allocations provide sharing incentives (SIR) when agents receive the number of boosts they would
have received under R-R. This definition is conservative. Equal time on boosted processors is suffi-
cient, but not necessary, for SIR. Agents given fewer boosts could still prefer M-F over R-R, because
M-F’s boosts could deliver exceptionally high utility from successful signals while R-R’s could be
untimely.

We quantify SIR with share uniformity, a metric calculated from allocated boosts over time:

share uniformity =
min{# boosted rounds}
max{# boosted rounds} .

Uniformity is the ratio of the minimum and maximum number of boosted rounds across agents,
and its value is between 0 and 1. Larger values indicate stronger SIR.
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Fig. 7. Share uniformity. M-F, E-D, and R-R achieve uniform shares; M-W and E-P violate SIR.

Fig. 8. Sharing incentives. Time in boosted rounds.

Figure 7 evaluates SIR in terms of share uniformity. Uniformity is 1 for M-F and R-R as both
allocate an equal number of boosts to each agent. Uniformity is 1 for E-D too as agents receive a
5W boost in every round.

In contrast, uniformity is much lower for E-P as it boosts stragglers and starves agents who
make good progress without extra power. Similarly, uniformity is near 0 for M-W as it pursues
performance by boosting agents who benefit most from extra power while starving the rest. Low
uniformity due to starvation is likely in diverse populations with many workload types.

Figure 8 considers five representative workload types and their time shares for boosted proces-
sors. R-R provides SIR, allocating boosts to agents in fixed rotation and guaranteeing equal time
(i.e., 20% each). M-F provides SIR with similar time shares. Yet M-F is preferable as signals and
tokens allow agents to request boosts when benefits are greatest, significantly improving perfor-
mance (see Section 7.3).

Time shares reveal how E-P and M-W violate SIR due to biases toward particular workload
behaviors. E-P equalizes progress by favoring low-throughput workloads over high-throughput
ones (e.g., SVM over KMeans). M-W maximizes system throughput by favoring workloads that ben-
efit most and starving low-throughput ones (e.g., KMeans over Pagerank). These biases increase
with workload heterogeneity.

7.2 Envy-Freeness

A mechanism is envy-free (EFR) if no agent envies another’s allocation sequence.2 Agent i is envi-
ous when utility from its allocation is less than utility from another’s. We use an index to measure

2Agent i ’s allocation is a sequence xi = (xi1, . . . , xir ), where xir = 1 if i receives a boost in round r and xir = 0
otherwise.
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Fig. 9. Envy-free Index. E-D achieves envy-freeness. M-F has high envy-free index. R-R, E-P, and M-W ignore

envy.

Fig. 10. Envy-free index. Darker colors mean greater envy. Five types include (1) KMeans, (2) Regression, (3)

ALS, (4) SVM, (5) Pagerank.

agent i’s envy toward agent j:

EF index (pairwise) = ei j =
ui (xi )

max(ui (xi ),ui (x j ))
.

Larger indices correspond to less envy. If agent i envies agent j, then ui (xi ) < ui (x j ) and ei j < 1.
The index of agent i measures the greatest envy induced by any other agent:

EF index (population) = ei = min
j

ei j =
ui (xi )

maxj {ui (x j )}
.

Figure 9 evaluates EF indices for diverse agent populations. Figure 10 details EF indices for five
representative workload types. A square at row i and column j indicates i’s index towards j. Darker
squares indicate greater envy.

M-F allocations induce little envy, because the token system allows each agent to customize its
sequence of boosts with strategic signals. Allocations tailored for one agent are often unattractive
to others, causing more agents to prefer their own allocations. Thus, M-F mitigates envy and re-
ports an average EF index of 0.73. In other words, the average agent’s utility from its allocation of
boosts is within 73% of that from a competitor’s. M-F is competitive with E-D, which avoids envy
entirely by allocating the same 5W boost to every agent.

Strategic signals within the allocation game reduce envy among agents who do not receive
boosts. If these agents did not signal, then they did not need boosts and are not envious despite
receiving nominal power budgets. If these agents signaled unsuccessfully, then they must have
already spent tokens for boosts in prior rounds. Failed signals induce little envy, because swapping
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Fig. 11. Performance for 3 to 12 types. M-F outperforms R-R, E-D, and E-P and is comparable with M-W.

allocation sequences to get a power boost in the present would have required surrendering valuable
boosts from the past.

Other baseline policies all induce substantial envy. R-R offers untimely boosts to indifferent
agents (index=0.15). E-P boosts agents with poor progress who use extra power inefficiently
(index=0.61). These policies induce envy in agents who would have gained more from boosts.

M-W boosts agents that benefit most but induces envy among many other agents (index=0.39).
In Figure 10, M-W favors KMeans, making it envy-free (white row) while starving and inducing
envy in others (dark rows). Envy worsens with increasing workload diversity.

7.3 Performance

The allocation game balances the pursuit sharing incentives and envy-freeness with performance.
Although the game underperforms an approach that seeks throughput alone, it significantly out-
performs other approaches to fairness.

We measure performance in terms of gains in job progress. Suppose that agent i receives allo-
cation sequence xi = (xi1,xi2, . . .), where xir = 1 if boosted in round r and xir = 0 otherwise. If
boosted, then progress improves byuB

ir − uN
ir , the difference in utilities under boosted and nominal

power. These gains accumulate over time to determine performance:

pi =
∑

r

xir

(
uB

ir − uN
ir

)
.

Figure 11 presents performance for diverse agent populations. M-F outperforms R-R by 1.7×,
on average, by boosting agents when their benefits are greatest. Boosts are timely, because agents
optimize signaling strategies based on evolving utilities and competitive dynamics. In contrast,
R-R performance suffers as agents boost in fixed rotation regardless of utilities. E-P performance
also suffers as it diverts power to agents with inherently slow computation.

M-F also outperforms E-D by 2×, on average. E-D divides 35KW power budget among 1,000
agents equally (i.e., 35W per agent), which is equivalent to granting a 5W boost to every agent
in every round. Unfortunately for performance, some workloads may not need extra power (e.g.,
memory-bound tasks) and boosts could have been profitably diverted to others (e.g., compute-
intensive tasks).

M-F achieves 74% of M-W’s performance, on average, a modest loss in exchange for fairness.
M-F’s largest losses arise when one type of agent benefits from boosts much more than others. In
such cases, M-W favors the high-utility agents and starves others. Allocating boosts to low-utility
agents, even for a small fraction of time, significantly degrade M-F’s system throughput. And these
degradations become worse as diversity increases.
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Fig. 12. Sensitivity: (a) number of agents, (b) number of power boosts, (c) initial number of tokens.

7.4 Sensitivity to Game Parameters

Figure 12 assesses M-F’s performance sensitivity to game parameters. Each study samples 15 pairs
of workloads. For each pair, half the agent population runs the first workload and half runs the
second. We measure performance, average across agents in the population, average across sampled
workload pairs, and normalize to M-W’s performance.

First, M-F performs better for larger populations. When the number of agents is small, the game
is less likely to produce optimal strategies, because mean field equilibria assume many agents. As
the number of agents increases, threshold strategies approach optimal game play. This study varies
the number of agents while ensuring enough boosts for 10% of the population.

Supporting more boosts increases M-F performance initially, but then produces diminishing re-
turns. When boosts are scarce, agents with great need but few tokens may lose to agents with mod-
est need but many tokens, which harms performance. Added boosts mitigate these rare outcomes
and improve performance. But when boosts are abundant, agents inefficiently lower thresholds
and signal even when utilities are low.

Token holdings also affect signals and performance. As agents’ average token holdings increase,
they lower thresholds and signal more frequently. Because signals carry less information about
agents’ relative utilities, M-F’s performance falls toward R-R’s. This study varies the number of
tokens in circulation for a fixed number of agents and boosts.

Finally, increasing the time per round increases M-F’s performance initially, but then produces
diminishing returns. Short rounds risk dividing a single workload phase and increasing correla-
tion between utilities across rounds, which reduces the likelihood of optimal strategies from mean
field analysis. In contrast, long rounds risk combining distinct phases and producing an uninforma-
tive average. When agents cannot differentiate power demands across rounds, they cannot signal
strategically and M-F’s performance suffers.

7.5 Sensitivity to Interference

The evaluation thus far assumes isolation between colocated workloads, but contention for shared
resources (e.g., cache capacity and memory bandwidth) may affect the game’s effectiveness. M-F
optimizes threshold strategies according to profiles of jobs running alone. If those jobs actually
colocate with others, then profiles will less accurately capture utility and strategies will fall short
of optimal responses to the competition from other jobs.

Figure 13 assesses the effect of interference on game outcomes. First, we optimize agents’ strate-
gies assuming no interference. Then, we evaluate those strategies with and without interference
for nine representative workload pairs. Results, which are normalized to M-W’s and averaged
across workload pairs, show that performance, share uniformity, and the envy-free index decrease
by 3.3%, 2.0%, and 31.6%, respectively.
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Fig. 13. Sensitivity to interference. Performance, share uniformity, and envy-free index are affected due to

interference.

Fig. 14. Utility distribution with and without interference between ALS and Connected. Threshold is opti-

mized assuming no interference and averaged across token holdings.

Figure 14 shows how interference degrades system outcomes weakening models of workload
utility used to optimize game play. Interference shifts utility distributions leftward and causes
thresholds that are optimal without interference to become conservative. Agents that lose more
performance to contention (e.g., Connected vs. ALS) will signal more conservatively.

Conservative signaling strategies induce significant envy without much harming other out-
comes. Agents that signal less often will receive less timely boosts and envy others more often.
Yet performance losses are modest as conservative strategies cause tokens to accumulate and sig-
nals in high-utility rounds to be successful more often. Furthermore, sharing incentives remain
robust, because the game’s equal allocation and redistribution of tokens guarantee each agent its
minimum share of boosts.

We can mitigate interference in several ways. First, we could reduce processor load. We present
results on highly-loaded processors with hyper-threaded cores. When hyper-threading is disabled,
interference harms envy-freeness by 18% instead of 32%. Second, we could deploy new microar-
chitectures that guarantee isolation for the last-level cache and memory channel [26, 45, 57, 65].
Finally, agents could continuously update their utility profiles and re-optimize their thresholds.

8 RELATED WORK

Fairness. Fairness has become important for resource scheduling. Dominant resource fairness
ensures game-theoretic desiderata, including SI and EF, when allocating homogeneous cores and
memory capacity [19]. Resource elasticity fairness makes similar assurances when allocating cache
capacity and memory bandwidth [69]. Wang et al. present a market with dynamic price discovery,
which balances throughput and fairness [66]. These mechanisms guarantee fairness in space when
there are many more resources than users.
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For fairness in time, Craeynest et al. [60] schedule heterogeneous multi-cores to ensure equal-
progress. In contrast, we study fairness from lenses of microeconomics and game theory. Adopting
a similar approach for a different problem, Gorokh et al. [20] arbitrate access to a single item be-
tween many users in a repeated setting. They propose a repeated auction using artificial currencies
to guarantee truthfulness and maximize efficiency.

Nesbit et al. propose a memory scheduler that employs fair queuing and provides sharing in-
centives [52]. Ghodsi et al. [18] generalize fair queuing to a multi-resource setting. In fair queuing,
resources are allocated at packet-granularity—a link remains assigned to a flow until its entire
packet is sent. Dividing time into slots and switching between flows at fixed intervals is not desir-
able. As a result, guaranteeing exact fair shares is difficult and fair queuing must be approximated
through discrete packet scheduling decisions [9, 53].

Scrip systems. Friedman et al. [15] propose a scrip system for Peer-to-Peer (P2P) networks
where users provide each other with file sharing services. The goal of the scrip systems is improve
system performance while preventing agents to become free riders (i.e., benefit from the system
without contributing to it). The authors prove the existence of a non-trivial Nash equilibrium at
which homogeneous agents play a well-behaved strategy. Kash et al. [31] extend the scrip system
for heterogeneous users and [32] extends this model by studying the effect of collusion.

Buttyan et al. [6] propose a scrip system to stimulate cooperation in ad hoc mobile networks.
Considering a similar setting, Xu et al. [67] design a token system to incentivize self-interested
users to relay other nodesâĂŹ traffic in autonomic wireless relay networks. Shen et al. [58] con-
sider the same setting and propose a token exchange framework at which tokens are used to
mitigate interference among users. Unlike the decentralized system models for P2P networks and
cooperative routing, our work focuses on a centralized system for datacenter architectures that
allocates items to users. Our token system is designed to ensure fairness while achieving high
system performance.

Andrews et al. [5] consider the problem of scheduling a time-varying wireless channel between
multiple users. They propose a token system to optimize system throughput subject to certain
lower and upper throughput bounds for different users. Their token system is proposed for a set-
tings where strategic behavior is not expected (i.e., users do not lie about their demands). Our
token system, however, is designed for settings when self-interested users report their demands
strategically to maximize their own utility.

Power and heterogeneity management. Multi-core schedulers steer tasks to the most effi-
cient processor cores, but neglect fairness [7, 34, 44, 61]. Guevara et al. allocate heterogeneous
processors using a market to ensure service quality [21, 22]. Unlike previous works, we focus on
game-theoretic notion of fairness while maximizing overall performance.

Fan et al. [12] study a computational sprinting game in which multi-core chips share a power
supply and sprint independently. Similar to our article, Fan et al. [12] use dynamic programming to
find mean field equilibrium strategies for power boosts. However, our article differs from Fan et al.
[12], as they pursue performance and system stability and we pursue fairness, defined by sharing
incentives and envy-freeness. To ensure fairness, we design a game defined by tokens exchange
rules. We study the distribution of tokens across agents and drive equilibrium strategies based on
users’ token holdings. We show in practice that our game satisfies repeated envy-freeness and
sharing incentives and achieves high performance.

Through changes in p-states and clock throttling, power capping technologies enforce limits on
servers’ power consumption [38, 56]. Femal et al. [14] study a global power allocation mechanism
that ensures a node is assigned a local power limit according to the performance of its workloads.
Moreover, many hierarchical frameworks have been proposed to allocate power budgets dynam-
ically between workloads [40, 55, 64]. Co-Con [36] uses a power control loop and a performance

ACM Transactions on Architecture and Code Optimization, Vol. 15, No. 2, Article 18. Publication date: May 2018.



18:20 S. M. Zahedi et al.

control loop to make adjustments on power and performance at the cluster level. PEGASUS [42]
uses a feedback-based controller to dynamically assign power caps to the most latency critical
workloads. Finally, VPM Tokens [51] manages power from virtual machines’ perspective while
considering global performance.

9 CONCLUSIONS

We present a new approach for fair resource management in dynamic systems. The token system
provides game-theoretic desiderata while offering flexibility, which enhances performance by al-
locating resources to jobs in time periods that benefit performance most. We demonstrate a fair,
repeated allocation game for heterogeneous processors that generalizes to other resources.

Future research could extend the allocation game in several dimensions. First, the game treats
all agents equally and adding priorities is an open problem. One mechanism provides more tokens
to agents with higher priorities. Another mechanism reduces the number of tokens required for a
successful request. Extending the game theory for these extensions is non-trivial.

Second, the game could manage dynamic and variably sized power boosts. Moreover, the system
could dynamically divide the power delivery unit’s capacity to tune the definitions of nominal and
boosted power budgets. Designing and adapting sprinting policies is an open research problem
[49]. We could extend the game theory for varied degrees of heterogeneity.

Finally, the game manages a single resource type across time. Even for one resource, the to-
ken system advances the state-of-the-art in computational economics by pursuing game-theoretic
desiderata in dynamic settings. Extending the system for multiple resource types over time is an
open problem.
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