
17

Hound: Causal Learning for Datacenter-scale Straggler
Diagnosis

PENGFEI ZHENG, Duke University, USA
BENJAMIN C. LEE, Duke University, USA

Stragglers are exceptionally slow tasks within a job that delay its completion. Stragglers, which are uncommon
within a single job, are pervasive in datacenters with many jobs. A large body of research has focused on
mitigating datacenter stragglers, but relatively little research has focused on systematically and rigorously
identifying their root causes. We present Hound, a statistical machine learning framework that infers the causes
of stragglers from traces of datacenter-scale jobs. Hound is designed to achieve several objectives: datacenter-
scale diagnosis, interpretable models, unbiased inference, and computational efficiency. We demonstrate
Hound’s capabilities for a production trace from Google’s warehouse-scale datacenters and two Spark traces
from Amazon EC2 clusters.

CCS Concepts: • General and reference→Measurement; Performance; • Computing methodologies
→ Causal reasoning and diagnostics; Topic modeling; • Software and its engineering → Cloud
computing;

Additional Key Words and Phrases: datacenter; distributed system; performance modeling; performance
diagnosis; machine learning; causal reasoning; topic modeling

ACM Reference Format:
Pengfei Zheng and Benjamin C. Lee. 2018. Hound: Causal Learning for Datacenter-scale Straggler Diagnosis.
Proc. ACM Meas. Anal. Comput. Syst. 2, 1, Article 17 (March 2018), 36 pages. https://doi.org/10.1145/3179420

1 INTRODUCTION
Stragglers threaten performance from datacenter-scale parallelism. Datacenters split a computa-
tional job into many tasks, execute them in parallel on many machines, and aggregate results when
the last task completes.1 Stragglers are exceptionally slow tasks within a job that significantly delay
its completion. Unfortunately, stragglers’ effects increase with the number of tasks and scale of the
system. In a Google datacenter [49], we find that stragglers extend completion time in 20% of jobs
by more than 1.5×.
Prior studies mitigate stragglers with speculative re-execution and scheduling. Re-execution

detects and replicates stragglers for computation on another machine [24, 72]. Scheduling avoids
machines predicted to perform poorly for a task [52, 70]. These mechanisms implicitly assume

1A job contains one or more tasks that execute a single program on multiple data in parallel. When frameworks, such as
Apache Spark, organize tasks into stages, each stage corresponds to a job.

Authors’ addresses: Pengfei Zheng, Duke University, Department of Computer Science, USA, pfzheng@cs.duke.edu;
Benjamin C. Lee, Duke University, Department of Electrical and Computer Engineering, USA, benjamin.c.lee@duke.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
2476-1249/2018/3-ART17 $15.00
https://doi.org/10.1145/3179420

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

https://doi.org/10.1145/3179420
https://doi.org/10.1145/3179420

17:2 Pengfei Zheng and Benjamin C. Lee

stragglers arise from adverse system conditions that can be resolved by assigning tasks to appropri-
ate machines. Despite these efforts, stragglers persist and extend average job completion time by
47% and 29% in Facebook and Microsoft’s datacenters [1].

Existing mitigation strategies are incomplete solutions because they address symptoms rather
than diagnose causes. For example, stragglers often arise from the skewed distribution of data across
tasks. When some tasks are overloaded with work [33], speculative re-execution or rescheduling
consumes system resources without improving performance. Although profilers support straggler
diagnosis by producing massive datacenter traces, deriving causal explanations from complex
datasets is difficult. Existing diagnosis procedures rely heavily on human expertise in systems and
application of best practice, which are laborious and fail to scale [1, 2, 23]. Thus, understanding
stragglers’ causes is a prerequisite for efficient countermeasures and large datasets motivatemethods
for rigorous causal analysis.
We present a statistical machine learning framework – Hound – that infers stragglers’ causes

with three techniques. First, Hound models task latency using system conditions, such as hardware
activity, resource utilization, and scheduling events, in order to reveal causes of stragglers for each
job. Second, Hound discovers recurring, interpretable causes across jobs by constructing topic
models that treat jobs’ latency models as documents and their fitted parameters as words. Topics
reveal sophisticated causes that explain stragglers at datacenter scale. Finally, Hound guards against
false conclusions by constructing an ensemble of predictive, dependence, and causal models and
reporting only causes found by multiple models.
We demonstrate Hound on two representative systems. The first is a month-long trace from a

production Google datacenter with 12Kmachines running 650K jobs and 25M tasks [49]. The second
is a pair of traces from Amazon EC2 clusters running Spark data analytics [46]. Hound produces
interpretable topics that describe stragglers’ causes. Each topic is a set of system conditions that
combine to explain a major source of stragglers that affects many jobs. Results show that Hound’s
inferred causes consistent with those from expert analysis.

2 SYSTEM OBJECTIVES
We architect Hound for four desiderata: datacenter-scale diagnosis to automatically identify
recurring causes of stragglers across many jobs; interpretable models to concisely reveal sophisti-
cated causes and domain insight; unbiased inference to reduce the risk of false explanations when
model assumptions are invalid; computational efficiency with methods that are parallelizable
and have polynomial complexity.

2.1 Datacenter-scale Diagnosis
Datacenter operators benefit from a broad view of stragglers. A datacenter-scale perspective reveals
recurring problems that cause stragglers in many jobs instead of minor problems that impact just a
few. Hound diagnoses stragglers at datacenter-scale with a two-stage approach. For each job, it
infers models of latency and characterizes stragglers’ causes. Then it synthesizes patterns across
jobs and their models.

Straggler diagnosis requires a separate model for each job rather than a single model for all jobs.
Jobs are heterogeneous and completion time varies significantly due to differences in input data,
system parameters, and task parallelism. A single model across jobs cannot account for a straggler’s
slowness relative to other tasks within its job. It cannot differentiate a slow task in an inherently
fast job from a slow task in an inherently slow job—the former is a straggler while the latter is
a nominal task. Moreover, a single model provides only one causal explanation for thousands of
unique jobs when multiple, diverse causes exist and tailored explanations are required.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:3

Datacenter-scale diagnosis requires extracting domain insight from recurring patterns across
jobs and their models. Hound use meta learning to identify datacenter-scale patterns [15]. The
base learner for each job constructs latency models and reveals system conditions associated
with poor task performance. From base learners’ models, the meta learner discovers recurring,
straggler-inducing conditions shared by many jobs.
Our choice of learners is deliberate and serves several objectives. We select base learners to

produce succinct models that can be trained without manual intervention and to support subsequent
meta learning. We exclude Bayesian networks [18, 19, 54, 61, 73] and decision / regression trees
[6, 12, 56, 62, 63, 69], popular methods for analyzing system performance, because learning patterns
from heteromorphic graphs and trees is difficult. We select meta learners to extract semantic
structure from jobs’ models and to enhance interpretability. Topic modeling infers themes from
recurring clusters of words that appear in many documents. Hound constructs topic models by
treating base learners’ models as documents, system conditions as words, and causal explanations
for stragglers as topics.

2.2 Interpretable Models
Widely used models are difficult to interpret. Some methods are prone to over-fitting and preclude
broader interpretation. Regression trees often produce large models from small datasets [40]. Such
models generate accurate predictions, but cannot produce generalizable insight. Other methods
require domain expertise. Lasso regression selects features associated with stragglers and discards
the rest [10, 11, 38]. Translating these features into causes requires system expertise.

Hound ensures interpretability with topic models. Latent Dirichlet allocation identifies features
that often appear together in jobs’ latency models. A cluster of features correspond to a topic,
which reveals clear and concise system conditions that are associated with atypically large latencies.
For example, the topic [CACHE_MISS(+), CPI(+)] indicates some stragglers arise from poor cache
behavior, measured in terms of the number of cache misses and average cycles per instruction.
When jobs suffer from diverse causes of stragglers, Hound reports a mix of relevant topics and
assesses their relative contributions to system performance.

2.3 Unbiased Inference
A statistical model makes assumptions that prevent it from performing well on all datasets. The
No-Free-Lunch theorem states that a learner pays for performance on some datasets with degraded
performance on others [68]. Certain models capture some system behaviors but not others [63].
For example, regression assumes little collinearity between predictors. If collinearity exists, fitted
models infer erroneous associations [25]. Bayesian networks assume a prior distribution (e.g.,
Dirichlet) when inferring network structure. Whether the prior is appropriate for the dataset
determines inferred network’s quality [59].

Relying on one method is risky when analyzing large, heterogeneous datasets such as datacenter
traces. Hound uses ensemble learning to reduce risk of biased conclusions. An ensemble combines
responses from multiple, independent learners with a majority rule that amplifies correct responses
and avoids erroneous ones [13]. An ensemble is robust when its learners are diverse because, given
a dataset, many assumptions hold even when some fail. We design an ensemble that combines
distinct but complementary methods for diagnosing stragglers.

2.4 Computational Efficiency
Statistical inference can be computationally expensive and even intractable. For example, inferring
Bayesian networks requires finding directed acylic graphs that optimally represent the structure
of conditional dependencies within the training data, an NP-hard problem [44]. Even after the

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:4 Pengfei Zheng and Benjamin C. Lee

network is built, responding to exact queries is intractable [20]. The computational complexity of
constructing a model for straggler diagnosis depends on three factors: number of profiled metrics
per task, number of tasks per job, and number of jobs. Datacenter traces can include millions of
jobs and tasks, each with tens of profiles. Hound relies on learning methods that have polynomial
complexity and are amenable to parallelization in a distributed system.

3 THE HOUND FRAMEWORK
Hound infers predictive, dependent, and causal relationships for task latency from job profiles.
Moreover, it reveals and assigns relevant causes to each job’s stragglers. Hound provides these
capabilities by extending state-of-the-art methods to improve inference for datacenter profiles.
Figure 1 shows how inputs translate into outputs in three stages. First, base learning captures
relationships between latency and system conditions. Second, meta learning reveals recurring
topics. Third, ensemble learning integrates results from disparate types of models.

Inputs – Profiles. Illustrated in Figure 2, Hound requires profiles from jobs that exhibit long-
tailed latency distributions. Datacenters may collect these profiles with a unified facility, such as
Google-wide Profiling [51] or CPI2 [74], or combine existing facilities for continuous profiling and
distributed file systems [3, 28, 29]. Profiles collected throughout the datacenter and across time
comprise a dataset. Hound uses the dataset to infer models that take latency as the dependent
variable and system conditions, such as resource usage and scheduling events, as independent
variables.

Outputs - Causal Topics. Hound’s topics are concise causal explanations for stragglers. Each
topic is a set of abnormal profile metrics associated with stragglers across many jobs. Suffixes
(-) or (+) indicate whether metric’s values are significantly lower or higher for stragglers than
those for normal tasks. Hound identifies relevant topics for each job and estimates each topic’s
significance across the datacenter’s tasks and jobs. Administrators can use these outputs to easily
identify significant causes and triage system anomalies.
Illustrated in Figure 3a, Hound reports a small number of causal topics. Topic E1 attributes

stragglers to lower average and peak processor utilization (APU, PPU). Topic E3 attributes stragglers
to higher garbage collection frequency and duration (GCF, GCD). In Figure 3b, Hound assigns
relevant causes to each job, using weighted mixes when a job’s stragglers have multiple causes.
Hound attributes job J1’s stragglers to a mix of low processor utilization (E1) and garbage collector
interference (E3). Processor utilization is dominant and weighted 0.83.

3.1 Base Learning
Base learners infer relationships between task latency and profiled metrics for each job. A base
learner produces a causality profileC , a vector in [−1, 1]P whereCi is the effect of metric i on latency
and P is the number of metrics. Vector elements are absolute-sum-to-one such that

∑P
i=1 |Ci | = 1.

Because relying on a single learner could induce bias and produce false causes, Hound uses an
ensemble of heterogeneous learners to discover predictive, dependence, and causal relationships.

• Predictive (PR). Model effects of independent variables on the dependent variable, minimizing
differences between data and model outputs. Variables with larger (smaller) effects have higher
(lower) predictive power.

• Dependence (DP). Model association between independent and dependent variables with prob-
abilistic foundations.

• Causal (CA).Model cause and effect with matching methods, which compare data that differ
only in the suspected cause.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:5

Fig. 1. The Hound Framework

Figure 4 illustrates base learning. The learner infers predictive models with regularized regression
methods such as ElasticNet. It then produces a causality profile from fitted and re-scaled regression

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:6 Pengfei Zheng and Benjamin C. Lee

(a) Jobs and tasks (b) Task profile and trace

Fig. 2. Example - Hound Inputs

(a) Inferred causes of stragglers across jobs

(b) Assigned causes of stragglers for individual jobs

Fig. 3. Example - Hound Outputs

coefficients. The causality profile reveals each metric’s statistical significance when predicting
latency. For Job J2, low processor utilization (APU, PPU) and high queueing delay (QUD) predict
high task latency. Garbage collection and network communication have no effect.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:7

Fig. 4. Example - Hound Base Learning

Predictive Modeling (PR). Linear regression supports the creation of causality profiles and
subsequent meta learning. Hound’s PR learner constructs regression models with Bagging Aug-
mented ElasticNet (BAE). ElasticNet is a regularization method that automatically selects significant
metrics [77]. Bagging is a machine learning method that improves model accuracy and stability.
Hound combines these methods to fit latency models using profiled metrics. It encodes resulting
regression models as vectors of coefficients to quantify metrics’ predictive power and summarize
potential causes of stragglers.

Regularization methods enable robust regression by addressing collinearity. Collinearity, which
is typical in computer systems, arises when correlations between variables distort estimates of
regression coefficients [25]. Lasso, a popular regularization method in systems research [11],
mitigates collinearity by randomly including only one variable from a group of correlated variables
[64]. However, randomly excluding variables may harm diagnostic power. Lasso may, for example,
include cycles per instruction (CPI) and exclude correlated hardware events such as cache misses
or branch mispredictions. A model that includes only CPI would fail to identify cache behavior as
a more likely and direct cause of stragglers. ElasticNet addresses Lasso’s limitations by grouping
correlated variables and including the group when any of its variables predicts latency.
Bagging methods enable robust regression by avoiding over-fitted models, which do not accu-

rately generalize beyond the training dataset. Bagging methods mitigate over-fitting by resampling
the dataset [13]. The method constructs R replicas of a d-element dataset. Each replica draws d
samples with replacement from the original dataset. The final model is a linear combination of R
models fit for the replicas. Hound performs bagging on the dataset, uses ElasticNet to fit models to
each replica, and reports the models’ average.

Dependence Modeling (DP). Statistical dependence, a powerful framework for causal discov-
ery [47], assesses the association between latency and profiled metrics. Table 1 presents properties

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:8 Pengfei Zheng and Benjamin C. Lee

Dependence Measure BP NL TI Complexity
Pearson’s ρ [22] ✓ ✗ ✗ O (N)

Spearman’s ρ [22] ✗ ✓ ✓ O (N log(N))

Kendall’s τ [22] ✗ ✓ ✓ O (N log(N))

Schweizer-Wolff Dependence (SWD) [5] ✓ ✓ ✓ O (N 2)

Table 1. Comparison of statistical dependence measures.

for various dependence measures [5]. First, measures should satisfy basic properties (BP) esablished
by the first four of Rényi’s classic axioms [53]. Moreover, they should be non-linear (NL) because
dependences between performance and system conditions are often non-linear [63]. Third, mea-
sures should be invariant to strictly increasing transformations (TI), which are used to obfuscate
industrial traces [50]. Our analysis favors the Schweizer-Wolff Dependence (SWD), but this measure
is unsigned and computationally expensive. We address SWD’s limitations and create the Signed
Schweizer-Wolff Dependence (SSW).
SWD measures the dependence between two random variables X , Y . The joint distribution

of these variables comprises two pieces of information— marginals and dependence. The Sklar
Theorem separates them and defines Copula C to describe dependence [43]. SWD transforms
variables using their cumulative distribution functions FX , FY to obtain u≡FX (x), v≡FY (y). The
variables are increasingly dependent as the distance betweenC (u,v) andu·v grows. SWDmeasures
this distance as follows [47].

SWD(X ,Y) =
12

N 2 − 1

N∑
i=1

N∑
j=1
|Ĉ (ui ,vj) − ui · vj |

C (ui ,vj) =
#(xk ,yk) s.t. xk ≤ xi , yk ≤ yj

N
, k∈[1,N]

Note that (x1,y1), (x2,y2), . . . are observed pairs of X , Y .
When dependence between two random variables is positive (negative), an increase in one sug-

gests an increase (decrease) in the other. We use the Fréchet-Hoeffding Bound [43] to determine the
sign. When a positive dependence grows stronger, C (u,v) approaches min(u,v). When a negative
dependence grows stronger, C (u,v) approaches max(u + v − 1, 0). When X , Y are independent,
C (u,v) is equidistant between these bounds. SSW estimates the Copula’s distance to its bounds to
determine the sign within some ϵ .

SSW(X ,Y) = sign(X ,Y) · SWD(X ,Y)

sign(X ,Y) =

−1 L1 − L2 > ϵ

0 |L1 − L2 | ≤ ϵ

1 L2 − L1 < ϵ

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:9

L1 =
1
N 2

N∑
i=1

N∑
j=1

(
min(ui ,vj) − Ĉ (ui ,vj)

)

L2 =
1
N 2

N∑
i=1

N∑
j=1

(
Ĉ (ui ,vj) −max(ui +vj − 1, 0)

)

SSW values in [-1,0) indicate negative dependence, in (0,1] indicate positive dependence, and equal
to 0 indicate independence. The SSW estimator has complexity O (N 2) because the SWD and sign
estimators visit all pairs (ui ,vj) for i, j∈[1,N]. Sampling reduces cost.

CausalModeling (CA).Confounding bias is a major challenge when seeking causal associations
between latency and profiled metrics [7]. Confounding bias arises when the supposed causal
association between two variables is partially or completely explained by a third, confounding
variable. For example, suppose task latency is much higher on older processors than on newer
ones. We cannot definitively say processor design causes the latency difference. Servers with new
processors often use faster memory and the difference could be partially or primarily caused by
memory design. Determining the causal effect of processors requires eliminating memory’s effect.
Hound’s CA learner constructs Rubin Causal Models (RCM) [55]. RCM estimates the causal

effect of one metric on latency while eliminating bias induced by other metrics. Let Z be a binary
random variable for a treatment level such as high and low processor usage. Let R be a continuous
random variable for the response level such as high and low latency. We estimate the causal effect
of Z on R while controlling for all other metrics X such as memory usage, scheduling events, etc.
RCM measures the effect ∆, which is the difference in responses with and without treatment (i.e.,
R1 − R0), for each task.

∆ = E(R1 − R0) = E(R1) − E(R0)

RCM uses Inverse Probability Weighting (IPW) to estimate ∆ [36]. It estimates the effect despite
missing data. For each data point, the treatment is either applied or not and the outcome is either
R1 or R0. The data cannot report outcomes with and without treatment.

∆ = E

[
ZR

e (X)

]
− E

[
(1 − Z)R
1 − e (X)

]

e (X) = P {Z = 1|X }

Propensity score e (X) is the conditional probability of having a treatment Z given values of
confounding metrics X [55]. Given the score, outcomes and treatment are independent such that
E(R1) = E[ZR/e (X)] and E(R0) = E[(1 − Z)R/1 − e (X)] [36]. This formulation resolves the missing
value problem because Z and R are observed and e (X) can be estimated from data.

We design AdaBoost Inverse Probability Weighting (AIPW) to estimate the propensity score.
Propensity scores are usually estimated with logistic regression, e (X) = exp(β · X)/(1 + exp(β · X)).
But this approach is vulnerable to collinearity, over-fitting, and outliers [48], which distort estimates
of causal effects [36]. We address these challenges by enhancing IPW with AdaBoost [27], which
estimates conditional probabilities more accurately than regression [65].

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:10 Pengfei Zheng and Benjamin C. Lee

Fig. 5. Example - Hound Meta Learning

3.2 Meta Learning
Hound’s meta learner uses topic models to identify patterns and extract semantic structure from
jobs’ numerous models and causality profiles. We use topic models because of the parallels between
inferring themes in documents and identifying patterns in causality [9]. Topics arise from recurring
clusters of words just as causes arise from recurring clusters of atypical metric values. Documents
contain multiple topics just as profiles reveal causes of stragglers. Significant topics appear in many
documents just as significant causes explain stragglers in many jobs.

Hound uses Latent Dirichlet Allocation to infer causes of stragglers as shown in Figure 5. First,
Hound populates a dictionary with metrics and identifies metrics that often appear together in jobs’
causality profiles. Metrics that are more prominent in these profiles produce corresponding words
that appear more frequently in documents. Topic P1 is defined by APU(-) and PPU(-), which cluster
within profiles. APU(-) is more significantly associated with latency and is weighted more heavily.
Second, Hound identifies a mix of relevant topics for each job. Job J2’s stragglers are explained by
topics P1 and P2. Topic P2 is weighted more heavily because most stragglers are caused by queueing
delay QUD(+) even though some are caused by low processor utilization.

3.3 Ensemble Learning
Hound’s ensemble learner reconciles potentially divergent topics from multiple learners. The
ensemble emphasizes topics found by multiple learners and drops those found by only one. Figure 6
illustrates this process. First, Hierarchical Agglomerative Clustering (HAC) identifies similarities
in predictive (P∗), dependence (D∗), and causal (C∗) topics [42]. Although the ensemble identifies

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:11

(a) Clustering base topics to identify ensemble topics

(b) Assigning ensemble topics to individual jobs

Fig. 6. Example - Hound Ensemble Learning

consensus around some topics, such as low processor usage, APU(-) and PPU(-), it also corrects
errors and outliers. P∗ and C∗ report queuing delay, QUD(+), as a cause when D∗ misses it. C∗
misreports network overhead, NET(+), as a cause when P∗ and D∗ do not. Clusters’ centroids define
the ensemble’s topics. Second, Hound identifies relevant ensemble topics for each job. Weights for
ensemble topics are averages of those for prediction, dependence, and causation topics.

4 EXPERIMENTAL METHODS
We implement Hound in Apache Spark with 3,800 lines of Python code. We deploy Hound on
a cluster of eight NUMA nodes for parallel computing. Each node is configured with 48 AMD
Opteron 6174 cores and 256GB DDR3 memory.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:12 Pengfei Zheng and Benjamin C. Lee

Task Metric Description
Machine Capacity
MACHINE_CPU Num. cores in host machine
MACHINE_RAM RAM in host machine (B)
Scheduling
SCHED_DELAY Task scheduling delay (µs)
PRIORITY Task priority (integer)
EVICT Num. times task is evicted
FAIL Num. times task fails
Resource Request
REQ_CPU Num. processor cores requested
REQ_MEM Amt. memory requested (B)
REQ_DISK Amt. local storage requested (B)
Resource Usage
PEAK_CPU Max processor used (core-sec/sec)
MEAN_CPU Mean processor used (core-sec/sec)
MEM_ASSIGN Amt. memory allocated (B)
PEAK_MEM Max memory used (B)
MEAN_MEM Mean memory used (B)
PAGE_CACHE Total page cache used (B)
PAGE_CACHE_UM Unmapped page cache used (B)
PEAK_IO Max I/O rate (I/O-sec/sec)
MEAN_IO Mean I/O rate (I/O-sec/sec)
DISK_SPACE Local storage used (B)
µarchitecture
CPI Cycles per instruction
CACHE_MISS LLC misses per kilo-inst.

Table 2. Task metrics in the Google datacenter trace

4.1 Google Trace
We use a month-long trace from a production Google cluster that contains 12K servers and computes
for diverse jobs such as web services, MapReduce, and high performance computing [49]. A job is a
collection of tasks that execute the same program on different shards of data. Jobs are heterogeneous
and configured with different scheduling levels. At one end of the spectrum are online (level-3) jobs
that serve revenue generating user requests. At the other end are batch (level-0) jobs that support
internal software development and background computation. The trace supplies 180GB of data for
650K jobs comprised of 25M tasks. Our analysis includes only production jobs, which comprise
12% of the total. We exclude jobs with limited task parallelism (i.e., fewer than 20 tasks), which
contribute 4.8% of the trace’s tasks. After such post-processing, the trace contains 13K jobs and
3.3M tasks. Some tasks need treatment of missing values before statistical analysis.

Table 2 presents the metrics profiled for each task. At coarse-grain, system monitors track each
task’s scheduled processor time, allocated memory capacity, and actual resource utilization. At fine-
grain, hardware counters track instruction throughput and cache miss rates. As tasks run, profilers
report mean and max for resource usage and microarchitectural activity over a measurement period
(i.e., 300s). We average these periodic measurements over the task’s duration. Collectively, these
metrics can diagnose stragglers and reveal causes related to systems management such as resource
allocation, job scheduling, colocation control, fail-over mechanisms.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:13

4.2 Spark Traces
We use Spark traces to supplement the Google trace. Although we can validate our casual explana-
tions for the Google trace, we cannot compare against expert diagnoses, which are not publicly
available for this system. For this reason, we demonstrate Hound on a pair of traces collected for
Spark performance on Amazon EC2 clusters and use a prior study of this data [46] to define expert
diagnoses for comparison.
The first trace profiles a five-node Amazon EC2 cluster running Big Data Bench (BDBench),

which launches five iterations of ten unique SQL queries [66]. The trace includes 84 Spark jobs, 162
stages, and 115K tasks that process 60GB of input data. The second trace profiles a twenty-node
Amazon EC2 cluster running TPC-DS, which simulates 13 users executing 20 unique SQL queries
in random order [45]. The trace includes 1,003 Spark jobs, 1,296 stages and 239K tasks that process
850GB of input data. We consider versions of BDBench and TPC-DS that compute on data stored
on disk.
Table 3 presents the major performance metrics profiled for each task. Note that metrics are

summary counters instead of time series data. Data is drawn from fine-grained instrumentation
of Spark’s run-time engine. Spark-SQL transforms SQL queries into Spark jobs [4]. A Spark job
consists of multiple stages and each stage consists of one or more parallel tasks. Tasks within the
same stage run the same binary with different partitions of the data. Typically, early stages read
data from the file system or memory cache while later stages read the previous stage’s data with a
network shuffle [46].

5 EVALUATIONWITH GOOGLE TRACE
Table 4 presents Hound’s topics that explain stragglers in Google’s datacenter. Topics constructed
from prediction (P∗), dependence (D∗), and causation (C∗) models cluster to produce an ensemble
topic (E∗). Each topic is a weighted combination of keywords, which are measured metrics followed
by a suffix, drawn from models. The suffix “(+)” or “(-)” means the metric is significantly larger or
smaller for stragglers than for normal tasks. Keywords and topics produce natural interpretations
and reveal causes of stragglers. Many of the following causes are concise and consistent with
domain-specific expertise, which is remarkable given the wealth of data.

Load Imbalance (Skew2). Hound finds that tasks with more work are more likely to be strag-
glers. Tasks that use more memory (E0), larger page caches (E1), or more local storage (E2) may be
computing on more data. These topics indicate larger working sets that may not fit in memory.
Tasks that require more processor time (E3) or I/O transactions (E4) may also have more work.

Resource Constraints. Tasks that use fewer resources are likely to perform poorly. Under-
utilization of one resource suggests contention for others. Atypically low processor and memory
use suggest poor progress (E5, E6), and atypically low I/O rates suggest constrained data supply (E7,
E8). Note that atypically low and high processor usage are both causes for stragglers (E3, E5), but
these conditions do not arise simultaneously. Some jobs’ stragglers may be caused by low usage
and other jobs’ by high usage. Hound identifies causes from patterns across many jobs and then
assigns the most relevant cause to each job.

Microarchitectural Activity. Processor counters shed light on poor task performance. Cache
misses increase the average number of cycles required per instruction (E9). Although low processor
usage and frequent cache misses may appear correlated, Hound identifies separate causes (E5 versus
E9) that are justified by domain expertise. When measuring processor usage, the operating system
tracks processor time whereas the processor tracks cycles committing instructions. Processor

2Here, skew means the non-uniform partition of data across tasks rather than the statistical measure of asymmetry for a
probability distribution.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:14 Pengfei Zheng and Benjamin C. Lee

Task Metric Description
Executor
EXE_DES_TIME Executor deserialization time
EXE_RUN_TIME Executor run time
BROADCAST_TIME Variable broadcast time
Output
RESULT_SIZE Result size
RESULT_DES_TIME Result deserialization time
OUTPUT_WRITE_TIME Output blocked write time
OUTPUT_BYTES Output size in bytes
Spill
SPILL_BYTES Number of bytes spilled to disk if data does not fit in memory
SPILL_BYTES_DISK Number of bytes spilled to disk with compression
Input
READ_BYTES Total input size in bytes
READ_TIME Total time to read input
HDFS_READ_BYTES Size of input read from HDFS in bytes
HDFS_READ_PACKETS Size of input read from HDFS in packets
HDFS_READ_TIME Time to read input from HDFS
HDFS_OPEN_TIME Time to open input file on HDFS
Shuffle Read
SHFL_READ_RBYTES Size of shuffle read from network in bytes
SHFL_READ_RBLKS Size of shuffle read from network in blocks
SHFL_READ_WAIT_TIME Time to open shuffle read connection
SHFL_READ_LBLKS Size of shuffle read on local server in blocks
SHFL_READ_LBYTES Size of shuffle read on local server in bytes
SHFL_READ_LTIME Time to shuffle read on local server
Shuffle Write
SHFL_WRITE_BYTES Size of shuffle write in bytes
SHFL_WRITE_TIME Time to shuffle write
SHFL_WRITE_OPEN_TIME Time to open file for shuffle write
SHFL_WRITE_CLOSE_TIME Time to close file for shuffle write
Processor Usage
CPU_USER User-space CPU usage
CPU_SYS Kernel-space CPU usage
Disk Usage
DISK_UTILIZATION Disk utilization
DISK_READ_THPT Disk read throughput
DISK_WRITE_THPT Disk write throughput
Network Usage
NET_READ_BYTES_PSEC Number of network bytes read per second
NET_SEND_BYTES_PSEC Number of network bytes sent per second
NET_READ_PACK_PSEC Number of network packets read per second
NET_SEND_PACK_PSEC Number of network packets sent per second
Scheduler Delay
SCHED_DELAY Time taken by scheduler to place a task to worker
Garbage Collection
GC_TIME Garbage collection overhead
First Task
FIRST_TASK True if no task of the same stage finished on the same worker

Table 3. Task metrics in the Spark traces for BDBench and TPC-DS

time can be low, perhaps due to thread scheduling, even when pipelines rarely stall for caches.
Conversely, processor time can be high even when tasks have poor instruction-level parallelism.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:15

Topic Keywords Weights Cluster Interpretation

E0
MEM_ASSIGN(+), MEAN_MEM(+),
PEAK_MEM(+)

0.5, 0.25,
0.25 P0, P3, D0, C0 Data Skew

E1
PAGE_CACHE(+), PAGE_CACHE_UM(+),
MEM_ASSIGN(+)

0.45, 0.38,
0.17 P1, D1, C1 Data Skew

E2 DISK_SPACE(+) 1.0 P2, D2, C2 Data Skew
E3 MEAN_CPU(+), PEAK_CPU(+) 0.52, 0.48 P4, D3, C3 Computation Skew
E4 PEAK_IO(+), MEAN_IO(+) 0.51, 0.49 P5, D4, C4 I/O Skew
E5 MEAN_CPU(-), PEAK_CPU(-) 0.8, 0.2 P6, D5, C5, C6 Limited Processor
E6 MEAN_MEM(-), PEAK_MEM(-) 0.83, 0.17 P7, D6, D7, C7 Limited Memory
E7 MEAN_IO(-) 1.0 D8, C8 Limited I/O
E8 PEAK_IO(-), MEAN_IO(-) 0.83, 0.17 P8, D9 Limited I/O
E9 CACHE_MISS(+), CPI(+) 0.54, 0.46 P9, D10, C9 Cache Bottleneck
E10 SCHED_DELAY(+) 1.0 P10, D11, C10 Scheduler (Queueing) Delay
E11 EVICT(+) 1.0 P11, C11 Eviction Delay
P12 FAIL(+) 1.0 unclustered ✖

C12 MACHINE_RAM(+) 1.0 unclustered ✖

Table 4. Hound’s causal topics for the Google dataset, derived from an ensemble of predictive (P), dependent
(D), causal (C) models. Cluster identifies models’ topics that produce each ensemble topic. Appendix B shows
individual models’ topics. Topics with “✖” are revealed by individual models but rejected by the ensemble.

Job ID Causes Weight
6283499093 Data Skew 1.00
6266469130 Queueing Delay 1.00
6274140245 Limited Processor 1.00

6343946350
Limited Processor
Limited Memory

0.65
0.35

6308689702

Data Skew
Computation Skew
I/O Skew

0.53
0.27
0.20

6343048076

Data Skew
Eviction
Queueing Delay
Limited Processor
Limited I/O

0.33
0.25
0.18
0.12
0.12

Table 5. Example - Mixtures of causes

Scheduling Problems. Finally, Hound finds that the cluster manager’s decisions affect task
completion. Queueing delays cause stragglers by extending tasks’ end-to-end latency (E10). Eviction
delays also cause stragglers as tasks halt computation on overloaded machines, re-launch on another
machine, and lose progress (E11).
Hound’s ensemble guards against false conclusions, which may be consistent with operator

intuition but arise from biased models. Systems operators might think that machine heterogeneity
creates stragglers as some tasks run on slower machines, but only the causation model flags memory
heterogeneity (C12). Operators might worry about transient task failures that require re-launch, but
only the prediction model raises this concern (P12). Users appropriately size processor and memory
requests such that they are irrelevant in our analysis of stragglers.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:16 Pengfei Zheng and Benjamin C. Lee

Number of Causes 1 2 3 4 5
Percent of Jobs 12% 33% 36% 16% 3%

Table 6. Number of causes per job

Cause Coverage Dominant Coverage
Data Skew (E0, E1, E2) 73.6% 55.0%
Limited Processor (E5) 39.2% 12.1%
Cache Misses (E9) 32.6% 7.0%
Limited I/O (E7, E8) 36.7% 6.6%
Queueing Delay (E10) 20.0% 5.1%
Limited Memory (E6) 13.6% 2.7%
Computation Skew (E3) 31.2% 2.2%
Eviction Delay (E11) 3.80% 0.90%
I/O Skew (E4) 5.60% 0.60%

Table 7. Coverage statistics for causes

5.1 Mixtures of Causes
Hound not only identifies recurring causes of stragglers, it determines which jobs suffer from which
causes. Hound assigns each job a weighted mix of causes. Weights estimate the fraction of stragglers
attributed to each cause in the mix as shown in Table 5 for representative jobs. Sometimes, a job’s
stragglers can be explained by a single cause; job 682. . .093’s stragglers are explained by data skew.
More often, a job’s stragglers have multiple causes; job 634. . .350’s stragglers are explained by a
mix of low processor and memory utilization. Hound guards against faulty mixtures of causes by
constructing an ensemble of independent models (i.e., for prediction, dependence, and causation).
Appendix C shows how ensemble corrects faulty causal explanations produced by a single model.

We propose a series of measures to understand mixtures of causes. We say a cause is dominant
when it explains the majority of a job’s stragglers. We define a cause’s coverage as how often it
explains some of a job’s stragglers. We define a cause’s dominant coverage as how often it explains
the majority of a job’s stragglers, which is a more selective measure and smaller than coverage.
Topics with greater coverage are relevant for more jobs and provide greater utility to system
operators.
Consider Table 5 for examples. Job 630. . .702’s dominant cause is data skew since its weight is

greater than the sum of weights for computation and I/O skew. As seen for job 634. . .076, not every
job has a dominant cause. Suppose the system has only the six jobs in Table 5, Data skew’s coverage
is 50% because it explains three of six jobs while limited processor and memory’s coverage are
33.3% and 16.7%, respectively. Data skew’s dominant coverage is 33.3% whereas limited memory’s
is zero.

Table 6 presents the percentage of jobs that require multiple causes. Although Hound identifies
eleven possible causes, each used by some jobs, more than 80% of jobs require fewer than three
causes to explain their stragglers. When multiple causes are required, one is usually dominant.
Table 7 summarizes coverage. The top three causes—data skew, limited processor utilization,

cache misses—explain the majority of stragglers in 74.1% of jobs. 73.6% of jobs experience some
form of data skew. Many jobs also suffer from low resource usage or cache behavior. Relatively
minor causes include memory availability, task eviction and I/O skew.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:17

Fig. 7. Profiles suggest stragglers in job 6308689702 arise from a mix of data, computation, and I/O skew.
Hound’s inferred causes match human analysis. “S” denotes the distribution of values for stragglers, which is
plotted in red; “N” denotes the distribution of values, which is plotted in blue; yellow lines indicate medians
in the distributions.

5.2 Validation with Case Studies
We determine whether Hound’s causal explanations are consistent with domain expertise by
comparing inferred causes with manually diagnosed ones. First, we use boxplots to visualize
distributions of microarchitectural, system, and scheduling activity. Visual differences in boxplots
for stragglers (S) and normal tasks (N) suggest causes of stragglers.
Second, we measure differences between stragglers and normal tasks’ data distributions by

calculating the Wilcoxon Ranksum Test (WRT [67]) and the Mean Quartile Difference (MQD). WRT
evaluates a null hypothesis in which profiled distributions for stragglers and normal tasks exhibit
no significant difference. Rejected hypotheses, when WRT < 0.05, reveal causes of stragglers. MQD
averages differences between two distributions’ quartiles. Suppose datasets dS , dN are profiled
from stragglers and normal tasks, and suppose Qi denotes a dataset’s i-th quantile. MQD calculates

1
3

∑
i={25,50,75}

Qi (dS) −Qi (dN)

We perform manual diagnosis for a series of case studies. First, we classify tasks within a job as
straggling or normal based on measured latency. Then, we determine whether stragglers’ metrics
differ from normal tasks’ because those that differ may explain stragglers’ atypical latency. Finally,
we compare this manual analysis against Hound’s inferred causes. Figure 7 considers a job with
stragglers due to multiple causes. Stragglers use more memory, page cache, and disk space. They
also require more processor time and have higher peak I/O rates. Manual analysis is challenging
because data indicate multiple atypical behaviors.

Inferred causes are consistent with domain expertise. Hound automatically infers three causes—
data, computation, and I/O skew. Moreover, it accurately infers the relative importance of these
causes. Hound assigns weights of 0.53, 0.27, and 0.20 to data, computation, and I/O skew. These
weights are consistent with manual analysis. MQD for data skew’s metrics are larger than compu-
tation and I/O skew’s. Data skew explains more stragglers than other types of skew.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:18 Pengfei Zheng and Benjamin C. Lee

Straggler Cause Example

Data Skew
Hash function based partitioning scheme distributes data unevenly across tasks.
Tasks processing more data are likely to be stragglers. [32]

Resource Constraints
Processor [2], memory [71] and I/O [23] are contended by collocated tasks,
background daemons, garbage collector, etc.

µarchitecture Activity Colocated tasks contend for shared hardware such as cache. [74]
Scheduler Delay Tasks trapped in multiple layers of queues in servers and network switches. [23]
Eviction Delay Low-priority tasks are preempted, re-launch on another machine, and lose progress. [74]

Computation Skew
Some records (e.g., dense graphs) are much more computationally expensive
than other records (e.g., sparse graphs). [31]

I/O Skew Stragglers are caused due to intensive disk I/O, such as Spark’s shuffle write. [46]
Network Congestion A rack with many tasks can be congested on its network link and produce stragglers. [2]
Hardware Heterogeneity Tasks assigned to obsolete hardware can be slower than others. [72]
Power Management Power-saving can add significant delay when moving from inactive to active modes. [23]

Table 8. Examples of stragglers’ causes from related studies that produce expert diagnoses.

Study Data
Skew

Resource
Constraints

µarch.
(Cache)

Scheduler
Delay

Eviction
Delay

Computation
Skew

I/O
Skew

Network∗
Congestion

H/W∗
Hetero.

Power∗
Manage.

G-1[23] — ✓ ✓ ✓ — — — ✓ — ✓
G-2[74] — — ✓ — ✓ — — — — —
DS-1[32] ✓ — — — — ✓ — — —
DS-2[2] ✓ ✓ — — — — — ✓ — —
DS-3[12] ✓ ✓ — — — — — — — —
DS-4[31] ✓ — — — — ✓ — — — —
DS-5[72] — — — — — — — — ✓ —
DS-6[21] ✓ ✓ — — — — — — — —
DS-7[46] ✓ ✓ ✓ — — ✓ — — —
DS-8[71] ✓ ✓ — — — — — — — —
Hound ✓ ✓ ✓ ✓ ✓ ✓ ✓ — — —

Table 9. Comparison of causes diagnosed byHound for the Google system against causes previously diagnosed
by experts for related systems. “G-” denotes a prior study of Google datacenters; “DS-” denotes a prior study
on distributed systems such as Hadoop and Spark.“*” identifies system causes that are beyond this paper’s
scope because the Google trace lacks relevant profiles.

Our findings are borne out repeatedly for the datacenter’s diverse jobs. Appendix D presents case
studies for additional jobs. Appendix E assesses causal diagnosis from an information-theoretic
analysis on all jobs. We argue that Hound’s inferred causes are accurate because task latency has
high mutual information with metrics included in causal topics and low mutual information with
all other metrics. And we argue that its causes are coherent because metrics within a causal topic
have high mutual information with each other and low mutual information otherwise. Thus, Hound
automates model inference and data analysis yet identifies causes that are accurate, coherent, and
consistent with manual analysis.

5.3 Comparisons with Expert Diagnosis
Tables 8-9 survey studies in which experts discover and investigate specific causes of stragglers in
large-scale, distributed systems. Hound discovers causes in the Google system that match causes
found by expert diagnoses in several other systems. It discovers the same fundamental system
phenomena that were discovered in other studies despite differences in methods and systems.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:19

Fig. 8. Comparison of modeling methods for latency prediction on the Google dataset.

Fig. 9. Comparison of dependence measures for safeguards against false correlation on the Google dataset.

The only gaps in diagnosis relate to network congestion, hardware heterogeneity and power
management; the Google trace lacks profiles to reveal these conditions. Moreover, Hound identifies
prevalent causes of stragglers. Prior studies often attribute stragglers to data skew and resource
constraints, which match Hound’s diagnoses. Coverage statistics indicate that data skew and
bottlenecks in processors, memory, and I/O are dominant causes for 76% of the datacenter’s jobs
(cf. Table 7).

One might be concerned about comparing Hound for a Google datacenter and assorted methods
for other systems, but the comparison is informative. Google’s trace includes both interactive
and batch jobs. Hound’s analysis of interactive jobs matches other Google-based studies of tails
in latency-sensitive services [23, 74], and our analysis of batch jobs is consistent with those for
Hadoop and Spark. Second, Google’s trace, with over 40K unique logical job names (i.e., binaries),
is diverse and representative of real-world workloads [49].

5.4 Comparison with Simpler Base Learners
Predictive Models. Hound constructs a model to predict task latency from system conditions.
Figure 8 compares Hound’s method against state-of-the-art predictive models by illustrating
the distribution of adjusted R2 values across all jobs. Hound’s Bagging Augmented ElasticNet

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:20 Pengfei Zheng and Benjamin C. Lee

Fig. 10. Comparison of propensity score estimates for causal inference on the Google dataset.

(BAE) performs 16% better than linear regression, slightly better than ElasticNet and CART, and
comparably to SVM. Nearest neighbor regression (KNN) and linear regression perform much worse
than others. Linear regression shows negative coefficients for more than 25% of jobs. Appendix F
shows how linear regression produces faulty causal explanations.

Dependence Models. Copula-based dependence measures control false correlations better than
conventional measures such as Pearson’s correlation [35, 47]. Figure 9 shows dependence estimates
after we destroy the correlation between system conditions and task latency by randomly shuffling
latency measurements in the dataset. Better estimators are those that more consistently report a
value close to zero since there is no dependence between variables. Hound’s Signed Schweizer-
Wolff (SSW) guards against false correlations much better than Pearson, Spearman, and Kendall’s
measures. Appendix F shows how Pearson’s estimates produce faulty causal explanations.

Causal Models. The core of the Rubin Causal Model (RCM) is the propensity score and we
compare state-of-the-art methods for estimating these scores (cf. Figure 10). Hound’s AdaBoosted
IPW estimates are most accurate. Naive Bayes and logistic regression perform much worse than
others. Lasso regularization performs in between. Appendix F shows how logistic regression for
propensity score estimation produces faulty causal explanations.

6 EVALUATIONWITH SPARK TRACES
Hound reproduces the results of domain-specific expertise. Ousterhout et al. say something causes
stragglers if tasks become normal when that thing requires no time [46]. Such expert diagnosis for
BDBench produces four observations. First, three causes—HDFS Read (Disk), Garbage Collection,
Shuffle Write (Disk)—explain a large fraction of stragglers. Second, one cause—Output Size (Skew)—
explains a small fraction of stragglers. Third, other events—First Task, Scheduler Delay, Shuffle
Read—are insignificant causes. Finally, no cause among the three most prominent ones dominate.
Table 10 presents Hound’s eight topics, which map to four straggler causes that are consistent
with expert diagnosis. Table 11 indicates that mixture probabilities, which estimate the number of
stragglers explained by each cause, also align with expert diagnosis.
Similarly, expert diagnosis for TPC-DS produces five observations. First, two causes—HDFS

Read(Disk), Output Size(Skews)—explain a large fraction of stragglers. Second, three causes—
Shuffle Read(Network), Garbage Collection, Shuffle Write(Disk)—explain a moderate fraction of
stragglers. Third, one cause—Scheduler Delay—explains a small fraction of stragglers. First Task is
an insignificant cause. Finally, there is no dominant cause among the two most prominent causes
and no dominant cause among the next three most prominent causes. Tables 12-13 present Hound’s

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:21

Topic Keywords Weights Interpretation
Mean Mixture
Probability

DISK_READ_THPT(+) 1.0 HDFS (Input) read 16%
READ_BYTES(+), READ_TIME(+),
HDFS_READ_BYTES(+), HDFS_READ_TIME(+)

0.25,0.25,
0.25,0.25 HDFS (Input) read 10%

HDFS_READ_TIME(+), READ_TIME(+), HDFS_OPEN_TIME(+) 0.35,0.35,0.3 HDFS (Input) read 10%
GC_TIME(+) 1.0 GC overhead 30%
DISK_UTILIZATION(+), DISK_WRITE_THPT(+) 0.5, 0.5 Shuffle write 14%
SHFL_WRITE_OPEN_TIME(+) 1.0 Shuffle write 9%
SHFL_WRITE_TIME(+), SHFL_WRITE_CLOSE_TIME(+) 0.62,0.38 Shuffle write 2%
OUTPUT_WRITE_TIME(+), DISK_WRITE_TIME(+),
OUTPUT_BYTES(+)

0.35,0.33,
0.32 Output skew 9%

Table 10. Hound’s causal topics for the Spark BDBench dataset

HDFS (Input) Read GC Overhead Shuffle Write Output Skew
36% 30% 25% 9%

Table 11. Hound’s estimate of stragglers (percentage) explained by each cause for the Spark BDBench dataset

Topic Keywords Weights Interpretation
Mean Mixture
Probability

HDFS_READ_TIME(+), INPUT_READ_TIME(+) 0.5, 0.5 HDFS (Input) read 23%
HDFS_READ_BYTES(+) 1.0 HDFS (Input) read 8%
RESULT_SIZE(+) 1.0 Output skew 23%
SHFL_READ_WAIT_TIME(+) 1.0 Shuffle read 17%
DISK_UTILIZATION(+) 1.0 Shuffle write 8%
SHFL_WRITE_OPEN_(+), SHFL_WRITE_TIME(+),
SHFL_WRITE_CLOSE_TIME(+)

0.34,0.33,
0.33 Shuffle write 4%

DISK_WRITE_THPT(+) 1.0 Shuffle write 4%
GC_TIME(+) 1.0 GC Overhead 10%
SCHED_DELAY(+) 1.0 Scheduler delay 3%

Table 12. Hound’s causal topics for the Spark TPC-DS dataset

HDFS (Input) Read Output Skew Shuffle Read Shuffle Write GC overhead Scheduler Delay
31% 23% 17% 16% 10% 3%

Table 13. Hound’s estimate of stragglers (percentage) explained by each cause for the Spark TPC-DS dataset

analysis. Nine topics map to six straggler causes that are consistent with expert diagnosis. Mixture
probabilities are also broadly consistent with expert diagnosis.

7 COMPLEXITY AND OVERHEADS
Hound’s approximate complexity is O (MN), where M and N represent the number of tasks per
job and number of jobs per trace. Although the number of tasks per job can be as large as a several
thousand, very few jobs have such a high degree of parallelism. In practice, the number of tasks is
order of magnitudes larger than the number of jobs.

Figure 11 presents measured scalability, indicating that Hound’s run time increases linearly with
trace size. Each measurement is the average of five runs on randomly drawn Google jobs. Moreover,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:22 Pengfei Zheng and Benjamin C. Lee

Fig. 11. Hound scalability as dataset size increases.

we measure scalability with respect to the number of workers used for learning. We implement
Hound with Apache Spark to parallelize learning on massive datasets. Given 38.9K jobs and 10M
tasks, Hound’s needs 52 minutes to complete inference on a single worker and just 12 minutes on
eight workers.

8 RELATEDWORK
8.1 Straggler Mitigation
Speculative Execution. Dean et al. detect when a task runs slower than expected and launches
another equivalent task as a backup, hoping that transient performance issues disappear [24]. But
a few limitations of speculative execution have been identified in prior research. First, speculative
execution is too aggressive in heterogeneous clusters as too many speculative tasks are launched
and reduce system capacity. LATE [72] addresses this problem by throttling the number of backup
tasks and by replicating only a few prioritized slow tasks rather than any slow one. Second, as a
reactive approach, speculative execution is usually too late to help small, latency-sensitive jobs.
Dolly [1] improves timeliness by proactively launching multiple clones of every task of a job and
using only the clone finishes first. Third, speculative execution improves the performance of the job
at hand but can hurt the performance of others since backup tasks can cause resource contention.
Hopper [52] addresses contention by right sizing the resource pool for backup tasks.

Scheduling. Schedulers can mitigate stragglers by preventing tasks from computing on slow
machines. Mantri [2] improves task placement to avoid congested network link. Wrangler [70]
predicts the straggler risk for each machines and risky machines are prohibited from serving certain
tasks.

Root Cause Analysis. Tales of Tail [34] experimentally explores whether stragglers are caused
by interference from background daemons, poor scheduling, constrained concurrency models, or
power throttling. Treadmill [75] carries out experiments to measure tail latencies under different
hardware configurations (NUMA, Turbo Boost, DVFS and NIC) and use Analysis of Variance
(ANOVA) to estimate the impact of different hardware factors. Determining and validating the
suspected causes from Tales of Tail and Treadmill require deep expertise in the specific system and
architecture. In comparison, Hound is a statistical machine learning framework that focuses on
automated causal discovery rather than experimental validation. In addition, Hound is independent
of any specific system or architecture detail.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:23

8.2 Performance Analysis
Machine Learning. Learning has been widely applied in prior research to help understand perfor-
mance issues in large-scale distributed system. Relatedmethods can be classified into regression-, tree-
, and graph-based methods. Regression-based methods (e.g., Highlighter [10] and Fingerprint[11])
use regression models, such as Lasso, to correlate the state of service-level-obligations (SLO) with
system metrics. The constructed model can select a few salient metrics, usually called the signature,
that help operators understand anomalies such as SLO violations.
Similarly, tree-based methods [56, 69] apply classification and regression trees to characterize

the causal rules that produce specific performance outcomes. Graph-based methods [19, 41, 61]
apply probabilistic graphs, such as Bayesian networks, to visualize the causal relationship between
system metrics and performance state. In comparison, Hound performs causal learning with little
domain knowledge and constructs topic models that emphasize interpretability, reliability and
scalability.

Tracing Techniques. Profilers and tracers for large-scale distributed systems include Pivot
Tracing [37], The Mystery Machine [17], Magpie [8], lprof [76], Pinpoint [16], XTrace [26] and
Dapper [58]. These frameworks stitch dispersed event logs from many thousands of machines and
reconstruct the complete control flow (system path) for each user request. In comparison, Hound
focuses on trace analysis not acquisition.

9 CONCLUSION AND FUTUREWORK
Hound is a statistical machine learning framework for diagnosing stragglers at datacenter scale.
Hound offers interpretability, reliability and scalability. We apply Hound to analyze a production
Google datacenter and two experimental Amazon EC2 clusters, revealing challenges and providing
insights for future systems design and management.

For future work, Hound is an open framework and could incorporate additional causal analysis
algorithms, such as Recursive Structural Equation Models (RSEM) [14], as base learners for even
more reliable inference. Moreover, Hound assumes a unified profiling framework that reports the
same metrics for every job and task. When profilers are heterogeneous, Hound will require new
methods for inferring causal topics from different vocabularies.

ACKNOWLEDGMENTS
The authors would like to thank our referees and shepherd for their valuable comments and helpful
suggestions. This work is supported by the National Science Foundation under grants CCF-1149252
(CAREER), CCF-1337215 (XPS-CLCCA), SHF-1527610, and AF-1408784. This work is also supported
by STARnet, a Semiconductor Research Corporation program, sponsored by MARCO and DARPA.
Any opinions, findings, conclusions, or recommendations expressed in this material are those of
the author(s) and do not necessarily reflect the views of these sponsors.

REFERENCES
[1] Ganesh Ananthanarayanan, Ali Ghodsi, Scott Shenker, and Ion Stoica. 2013. Effective Straggler Mitigation: Attack of

the Clones. In Proceedings of the 10th USENIX Conference on Networked Systems Design and Implementation (NSDI ’13).
185–198. http://dl.acm.org/citation.cfm?id=2482626.2482645

[2] Ganesh Ananthanarayanan, Srikanth Kandula, Albert G Greenberg, Ion Stoica, Yi Lu, Bikas Saha, and Edward Harris.
2010. Reining in the Outliers in Map-Reduce Clusters using Mantri.. In 9th USENIX Symposium on Operating Systems
Design and Implementation (OSDI ’10), Vol. 10. 24.

[3] J. Anderson, L. Berc, J. Dean, S. Ghemawat, M. Henzinger, S. Leung, R. Sites, M. Vandervoorde, C. Waldspurger, and W.
Weihl. 1997. Continuous Profiling: Where have all the cycles gone?. In Proc. Symposium on Operating Systems Principles
(SOSP).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

http://dl.acm.org/citation.cfm?id=2482626.2482645

17:24 Pengfei Zheng and Benjamin C. Lee

[4] Michael Armbrust, Reynold S Xin, Cheng Lian, Yin Huai, Davies Liu, Joseph K Bradley, Xiangrui Meng, Tomer Kaftan,
Michael J Franklin, Ali Ghodsi, et al. 2015. Spark sql: Relational data processing in spark. In Proceedings of the 2015
ACM SIGMOD International Conference on Management of Data. ACM, 1383–1394.

[5] E. F. Wolff B. Schweizer. 1981. On Nonparametric Measures of Dependence for Random Variables. The Annals of
Statistics 9, 4 (1981), 879–885. http://www.jstor.org/stable/2240856

[6] Athula Balachandran, Vyas Sekar, Aditya Akella, Srinivasan Seshan, Ion Stoica, and Hui Zhang. 2013. Developing
a predictive model of quality of experience for internet video. In ACM SIGCOMM Computer Communication Review
(SIGCOMM’13), Vol. 43. ACM, 339–350.

[7] Elias Bareinboim and Judea Pearl. 2011. Controlling Selection Bias in Causal Inference. In AAAI.
[8] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. 2004. Using Magpie for Request Extraction and

Workload Modelling.. In 6th USENIX Symposium on Operating Systems Design and Implementation, Vol. 4. 18–18.
[9] David M Blei. 2012. Probabilistic topic models. Commun. ACM 55, 4 (2012), 77–84.
[10] Peter Bodík, Moises Goldszmidt, and Armando Fox. 2008. HiLighter: Automatically Building Robust Signatures of

Performance Behavior for Small- and Large-scale Systems. In Proceedings of the Third Conference on Tackling Computer
Systems Problems with Machine Learning Techniques. USENIX Association, Berkeley, CA, USA, 3–3.

[11] Peter Bodik, Moises Goldszmidt, Armando Fox, Dawn B. Woodard, and Hans Andersen. 2010. Fingerprinting the
Datacenter: Automated Classification of Performance Crises. In EuroSys 2010. 111–124.

[12] Edward Bortnikov, Ari Frank, Eshcar Hillel, and Sriram Rao. 2012. Predicting execution bottlenecks in map-reduce
clusters. In Proceedings of the 4th USENIX conference on Hot Topics in Cloud Ccomputing. USENIX Association, 18–18.

[13] Leo Breiman. 1996. Bagging predictors. Machine learning 24, 2 (1996), 123–140.
[14] Carlos Brito and Judea Pearl. 2012. Graphical condition for identification in recursive SEM. arXiv preprint: 1206.6821

(2012).
[15] Philip K. Chan and Salvatore J. Stolfo. 1993. Experiments on Multistrategy Learning by Meta-learning. In CIKM ’93.

314–323. https://doi.org/10.1145/170088.170160
[16] Mike Y Chen, Emre Kiciman, Eugene Fratkin, Armando Fox, and Eric Brewer. 2002. Pinpoint: Problem determination

in large, dynamic internet services. In Dependable Systems and Networks, 2002. DSN 2002. Proceedings. International
Conference on. IEEE, 595–604.

[17] Michael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F Wenisch. 2014. The mystery machine: End-to-
end performance analysis of large-scale internet services. In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI ’14). 217–231.

[18] Ira Cohen, Moises Goldszmidt, Terence Kelly, Julie Symons, and Jeffrey S. Chase. 2004. Correlating Instrumentation
Data to System States: A Building Block for Automated Diagnosis and Control. In 6th USENIX Symposium on Operating
Systems Design and Implementation (OSDI ’04). 16–16. http://dl.acm.org/citation.cfm?id=1251254.1251270

[19] Ira Cohen, Steve Zhang, Moises Goldszmidt, Julie Symons, Terence Kelly, and Armando Fox. 2005. Capturing, Indexing,
Clustering, and Retrieving System History. In 20th ACM Symposium on Operating Systems Principles (SOSP ’05). 105–118.
https://doi.org/10.1145/1095810.1095821

[20] Gregory F. Cooper. 1990. The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks
(Research Note). Artif. Intell. 42, 2-3 (March 1990), 393–405. https://doi.org/10.1016/0004-3702(90)90060-D

[21] Henggang Cui, James Cipar, Qirong Ho, Jin Kyu Kim, Seunghak Lee, Abhimanu Kumar, JinliangWei,Wei Dai, Gregory R.
Ganger, Phillip B. Gibbons, Garth A. Gibson, and Eric P. Xing. 2014. Exploiting Bounded Staleness to Speed Up Big
Data Analytics. In Proceedings of the 2014 USENIX Conference on USENIX Annual Technical Conference (USENIX ATC’14).
USENIX Association, Berkeley, CA, USA, 37–48. http://dl.acm.org/citation.cfm?id=2643634.2643639

[22] Suzana de Siqueira Santos, Daniel Yasumasa Takahashi, Asuka Nakata, and André Fujita. 2013. A comparative study of
statistical methods used to identify dependencies between gene expression signals. Briefings in bioinformatics (2013),
051.

[23] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56, 2 (2013), 74–80.
[24] Jeffrey Dean and Sanjay Ghemawat. 2008. MapReduce: Simplified Data Processing on Large Clusters. CACM 51, 1 (Jan.

2008), 107–113. https://doi.org/10.1145/1327452.1327492
[25] Carsten F Dormann, Jane Elith, Sven Bacher, Carsten Buchmann, Gudrun Carl, Gabriel Carré, Jaime R García Marquéz,

Bernd Gruber, Bruno Lafourcade, Pedro J Leitão, et al. 2013. Collinearity: a review of methods to deal with it and a
simulation study evaluating their performance. Ecography 36, 1 (2013), 27–46.

[26] Rodrigo Fonseca, George Porter, Randy H Katz, Scott Shenker, and Ion Stoica. 2007. X-trace: A pervasive network
tracing framework. In Proceedings of the 4th USENIX conference on Networked systems design & implementation. USENIX
Association, 20–32.

[27] Yoav Freund and Robert E Schapire. 1997. A Decision-Theoretic Generalization of On-Line Learning and an Application
to Boosting. J. Comput. System Sci. 55, 1 (Aug. 1997), 119–139. https://doi.org/10.1006/jcss.1997.1504

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

http://www.jstor.org/stable/2240856
https://doi.org/10.1145/170088.170160
http://dl.acm.org/citation.cfm?id=1251254.1251270
https://doi.org/10.1145/1095810.1095821
https://doi.org/10.1016/0004-3702(90)90060-D
http://dl.acm.org/citation.cfm?id=2643634.2643639
https://doi.org/10.1145/1327452.1327492
https://doi.org/10.1006/jcss.1997.1504

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:25

[28] S. Ghemawat, H. Gobioff, and S. Leung. 2003. The Google File System. In Proc. Symposium on Operating Systems
Principles (SOSP ’03).

[29] S. Graham, P. Kessler, and M. McKusick. 1982. Gprof: A call graph execution profiler. In Proc. Symposium on Compiler
Construction (CC).

[30] Matthew Hoffman, Francis R. Bach, and David M. Blei. 2010. Online Learning for Latent Dirichlet Allocation. In
Advances in Neural Information Processing Systems 23, J. D. Lafferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and
A. Culotta (Eds.). Curran Associates, Inc., 856–864.

[31] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. 2010. Skew-resistant parallel processing of
feature-extracting scientific user-defined functions. In Proceedings of the 1st ACM symposium on Cloud computing.
ACM, 75–86.

[32] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. 2011. A Study of Skew inMapReduce Applications.
In The 5th International Open Cirrus Summit.

[33] YongChul Kwon, Magdalena Balazinska, Bill Howe, and Jerome Rolia. 2012. SkewTune: Mitigating Skew in Mapreduce
Applications. In SIGMOD ’12. 25–36. https://doi.org/10.1145/2213836.2213840

[34] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D. Gribble. 2014. Tales of the Tail: Hardware, OS, and
Application-level Sources of Tail Latency. In SOCC ’14. Article 9, 14 pages. https://doi.org/10.1145/2670979.2670988

[35] David Lopez-Paz, Philipp Hennig, and Bernhard Schölkopf. 2013. The randomized dependence coefficient. In Advances
in neural information processing systems. 1–9.

[36] Jared K Lunceford and Marie Davidian. 2004. Stratification and weighting via the propensity score in estimation of
causal treatment effects: a comparative study. Statistics in medicine 23, 19 (2004), 2937–2960.

[37] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot tracing: dynamic causal monitoring for distributed
systems. In 25th ACM Symposium on Operating Systems Principles (SOSP ’09). 378–393.

[38] Ajay Anil Mahimkar, Zihui Ge, Aman Shaikh, Jia Wang, Jennifer Yates, Yin Zhang, and Qi Zhao. 2009. Towards
Automated Performance Diagnosis in a Large IPTV Network. In Proceedings of the ACM SIGCOMM 2009 Conference on
Data Communication (SIGCOMM ’09). ACM, New York, NY, USA, 231–242. https://doi.org/10.1145/1592568.1592596

[39] Carl Mela and Praveen Kopalle. 2002. The impact of collinearity on regression analysis: the asymmetric effect of
negative and positive correlations. Applied Economics 34, 6 (2002), 667–677.

[40] Jesús Muñoz and Ángel M Felicísimo. 2004. Comparison of statistical methods commonly used in predictive modelling.
Journal of Vegetation Science 15, 2 (2004), 285–292.

[41] Karthik Nagaraj, Charles Killian, and Jennifer Neville. 2012. Structured comparative analysis of systems logs to diagnose
performance problems. In Proceedings of the 9th USENIX Conference on Networked Systems Design and Implementation
(NSDI ’12). 353–366.

[42] Mirco Nanni. 2005. Speeding-up hierarchical agglomerative clustering in presence of expensive metrics. In PAKDD ’05.
Springer, 378–387.

[43] Roger B Nelsen. 2007. An Introduction to Copulas. Springer Science & Business Media.
[44] Sebastian Ordyniak and Stefan Szeider. 2010. Algorithms and Complexity Results for Exact Bayesian Structure Learning.

In UAI 2010.
[45] Raghunath Othayoth and Meikel Poess. 2006. The making of tpc-ds. In PROCEEDINGS OF THE INTERNATIONAL

CONFERENCE ON VERY LARGE DATA BASES, Vol. 32. 1049.
[46] Kay Ousterhout, Ryan Rasti, Sylvia Ratnasamy, Scott Shenker, and Byung-Gon Chun. 2015. Making Sense of Perfor-

mance in Data Analytics Frameworks. In 12th USENIX Symposium on Networked Systems Design and Implementation
(NSDI 15). USENIX Association, 293–307.

[47] Barnabás Póczos, Zoubin Ghahramani, and Jeff G Schneider. 2012. Copula-based Kernel Dependency Measures. In
ICML ’12. 775–782.

[48] Daryl Pregibon. 1982. Resistant fits for some commonly used logistic models with medical applications. Biometrics
(1982), 485–498.

[49] Charles Reiss and John Wilkes. 2011. Google cluster-usage traces: format+ schema. Technical Report (2011).
[50] Charles Reiss, John Wilkes, and Joseph L Hellerstein. 2012. Obfuscatory obscanturism: making workload traces of

commercially-sensitive systems safe to release. In Network Operations and Management Symposium (NOMS), 2012 IEEE.
IEEE, 1279–1286.

[51] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus, and Robert Hundt. 2010. Google-wide profiling: A continuous
profiling infrastructure for data centers. IEEE Micro 4 (2010), 65–79.

[52] Xiaoqi Ren, Ganesh Ananthanarayanan, Adam Wierman, and Minlan Yu. 2015. Hopper: Decentralized Speculation-
aware Cluster Scheduling at Scale. In SIGCOMM ’15. 379–392. https://doi.org/10.1145/2785956.2787481

[53] Alfréd Rényi. 1959. On measures of dependence. Acta mathematica hungarica 10, 3-4 (1959), 441–451.
[54] Irina Rish, Mark Brodie, Sheng Ma, Natalia Odintsova, Alina Beygelzimer, Genady Grabarnik, and Karina Hernandez.

2005. Adaptive diagnosis in distributed systems. IEEE Transactions on neural networks 16, 5 (2005), 1088–1109.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

https://doi.org/10.1145/2213836.2213840
https://doi.org/10.1145/2670979.2670988
https://doi.org/10.1145/1592568.1592596
https://doi.org/10.1145/2785956.2787481

17:26 Pengfei Zheng and Benjamin C. Lee

[55] Paul R Rosenbaum and Donald B Rubin. 1983. The central role of the propensity score in observational studies for
causal effects. Biometrika 70, 1 (1983), 41–55.

[56] Raja R. Sambasivan, Alice X. Zheng, Michael De Rosa, Elie Krevat, Spencer Whitman, Michael Stroucken, William
Wang, Lianghong Xu, and Gregory R. Ganger. 2011. Diagnosing Performance Changes by Comparing Request Flows.
In Proceedings of the 8th USENIX Conference on Networked Systems Design and Implementation (NSDI’11). USENIX
Association, Berkeley, CA, USA, 43–56.

[57] C. Shannon and W. Weaver. 1949. The mathematical theory of communication. University of Illinois Press.
[58] Benjamin H Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson, Manoj Plakal, Donald Beaver, Saul Jaspan,

and Chandan Shanbhag. 2010. Dapper, a Large-Scale Distributed Systems Tracing Infrastructure. (2010).
[59] Harald Steck. 2008. Learning the Bayesian Network Structure: Dirichlet Prior versus Data. In UAI 2008.
[60] Jiang Su and Harry Zhang. 2006. A fast decision tree learning algorithm. In UAI. AAAI Press, 500–505.
[61] Mukarram Tariq, Amgad Zeitoun, Vytautas Valancius, Nick Feamster, and Mostafa Ammar. 2008. Answering what-if

deployment and configuration questions with wise. In ACM SIGCOMM Computer Communication Review, Vol. 38.
ACM, 99–110.

[62] Eno Thereska, Bjoern Doebel, Alice X Zheng, and Peter Nobel. 2010. Practical performance models for complex,
popular applications. In ACM SIGMETRICS Performance Evaluation Review, Vol. 38. ACM, 1–12.

[63] Eno Thereska and Gregory R Ganger. 2008. IRONModel: Robust performance models in the wild. ACM SIGMETRICS
Performance Evaluation Review 36, 1 (2008), 253–264.

[64] Robert Tibshirani. 1996. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical Society. (1996),
267–288.

[65] Jelte Peter Vink and Gerard de Haan. 2015. Comparison of machine learning techniques for target detection. Artificial
Intelligence Review 43, 1 (2015), 125–139.

[66] Lei Wang, Jianfeng Zhan, Chunjie Luo, Yuqing Zhu, Qiang Yang, Yongqiang He, Wanling Gao, Zhen Jia, Yingjie Shi,
Shujie Zhang, et al. 2014. Bigdatabench: A big data benchmark suite from internet services. In High Performance
Computer Architecture (HPCA), 2014 IEEE 20th International Symposium on. IEEE, 488–499.

[67] Frank Wilcoxon. 1945. Individual comparisons by ranking methods. Biometrics bulletin 1, 6 (1945), 80–83.
[68] D. H. Wolpert and W. G. Macready. 1997. No free lunch theorems for optimization. IEEE Transactions on Evolutionary

Computation 1, 1 (Apr 1997), 67–82. https://doi.org/10.1109/4235.585893
[69] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael Jordan. 2009. Detecting large-scale system problems

by mining console logs. In Proceedings of the 22nd Symposium on Operating Systems Principles (SOSP’09). ACM, 117–132.
[70] Neeraja J. Yadwadkar, Ganesh Ananthanarayanan, and Randy Katz. 2014. Wrangler: Predictable and Faster Jobs Using

Fewer Resources. In SOCC ’14. Article 26, 14 pages. https://doi.org/10.1145/2670979.2671005
[71] Neeraja J. Yadwadkar, Bharath Hariharan, Joseph E. Gonzalez, and Randy Katz. 2016. Multi-Task Learning for Straggler

Avoiding Predictive Job Scheduling. Journal of Machine Learning Research 17, 106 (2016), 1–37.
[72] Matei Zaharia, Andy Konwinski, Anthony D. Joseph, Randy Katz, and Ion Stoica. 2008. Improving MapReduce Perfor-

mance in Heterogeneous Environments. In 8th USENIX Symposium on Operating Systems Design and Implementation
(OSDI ’08). 29–42. http://dl.acm.org/citation.cfm?id=1855741.1855744

[73] Steve Zhang, Ira Cohen, Julie Symons, and Armando Fox. 2005. Ensembles of Models for Automated Diagnosis of
System Performance Problems. In Proceedings of the 2005 International Conference on Dependable Systems and Networks
(DSN ’05). IEEE Computer Society, Washington, DC, USA, 644–653. https://doi.org/10.1109/DSN.2005.44

[74] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal, Vrigo Gokhale, and John Wilkes. 2013. CPI2: CPU Performancfe
Isolation for Shared Compute Clusters. In Proceedings of the 8th ACM European Conference on Computer Systems
(EuroSys ’13). ACM, New York, NY, USA, 379–391. https://doi.org/10.1145/2465351.2465388

[75] Yunqi Zhang, David Meisner, Jason Mars, and Lingjia Tang. 2016. Treadmill: Attributing the Source of Tail Latency
through Precise Load Testing and Statistical Inference. In ISCA ’16.

[76] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo, Ding Yuan, and Michael Stumm. 2014. lprof: A
non-intrusive request flow profiler for distributed systems. In 11th USENIX Symposium on Operating Systems Design
and Implementation. 629–644.

[77] Hui Zou and Trevor Hastie. 2005. Regularization and variable selection via the elastic net. Journal of the Royal Statistical
Society 67, 2 (2005), 301–320.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

https://doi.org/10.1109/4235.585893
https://doi.org/10.1145/2670979.2671005
http://dl.acm.org/citation.cfm?id=1855741.1855744
https://doi.org/10.1109/DSN.2005.44
https://doi.org/10.1145/2465351.2465388

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:27

A LEARNING ALGORITHMS
Algorithm 1–4 describe the learning algorithms in Section 3.

ALGORITHM 1: Bagging Augmented ElasticNet (BAE)
• Input:
1. DatasetD = (Xn, yn). Matrix Xn and vector yn denote the observed task metrics and latencies, respec-

tively, for all tasks in job Jn .
2. Number of bootstrap replicates, I .
• Initialize: Create I bootstrap replicates D1, D2, . . . ,DI fromD .
• For i = 1, 2, . . . , I :

Train an ElasticNet model on dataset Di and apply LARS-EN algorithm to estimate the coefficients β̂ (i) :

argmin
β̂ (i)

L(β̂ (i)) = ∥yn − Xnβ̂
(i) ∥22 + λ1∥β̂

(i) ∥22 + λ2∥β̂
(i) ∥1

• Output: the average of coefficient estimates β̂ = 1
I (β̂

(1) + β̂ (2) + . . . β̂ (I))

ALGORITHM 2: AdaBoost Propensity Score Estimation
• Input:
1. Observations (x1, z1), (x2, z2), . . . , (xM , zM) for (X ,Z), X ∈ [0, 1]P-1, Z ∈ {−1, 1}. xm indicates

the values of confounding metrics (X) observed from taskm, and zm indicates the value of the
treatment metric (Y) observed from taskm.

2. A weak binary classification algorithm H : X → Z , which predicts the treatment metric (Z) with
the confounding metrics (X).

3. Initial sampling distribution D = [D0, D1, . . . , DM], with Dm indicating the sampling probability
for observation (xm , zm).

4. The number of iterations I .
• Initialize: D (1) = D
• For i = 1, 2, . . . , I
1. Train a weak classifier hi using H with samples drawn using D (i).
2. Estimate the error rate of training, ϵi = (# of xm s.t. hi (xm) , zm)/M .
3. Determine the weight for weak classifier hi : αi = 1

2 loд(
1−ϵi
ϵi).

4. Create a new sampling distribution D (i + 1) from D (i) with αi :
Dm (i + 1) = Dm (i) · e−αi ·zm ·hi (xm) (m = 1, 2, · · · ,M)

5. Normalize the new sampling distribution:

Dm (i + 1) =
Dm (i + 1)

Si+1
(m = 1, 2, · · · ,M), Si+1 =

M∑
m=1

Dm (i + 1)

• Boosted Hypothesis f (X) =
∑I
i=1 αihi (X).

• Output: êAdaBoost (X) = P {Z = 1|X } = 1/(1 + e−2f (X)).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:28 Pengfei Zheng and Benjamin C. Lee

ALGORITHM 3: Meta Learning Algorithm
• Input:
1. Causality profilesC ={C1,C2, . . . ,CN }
2. Minimum number of topics kmin (default kmin=5)
3. Stopping criterion ϵ (minimum document coverage for a topic, default ϵ=0.05)
4. Trimming threshold η (default η=0.1)
• Initialize:
1. Create vocabularyV . Each task metric Ki (i = 1, . . . , P) corresponds to two anomalous words, Ki (+)

and Ki (-), which indicate a straggler’s value for Ki is higher and lower than normal, respectively.V is a
vocabulary containing all anomalous words,V = {K1 (+), K1 (−), . . . , KP (+),KP (−)}.

2. Create documentsD . Each document Di ∈D (i = 1, . . . ,N) is created with causality profile Ci .
(a). For each entry Ci ·j in Ci (j = 1, 2, . . . , P), calculate probabilities Pr {Kj (+)}, Pr {Kj (−)}:

Pr {Kj (+)} = |Ci ·j |, Pr {Kj (−)} = 0 Ci ·j > 0
Pr {Kj (+)} = 0, Pr {Kj (−)} = |Ci ·j | Ci ·j < 0
Pr {Kj (+)} = 0, Pr {Kj (−)} = 0 Ci ·j = 0

(b). Pr {K1 (+)}, Pr {K1 (−)}, Pr {K2 (+)}, Pr {K2 (−)}, . . . , Pr {KP (+)}, Pr {KP (−)} form a discrete distribu-
tion Ri . Randomly drawW (defaultW =500) words from Ri to create document Di .

• For k = kmin , kmin + 1, kmin + 2, . . .
1. Infer topics β=β1, β2, . . . , βk , and the probabilistic mixture of topics for each job θ={θ1,θ2, . . . ,θN }

from D with Latent Dirichlet Allocation (LDA).
2. Trim each topic to eliminate trivial words (with weight lower than η), and trim the topic mixture for

each document to remove trivial topics (with probability lower than η). After trimming, rescale βi and
every θi ∈ θ to keep each of them sum-to-one.

3. Calculate the document coverage for each topic. Suppose θi ·j is the mixture probability of the j-th topic
in Di . The document coverage of the i-th topic is (

∑N
j=1 I {θi ·j > 0}) /N , where I is indicator function.

4. Stop if any inferred topic has document coverage lower than epsilon.
• Output current β , θ . Each topic in β is defined as an Initial Causal Topic.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:29

ALGORITHM 4: Ensemble Learning Algorithm
Phase I

• Input:
1. Initial causal topics P ={P1, . . . , PQ1 },D={D1, . . . , DQ2 },C ={C1, . . . , CQ3 }, by PR, DP, CA, respectively.
2. Mixture of initial causal topics for each job, P P ={PP1, PP2, . . . , PPN }, P D={PD1, PD2, . . . , PDN },

P C ={PC1, PC2, . . . , PCN }, by PR, DP, CA, respectively.
3. Minimum and maximum number of causes,m1,m2.
4. Trimming threshold η (default η=0.1).
• Initialize: SCORE ← 0
• Form =m1,m1+1,m1+2, . . . ,m2
1. Apply HAC (Hierarchical Agglomerative Clustering) to cluster all of the initial causal topics P ∪D ∪C .

Set the target number of clusters asm.
2. Calculate score SCORE[m] for them clusters. Let H1 denote the average intra-cluster similarity, and H2

denote the average inter-cluster similarity (default: cosine similarity, λ=2/3):
SCORE[m]← λH1 + (1 − λ) (1 − H2)

• Determine the optimal number of clusters L = argmaxm SCORE[m]. Let {S1, S2, . . . , SL } be the clusters
produced by HAC with optimal parameter L. Each cluster Si (i = 1, 2, . . . ,L) is a set of one or more initial
causal topics.
• For each cluster Si (i = 1, 2, . . . ,L), take its centroid Ei as the ensemble of initial causal topics in Si . If a
cluster contains only a single topic or all its topics are produced by the same model (either PR, DP or CA),
its centroid is defined as ∅.
• Define a set E = {Ei |Ei , ∅, i = 1, 2, . . . ,L}. Each element in E is considered as a Causal Topic.

Phase II
• Update the mixture of initial causal topics in P P for each job to that of causal topics and similarly,
update P D and P C . Suppose P P , P D , and P C are updated to {PPEn }, {PDEn }, {PCEn } (n = 1, 2, . . . ,N),
respectively.
• Determine the ensemble of topic mixture for each job. Define PEn = 1/3 · (PPEn + PDEn + PCEn)
as the ensemble of topic mixture for job Jn . That is, PEn is the mix of causal topics for Jn . Define P E =
{PE1, PE2, . . . , PEN }.

• Trim mixture of causal topics for each job to eliminate trivial topics (with weight lower than η). After
trimming, rescale each PEi ∈ P E to keep it sum-to-one.
• Output E and P E

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:30 Pengfei Zheng and Benjamin C. Lee

B CAUSAL TOPICS
Table 14, 15, 16 show causal topics inferred from the Google trace by predictive (PR), dependence
(DP) and causal (CA) models, respectively.

Topic Keywords Weights Interpretation
P0 MEAN_MEM(+), PEAK_MEM(+), MEM_ASSIGN(+) 0.36, 0.34, 0.3 Data Skew
P1 PAGE_CACHE(+), PAGE_CACHE_UNMAP(+) 0.55, 0.45 Data Skew
P2 DISK_SPACE(+) 1.0 Data Skew
P3 MEM_ASSIGN(+) 1.0 Data Skew
P4 PEAK_CPU(+), MEAN_CPU(+) 0.55, 0.45 Computation Skew
P5 MEAN_IO(+), PEAK_IO(+) 0.57, 0.43 I/O Skew
P6 MEAN_CPU(-) 1.0 Limited Processor
P7 MEAN_MEM(-) 1.0 Limited Memory
P8 PEAK_IO(-), MEAN_IO(-) 0.66, 0.34 Limited I/O
P9 CACHE_MISS(+), CPI(+) 0.55, 0.45 Cache Bottleneck
P10 SCHED_DELAY(+) 1.0 Queueing Delay
P11 EVICT(+) 1.0 Eviction Delay
P12 FAIL(+) 1.0 Failure Delay

Table 14. Hound’s causal topics for the Google dataset, discovered by predictive model (PR)

Topic Keywords Weights Interpretation
D0 MEAN_MEM(+), PEAK_MEM(+), MEM_ASSIGN(+) 0.36, 0.35, 0.29 Data Skew
D1 PAGE_CACHE(+), PAGE_CACHE_UNMAP(+), MEM_ASSIGN(+) 0.44, 0.35, 0.21 Data Skew
D2 DISK_SPACE(+) 1.0 Data Skew
D3 MEAN_CPU(+), PEAK_CPU(+) 0.57, 0.43 Computation Skew
D4 PEAK_IO(+), MEAN_IO(+) 0.55, 0.45 I/O Skew
D5 MEAN_CPU(-), PEAK_CPU(-) 0.74, 0.26 Limited CPU
D6 MEAN_MEM(-) 1.0 Limited Memory

D7

PEAK_MEM(-), MEM_ASSIGN(-), MEAN_MEM(-),
PAGE_CACHE_UNMAP(-), PAGE_CACHE(-)

0.3, 0.25, 0.2,
0.13, 0.12 Limited Memory

D8 MEAN_IO(-) 1.0 Limited I/O
D9 PEAK_IO(-) 1.0 Limited I/O
D10 CACHE_MISS(+), CPI(+) 0.54, 0.46 Cache Bottleneck
D11 SCHED_DELAY(+) 1.0 Queueing Delay

Table 15. Hound’s causal topics for the Google dataset, discovered by dependence model (DP)

Topic Keywords Weights Interpretation

C0

PEAK_MEM(+), MEM_ASSIGN(+), MEAN_MEM(+)
PAGE_CACHE(+), PAGE_CACHE_UNMAP(+)

0.26, 0.23, 0.23,
0.16, 0.12 Data Skew

C1

PAGE_CACHE(+), PAGE_CACHE_UNMAP(+),
MEM_ASSIGN(+)

0.36, 0.33,
0.31 Data Skew

C2 DISK_SPACE(+) 1.0 Data Skew
C3 MEAN_CPU(+), PEAK_CPU(+) 0.55, 0.45 Computation Skew
C4 PEAK_IO(+), MEAN_IO(+) 0.56, 0.44 I/O Skew
C5 MEAN_CPU(-) 1.0 Limited Processor
C6 PEAK_CPU(-), MEAN_CPU(-) 0.53, 0.47 Limited Processor
C7 MEAN_MEM(-) 1.0 Limited Memory
C8 MEAN_IO(-) 1.0 Limited I/O
C9 CACHE_MISS(+), CPI(+) 0.52, 0.48 Cache Bottleneck
C10 SCHED_DELAY(+) 1.0 Queueing Delay
C11 EVICT(+) 1.0 Eviction Delay
C12 MACHINE_RAM (+) 1.0 Machine Heterogeneity

Table 16. Hound’s causal topics for the Google dataset, discovered by causal model (CA).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:31

Model Causes Weights

DP

Data Skew (D0)
Computation Skew (D3)
I/O Skew (D4)
Data Skew (D1)

0.27
0.26
0.25
0.22

CA

Computation Skew (C3)
Data Skew (C0)
I/O Skew (C4)

0.36
0.33
0.31

PR

Data Skew (P0)
Data Skew (P2)
Data Skew (P1)
Computation Skew (P4)
Limited I/O (P8)

0.31
0.22
0.19
0.17
0.11

ENS

Data Skew (E0 + E3 + E2)
Computation Skew (E9)
I/O Skew (E4)
Limited I/O (E6) (✖)

0.51
0.26
0.19
0.04

Table 17. Comparison of inferred causes from varied modeling strategies for job 6308689702.

Model Causes Weights

DP

Limited Processor (D5)
Limited Memory (D6)
Limited Memory (D7)
Cache Bottleneck (D10)

0.35
0.29
0.19
0.17

CA Limited Processor (C5) 1.0

PR
Limited Memory (P7)
Limited Processor (P6)

0.55
0.45

ENS

Limited Memory (E2)
Limited Processor (E0)
Cache Bottleneck (E5)(✖)

0.6
0.34
0.06

Table 18. Comparison of inferred causes from varied modeling strategies for job 6343946350.

C ENSEMBLE OF MODELS
Hound integrates topics inferred by an ensemble of independent models for predictive (PR), causal
(CA), and dependence (DP) relationships. The ensemble reports causes revealed by multiple models
and discards the rest. In Table 4, the ensemble eliminates task eviction, reported only by PR, and
task failure, reported only by CA. Were it to use one model, Hound could discover misleading
topics.

Tables 17–18 show how ensembles avoid faulty diagnoses. For job 630. . .702, DP and CA reveal
a mix of data, computation, and I/O skew whereas PR alone identifies limited I/O resources. The
ensemble considers I/O scarcity a false cause. For job 634. . .350’s causes, DP alone reveals cache
misses while CA misses limited memory. The ensemble considers cache behavior a false cause, but
includes memory scarcity as a true cause.

D CASE STUDIES
Figure 12 compares profiles for stragglers and normal tasks. By definition, stragglers’ latencies
are several times larger than normal tasks’. Stragglers have significantly higher memory usage,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:32 Pengfei Zheng and Benjamin C. Lee

Fig. 12. Profiles suggest stragglers in job 6283499093 arise from data skew. Hound’s inferred causes match
human analysis. “S” denotes the distribution of values for stragglers, which is plotted in red; “N” denotes the
distribution of values, which is plotted in blue; yellow lines indicate medians in the distributions.

Fig. 13. Profiles suggest stragglers in job 6266469130 arise from queueing delay. Hound’s inferred causes
match human analysis. “S” denotes the distribution of values for stragglers, which is plotted in red; “N”
denotes the distribution of values, which is plotted in blue; yellow lines indicate medians in the distributions.

memory allocations, and page cache usage. Manual analysis suggests data skew is a probable cause
of stragglers, matching Hound’s automatically inferred cause.

In Figure 13, stragglers have significantly higher queueing time than normal tasks. Other metrics
show comparable distributions between stragglers and normal tasks. Manual analysis suggests
queueing delay is a probable cause of stragglers, matching Hound’s automatically inferred cause.

In Figure 14, stragglers have significantly lower processor usage than normal tasks. Other metrics
show comparable distributions between stragglers and normal tasks. Manual analysis suggests
limited processor resources is a probable cause of stragglers, matching Hound’s automatically
inferred cause.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:33

Fig. 14. Profiles suggest stragglers in job 6274140245 arise from limited processor usage. Hound’s inferred
causes match human analysis. “S” denotes the distribution of values for stragglers, which is plotted in red; “N”
denotes the distribution of values, which is plotted in blue; yellow lines indicate medians in the distributions.

E MUTUAL INFORMATION
We draw on information theory to test the validity of Hound’s topics. Shannon mutual information,
in units of nats, quantifies information obtained about one random variable through another
random variable [57]. The mutual information between discrete variables X and Y , with joint
density PXY (x ,y) and marginals PX (x) and PY (Y), is

I (X ;Y) =
∑
x,y

PXY (x ,y) log
PXY (x ,y)

PX (x)PY (y)

.
We use mutual information to validate the accuracy and coherence of Hound’s causal topics

assigned for each job. For accuracy, task latency should have high mutual information with metrics
within causal topics (IM ·L) and low mutual information otherwise (IU ·L). For coherence, metrics
within a causal topic should have high mutual information with each other (IM ·M) and low mutual
information otherwise (IM ·U). For each of these desiderata, we calculate mutual information,
averaged over topics and metrics.

I (j)M ·L = Et Ew I (M (j)
t,w ; L

(j))

I (j)U ·L = Ek I (U
(j)
k ; L(j))

I (j)M ·M = Et Ev,w I (M (j)
t,v ; M

(j)
t,w)

I (j)M ·U = x Et Ew,k I (M
(j)
t,w ; U

(j)
k)

where j identifies job, L denotes task latency,Mt,w denotes the metric profiled for wordw in a topic
t assigned to the job, andUk denotes a metric not in any topic.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:34 Pengfei Zheng and Benjamin C. Lee

Fig. 15. Mutual information to assess accuracy (large IML , small IU L) and coherence (large IMM , small UM).
Boxplots show distribution of values across all jobs in the datacenter trace.

Topic Keywords Weights
E0 PEAK_MEM(+), MEAN_MEM(-) 0.52, 0.48
E1 MEAN_MEM(+), PEAK_MEM(-) 0.71, 0.29
E2 MEAN_MEM(-), MEM_ASSIGN(+) 0.54, 0.46
E3 CACHE_MISS(-), CPI(+) 0.5, 0.5
E4 CACHE_MISS(+), CPI(-) 0.52, 0.48
E5 PAGE_CACHE(+), PAGE_CACHE_UM(-) 0.66, 0.34
E6 PAGE_CACHE(-), PAGE_CACHE_UM(+) 0.5, 0.5
E7 MEM_ASSIGN(+) 1.0
E8 DISK_SPACE(+) 1.0
E9 MEAN_CPU(-) 1.0
E10 SCHED_DELAY(+) 1.0
E11 EVICT_DELAY(+) 1.0

Table 19. Causal topics inferred with linear regression as base learner.

Figure 15 shows the distribution of mutual information measures across all jobs in the datacenter
trace. Large IML and IU L indicate accuracy as Hound’s topics include the most relevant metrics and
exclude the rest. Large IMM and small IUM indicate coherence as Hound’s topics integrate multiple
metrics into a causal explanation for stragglers.

F SIMPLER BASE LEARNERS
Predictive Models. Table 19 indicates that multicollinearity affects topic models. Linear regres-
sion’s topics, such as E3 and E4, report correlatedmetrics with contradictory signs. Model parameters
with incorrect signs and implausible magnitudes are a typical symptom of multicollinearity [39].
BAE regularization mitigates these effects and produces better causal explanations.

Dependence Models. Table 20 indicates that Pearson’s linear estimate affects topic models.
First, Pearson causes models to miss important keywords in inferred topics, which often have just
one keyword. Pearson’s topics also include erroneous relationships, such as the negative correlation
between scheduling delay and task latency in topic D0; the correlation should in fact be positive.
Pearson’s correlation is sensitive to noise and outliers, which can create false correlations. Moreover,
Pearson is a linear estimator and may miss non-linear associations.

Causal Models. Table 21 indicates that Rubin Causal Models that use logistic regression to
estimate propensity scores are ineffective when inferring topics. Logistic regression severely distorts

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Hound: Causal Learning for Datacenter-scale Straggler Diagnosis 17:35

Topic Keywords Weights

D0

MEAN_IO(-),SCHED_DELAY(-),
MEM_ASSIGN(-), RAM_REQ(-)

0.45, 0.19,
0.18, 0.18

D1 MEM_ASSIGN(+) 1.0
D2 SCHED_DELAY(+) 1.0
D3 CACHE_MISS(+) 1.0
D4 MEAN_CPU(-) 1.0
D5 MEAN_MEM(-) 1.0
D6 PAGE_CACHE(+), MEAN_MEM(+) 0.65, 0.35

Table 20. Causal topics inferred with Pearson’s correlation as base learner.

Topic Keywords Weights
C0 CPI(+), , CACHE_MISS(+) 0.5, 0.5
C1 CPI(-) 1.0
C2 PEAK_IO(+), MEAN_IO(+) 0.63, 0.37
C3 MEAN_IO(+), PEAK_IO(-) 0.69, 0.31
C4 MEAN_IO(-), PEAK_IO(-) 0.52, 0.48
C5 PAGE_CACHE(-), PAGE_CACHE_UM(-) 0.53, 0.47
C6 PAGE_CACHE(+), PAGE_CACHE_UM(-) 0.51, 0.49
C7 PEAK_MEM(+), MEAN_MEM(+) 0.51, 0.49
C8 MEAN_MEM(-), PEAK_MEM(+) 0.52, 0.48
C9 RAM_CAPACITY(+) 1.0
C10 RAM_CAPACITY(-) 1.0
C11 SCHED_DELAY(+) 1.0
C12 SCHED_DELAY(-) 1.0
C13 MEAN_CPU(-), PEAK_CPU(-) 0.5, 0.5

Table 21. Causal topics inferred with logistic regression based Rubin Causal Model as base learner.

Learning
Procedure

Theoretical
Complexity

Approximate
Complexity

BASE
Bagging Augmented
ElasticNet

O (N (K 3 + K 2M)I) O (NM)

Signed Schweizer-
Wolff Estimator

O (NKM2) O (NM)

AdaBoost-IPW
Estimator

O (NK 3MI) O (NM)

META O (WTN I) O (N)

ENSEMBLE O (T 2loд (T)I) O (T 2loд (T))

Table 22. Computational Complexity

causal effect estimation, producing multiple pairs of contradictory topics, such as C11 and C12, and
topics with reversed signs for correlated regressors such as C3 and C4.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

17:36 Pengfei Zheng and Benjamin C. Lee

G COMPLEXITY ANALYSIS
Table 22 presents the computational complexity of Hound’s constituent methods with the following
notation:M,N represent number of tasks per job and jobs per trace; K,W,T represent number of
profiled metrics, words per document and topics to learn; I represents number of algorithmic
iterations, a tunable parameter. We draw on prior complexity analyses. Bagging Augmented
ElasticNet applies the Least Angle optimizer to fit coefficients [77]. AdaBoost-IPW estimator
applies C4.5 to train weak learners [60]. Distributed online variational inference implements topic
models[30]. Ensemble learning uses hierarchical agglomerative clustering [42].
In theory, Hound is in polynomial time—O (NK3M + NKM2). In practice, K, T,W are typically

constants compared to N andM. For example, the Google and Spark traces report 21 and 37 task
metrics (K), respectively. The number of output topics (T) is at most 15 and the number of words
per topic W is at most 5. These parameters are much smaller than N and M. Given these practical
considerations and a 1/

√
M sampling rate for the SSW estimator, Hound’s approximate complexity

is O (NM).

Received October 2017; revised December 2017; accepted January 2018

Proc. ACM Meas. Anal. Comput. Syst., Vol. 2, No. 1, Article 17. Publication date: March 2018.

Received November 2017, revised January 2018, accepted March 2018.

	Abstract
	1 Introduction
	2 System Objectives
	2.1 Datacenter-scale Diagnosis
	2.2 Interpretable Models
	2.3 Unbiased Inference
	2.4 Computational Efficiency

	3 The Hound Framework
	3.1 Base Learning
	3.2 Meta Learning
	3.3 Ensemble Learning

	4 Experimental Methods
	4.1 Google Trace
	4.2 Spark Traces

	5 Evaluation with Google Trace
	5.1 Mixtures of Causes
	5.2 Validation with Case Studies
	5.3 Comparisons with Expert Diagnosis
	5.4 Comparison with Simpler Base Learners

	6 Evaluation with Spark Traces
	7 Complexity and Overheads
	8 Related Work
	8.1 Straggler Mitigation
	8.2 Performance Analysis

	9 Conclusion and Future Work
	Acknowledgments
	References
	A Learning Algorithms
	B Causal Topics
	C Ensemble of Models
	D Case Studies
	E Mutual Information
	F Simpler Base Learners
	G Complexity Analysis

 HistoryItem_V1
 AddMaskingTape

 Range: From page 36 to page 36
 Mask co-ordinates: Horizontal, vertical offset 39.49, 436.03 Width 275.57 Height 19.32 points
 Origin: bottom left

 1
 0
 BL

 36
 SubDoc
 36

 CurrentAVDoc

 39.4871 436.0289 275.5696 19.3235

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 35
 36
 35
 1

 1

 HistoryList_V1
 qi2base

