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ABSTRACT
Over the last two decades, as microprocessors have evolved to
achieve higher computational performance, their power density
also has increased at an accelerated rate. Improving energy effi-
ciency and reducing power consumption is therefore of critical im-
portance tomodern computing systems. One effective technique to
improve energy efficiency is dynamic voltage and frequency scal-
ing (DVFS). In this paper, we propose F-LEMMA: a fast learning-
based power management framework consisting of a global power
allocator in userspace, a reinforcement learning-based power man-
agement scheme at the architecture level, and a swift controller at
the digital circuit level. This hierarchical approach leverages com-
putation at the system and architecture levels, and the short re-
sponse times of the swift controllers, to achieve effective and rapid
𝜇𝑠-level powermanagement. Our experimental results demonstrate
that F-LEMMA can achieve significant energy savings (35.2% on
average) across a broad range of workload benchmarks. Compared
with existing state-of-the-art DVFS-based powermanagement strate-
gies that can only operate at millisecond timescales, F-LEMMA is
able to provide notable (up to 11%) Energy-Delay Product improve-
ments when evaluated across benchmarks.
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1 INTRODUCTION
Multi/manycore processors have become mainstream computing
workhorses for both general-purpose and embedded systems.With
the demise of Dennard scaling, high power density has become a
key design constraint and a performance-limiting bottleneck for
future generations of computing systems, as more digital logic and
circuitry components are integrated onto a single die. Dynamic
power management (DPM) techniques such as dynamic voltage
and frequency scaling (DVFS) and power gating, are widely used
in state-of-the-art processor systems to save power and improve
energy efficiency. For example, Enhanced Intel SpeedStep Tech-
nology (EIST) [1], AMD PowerNow! [2], ARM Intelligent Energy
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Controller (IEC) [3] and NVIDIA Power Management Mode [4] al-
low the voltage and frequency (clock speed) of the processor to be
dynamically changed (to different Power States) by software.

To employ a more effective power management strategy, many
adaptive solutions have been developed recently by leveraging con-
trol theory and machine learning approaches. In these adaptive
power management schemes, the control/learning agent can mon-
itor workload status at run-time and adjust the voltage and fre-
quency setting according to its online estimation model [5–8]. In
conventional power delivery systems for multicore and manycore
processors, a cluster of cores (or even all the cores) may reside in
one voltage domain and share one voltage rail from an off-chip
voltage regulator. Due to the long physical distance and associ-
ated parasitic loading effect, the voltage transition time of an off-
chip voltage regulator generally exceeds a millisecond which fun-
damentally limits the rate at which power management settings
can be adjusted in response to transient workload events, which
can happen within several microseconds. Although the introduc-
tion of integrated voltage regulation allows a system to have much
finer spatial (per-core) and temporal (tens to hundreds of nanosec-
onds) granularity of supply voltage allocation and delivery, [9, 10],
a practical and effective method is still needed for adaptive power
management at microsecond timescales.

In this paper, we propose F-LEMMA–a fast learning-based inte-
grated voltage and frequency scaling approach for energy-efficient
multicore andmanycore processors. Leveraging novel power deliv-
ery systems with integrated voltage regulators, the processor sup-
ply voltage transition time drops to nanoseconds, which opens the
door for microsecond timescale power management. We propose a
hierarchical approach, where a global controller works as the inter-
face to a userspace level energy and power management method-
ology; an intermediate learning-based controller takes in the archi-
tecture information and utilizes a reinforcement learning agent to
update the configuration of a lower-level swift controller; finally,
the swift controller uses a fast linear classifier to generate voltage
and frequency pairs for each core at microsecond timescales. Ex-
perimental results show that F-LEMMA achieves a 35.2% energy
saving on average across a wide range of benchmarks, at the cost
of minimal overhead.

This paper makes the following contributions to the state of the
art power management schemes:

• A comparison study of integrated voltage regulators and
power delivery systems supporting microsecond timescale
per-core fast DVFS with high power delivery efficiency.
• Ahierarchical powermanagement strategy including a global

controller, a learning controller, and a swift controller, which
leads to adaptive microsecond timescale per-core fast DVFS.

Session 2: Design Methodology and Optimization  MLCAD '20, November 16–20, 2020, Virtual Event, Iceland

43

https://doi.org/10.1145/3380446.3430630
https://doi.org/10.1145/3380446.3430630


• A system implementation of the hierarchical power man-
agement approach and a High Level Synthesis (HLS) of its
learning controller.
• Acomprehensive experimental study of the proposed F-LEMMA

approach, which demonstrates extra energy savings from
fast power management compared to previous related work.

2 BACKGROUND
2.1 Dynamic Voltage Frequency Scaling (DVFS)
Dynamic voltage and frequency scaling (DVFS) is a technique to
manage processor power consumption. Run-time dynamic power
has a squared and linear relationship with frequency and voltage
(𝑃dynamic ∼ 𝐶𝑉 2 𝑓 ), respectively, whereas static power has a linear
relationship with voltage (𝑃static ∼ 𝑉 𝐼static).

Effective DVFS for multi-core processors requires multiple volt-
age domains. The circuitry within one voltage domain shares a
common voltage rail, hence opportunities to reduce the domain’s
voltage are limited by the unit that needs the highest supply volt-
age. Voltage levels are scaled in fixed, discrete steps and are typi-
cally selected using tables that map frequency to voltage. Voltage
and frequency scaling is based on the application’s performance
requirements. For example, when one core is waiting for synchro-
nization with other cores, its voltage and frequency can be reduced
to save power and energy.

2.2 Adpative Power Management
In recent years, adaptive powermanagement has replaced previous
fixedmodels for power management as the workloads in multicore
and manycore systems have become more diverse and variable.
Workloads are predicted at run-time using adaptive models for
more effective power management. First, control theoretic mech-
anisms, such as Kalman filters [11] and model predictive control
[12], use dynamically updatedmodels to scale voltage and frequency
under power or performance constraints.

Second, learningmechanisms predict application phases and con-
trol decisions without knowing an accurate workload model in ad-
vance. With reinforcement learning, an agent learns to act opti-
mally in an environment by evaluating and selecting actions that
optimize for desired rewards. Reinforcement learning can be adopted
for power management by training a per-core DVFS agent that
selects the appropriate voltage and frequency levels by observing
system conditions [5, 7, 11]. As both adaptive control and the learn-
ing algorithm are relatively complex and take a long time to exe-
cute, such adaptive power management can only operate at low
frequencies. In our work, this problem is addressed by introduc-
ing a hierarchical design with fast local controllers informed by a
slower high-level learning-based management strategy.

2.3 Integrated Voltage Regulators
In a conventional power delivery system for multicore or even
manycore processors, cores share a common voltage rail and a
huge centralized voltage regulator is located off-chip to step down
the supply voltage from the PCB board level (5-12V) to the core
level (0.8-2V). As the off-chip voltage regulator uses large induc-
tors and capacitors - and there are board level decoupling capaci-
tors and noteworthy parasitic inductance - there is an unavoidable
transition time (rise time and fall time) before the voltage reaches

a desired level. Because of this large transition time, dynamic volt-
age and frequency scaling in processors with off-chip based power
delivery systems is limited to millisecond timescales.

Emerging power delivery systems use integrated voltage regula-
tors, moving the step-down voltage regulator on-chip. Integrated
regulator design strives to reduce the size of inductors and capaci-
tors for small on-die area. One prominent side effect of this design
strategy is pushing the switching frequency from tens to hundreds
ofMHz. Such a higher switching frequency comes at a cost of more
significant switching losses and degraded conversion efficiency.

The integrated voltage regulator naturally has a much shorter
transition time than conventional off-chip voltage regulators [13–
15]. This advantage comes from smaller inductors and capacitors,
faster switching, and reduced parasitic inductance from its loca-
tion closer to the core. Prototype designs [16–19] have shown that
power delivery with integrated regulators can easily transition be-
tween voltage levels at nanosecond timescales.

2.4 Related Work
Although the general method of DVFS has been studied intensively
in the past, only a subset of that work addresses the specific prob-
lem of adaptive voltage scaling at a faster time scale. Learning
based predictors and controllers are proposed to find optimal power
and performance in [5, 7, 20, 21]. Hierarchical powermanagement [8,
22] has been widely adopted, from mobile devices [23] to cloud
computers [24]. Limited by the supply voltage transition time in
processor power delivery systems and the complexity of effective
power management algorithms, these approaches operate at mil-
lisecond timescales. With the development of integrated voltage
regulators, per-core microsecond level fast DVFS has become prac-
tical. Kim et al. [16], Toprak-Deniz et al. [17], Meinerzhagen et
al. [25], Kim et al. [26], and Keller et al. [19] designed integrated
voltage regulators that can supportmicrosecond level dynamic volt-
age scaling. Kim et al. [9] studied the potential system level en-
ergy benefits from microsecond level dynamic voltage scaling sup-
ported by on-chip integrated voltage regulators. Höppner et al. [27]
and Tseng et al. [18] studied fast DVFS on MPSoCs and SRAMs re-
spectively. Kasture et al. [28] proposed a fine-grain DVFS scheme
for latency-critical workloads. Bai et al. [29] proposed a voltage reg-
ulator efficiency aware power management strategy, which relies
on reinforcement learning. Although the fast per-core DVFS sup-
ported by integrated voltage regulators offers a potential means
to improve power and energy efficiency, effective power manage-
ment strategies remain missing.

3 METHODOLOGY
3.1 F-LEMMA Framework
DVFS control algorithms can be implemented in the processor mi-
croarchitecture, in the scheduler, or through compiler algorithms.
Most prior research in DVFS control is implemented in the operat-
ing system with coarse temporal granularity, a sensible approach
when off-chip regulators have slow response times and voltages
change on the order of several milliseconds. Integrated voltage reg-
ulators enable more responsive DVFS, saving power and energy at
microsecond granularity, but effective mechanisms are required to
guide such fine-grained DVFS.
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Figure 1: The proposed F-LEMMA power management framework with reinforcement learning and swift controllers

We propose a hierarchical DVFS management approach with
three control layers. First, a global controller in user space speci-
fies the power budget and energy-performance weights. Second, a
per-core learning controller in the microarchitectural layer uses re-
inforcement learning and passes information to a swift controller.
Third, a per-core swift controller in the circuit layer changes the
core’s voltages and frequencies at microsecond timescales.

3.2 Global Controller
The global controller provides a programmable interface that per-
mits the operating system to specify energy and power manage-
ment policies for service quality (QoS), application power manage-
ment, and power capping. By default, the cores’ energy and power
budgets correspond to peak processor power. In contrast, under
active and intelligent power management, Core(i,j) executing task
𝑖 will be given budget 𝑃𝐵 (𝑖) .

𝑃𝐵 (𝑖) (𝑡) =
𝑛𝑖∑
0

𝑃𝐵𝐶𝑜𝑟𝑒 (𝑖, 𝑗) (𝑡) = 𝛼 (𝑡)(𝑛𝑖/𝑁 )𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟 (1)

where 𝛼 is the programmed power allocation ratio and 𝑃𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑜𝑟
is the processor peak power.

3.3 Learning Controller
Reinforcement Learning (RL) is a subset of machine learning built
upon a Markov Decision Process, which describes interactions be-
tween an agent and its environment over time. The environment
is represented by states. At each time step, the agent selects an
action that changes the environment and thus the state. After se-
lecting this action, the agent transitions to a new state and receives
a reward associated with this state.

Table 1 lists components of an RL model. Note that actions or
elements of the state space can be either continuous or discrete.
The value functions describe the expected return for being in some
state or for taking an action in a state when following policy 𝜋 :

𝑉 (𝑠) = E𝜋 [𝐺 |𝑆𝑡 = 𝑠] (2)
𝑄 (𝑠, 𝑎) = E𝜋 [𝐺 |𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (3)

The agent’s goal is to learn policy 𝜋 (𝑎 |𝑠)∗, whichmaps each state to
an action that maximizes the expected return 𝐺 over 𝑘 time-steps
when future time-steps are discounted by factor 𝛾𝑘 .

Policy gradient methods, such as Actor-Critic, directly optimize
the policy by approximating the policy 𝜋 and value function (𝑄
or𝑉 ) using approximators such as neural networks [30]. The actor

Table 1: RL terminology. RL’s goal is to an find optimal pol-
icy 𝜋 (𝑎 |𝑠)∗

Terminology Symbol
Action Space 𝑎 ∈ 𝐴
State Space 𝑠 ∈ 𝑆
Reward Function 𝑅 ∈ R1
Return 𝐺 =

∑𝑘
𝑡=0 𝛾

𝑘𝑅𝑘
Policy 𝜋 (𝑎 |𝑠)∗
State Value Function 𝑉 (𝑠)
State-Action Value Function 𝑄 (𝑠, 𝑎)

consumes the state and produces a probability distribution over the
action space. The critic learns a real-valued number that approxi-
mates the value function, 𝑉 (𝑠).

If the action space is discrete with size |𝐴|, the final layer in
the approximator network is a flattened vector of size |𝐴| that is
passed through a softmax layer to produce a discrete probability
distribution. If the action space is continuous (e.g., 𝑎 ∈ [0, 1]), the
final layer approximates a probability distribution by predicting its
parameters. For example, a layer that approximates a normal dis-
tribution must predict the mean 𝜇 and variance 𝜎 of 𝑎, increasing
the number of outputs required for the approximation function.

In each time step, the actor takes a normalized state as input,
forward propagates the neural network approximator, and selects
an action by sampling from the output distribution. A trajectory
is built by saving actions, states, and rewards over several time
steps. The actor and critic networks share weights and are trained
jointly by back propagating with the appropriate loss functions
and utilizing stored trajectories.

For power management, the environment is processor core ac-
tivity and the state space is defined by 19 normalized performance
counters including instruction throughput, branch predictionmisses,
cache misses, and reads as well as the current power and voltage
levels. See Fig. 1 for details.

The reward function is a linear combination of instruction through-
put, energy, and the power budget determined by the global con-
troller [29].

𝑅 = −𝑎 × energy + 𝑏 × ipc − 𝑐 × |power − budget| (4)

where 𝑎,𝑏, and 𝑐 are experimentally determined parameters that
ensure values are in a comparable range (𝑎 ∼ 1 × 106, 𝑏 ∼ 1, and
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1 Learning Controller (with Swift) (∼ 500𝜇𝑠)
Input: 𝑁cores, 𝑓 (𝑠;𝜃1), · · · , 𝑓 (𝑠;𝜃𝑁−1), 𝑠mean, 𝑠std
𝑖 ← 0
while 𝑖 < 𝑁cores do
𝑠 ← getCoreState(𝑖)
𝑠 ← (𝑠 − 𝑠mean) /𝑠std
𝜇policy, 𝜎policy,𝑉 (𝑠) ← 𝑓 (𝑠;𝜃𝑖 ) (forward propagation)
construct 𝜋 (𝑎 |𝑠) ← N

(
𝜇policy, 𝜎policy

)
sample weights ®𝑤𝑖 ∼ 𝜋 (𝑎 |𝑠)
updateSwiftController(𝑖, ®𝑤𝑖 )
𝑅 ← observeReward(𝑖)
store 𝜇policy, 𝜎policy, 𝑅,𝑉 (𝑠)
𝑖 ← 𝑖 + 1

end while

𝑐 ∼ 1 × 10−1). The influence of the global controller’s budget is
determined by parameter 𝑐 . When 𝑐 = 0, the global controller is
effectively turned off.

The learning controller can manage the DVFS settings either in-
dependently or in coordination with the swift controller at a lower
level. During independent management, it directly maps the core’s
state to a voltage-frequency pair. During coordinatedmanagement,
it sends an intermediate weight vector to the swift controller as de-
scribed in Algorithm 1.

3.4 Swift Controller
Each swift controller is associated with a core, managing its power
and energy consumption by adjusting its voltage and frequency at
microsecond timescales, which is supported by the integrated volt-
age regulator. First, the swift controller monitors current drawn by
its core during each fine-grained monitoring interval (e.g., 100ns)
to calculate power consumption. Second, it accesses hardware per-
formance counters. These measurements together influence volt-
age and frequency settings at microsecond timescales.

The swift controller uses a linear classifier as described in Eq.
5, where 𝑋 is the input feature vector, 𝑎 is the weight vector for
the input feature, and 𝑏 is the bias. When 𝑓 (𝑋, 𝑎, 𝑏) is greater than
threshold 𝑅𝑖 , the swift controller sets voltage and frequency to 𝑉𝑖
and 𝐹𝑖 .

𝑓 (𝑋, 𝑎, 𝑏) =𝑊𝑎 + 𝑏 (5)

Operating at microsecond timescales, the linear classifier must
be computationally simple yet effective. The classifier takes only
two run-time parameters, the power consumption and the instruc-
tion throughput, defining input 𝑋 = [𝑃 (𝑡), 𝐼𝑃𝐶 (𝑡)]. Beyond in-
struction throughput, we consider and test other performance coun-
ters such as cache hits and misses. At millisecond timescales, these
counters improve model accuracy when estimating system dynam-
ics. However, at the microsecond timescales we consider, these
counters exhibit rapid and large fluctuations that can cause the
system to oscillate and fail to converge.

We propose a hierarchical management strategy in which the
global and learning controllers dynamically update the weight vec-
tor 𝑎. Updated weights help the swift controller capture diverse
workload phases and variations. Depending on workload phase,

power and IPC have different roles in estimating system behav-
ior. For example, suppose the fixed-point unit dissipates less power
and the floating-point unit dissipates more power. As a workload
performs a varying mix of fixed and floating-point operations, sim-
ply using power or instruction throughput alone cannot accurately
classify system behavior. Even a static combination of power and
throughput may not be accurate.The pursuit of accurate classifiers
is further complicated by other types of instructions in real multi-
core and manycore systems.
4 SYSTEM IMPLEMENTATION
In our design, the learning controller is executed on a dedicated
digital logic controller located close to the core. Compared with
execution at the software level of general-purpose CPUs, execu-
tion with dedicated hardware controller avoids redundancy from
middleware, which increases both performance and energy effi-
ciency. We compare the learning controllers for both software and
hardware controller designs. In software, the learning controller
takes on average 40 microseconds to execute on a 2.3 GHz Dual-
Core Intel Core i5 processor. To estimate performance of the pro-
posed hardware controller design, we synthesize the learning con-
troller on a Zynq-7000 FPGA using Xilinx Vivado HLS 2019.1, with
a pipeline applied to optimize the design. The learning controller
takes 1464 cycles to execute, with an average power consumption
of 1.38 W when active. Scaled to processor-level technology and
design, this online learning controller can execute within 10 mi-
croseconds and introduces less than 2% overhead with a lower
power consumption. The hardware controller design thus speeds
up the learning controller by 4 times versus execution in software.
The swift controllers operate at microsecond timescales. Each swift
controller operation has 2 fixed point multiplications, 1 addition,
and up to 3 comparisons. The overheads from the swift controllers
are negligible compared with those from the learning controller.
5 EVALUATION RESULTS
5.1 System Setup
We evaluate the proposed hierarchical learning-based power man-
agement schemewith experiments on an Intel Nehalem x86 proces-
sor, which is detailed in Table 2. We use Sniper v7.3 [31] (with Mc-
pat [32]) to simulate system performance and power for this many-
core processor, generating run-time statistics with a granularity
of 100 ns. We integrate both Numpy and PyTorch packages with
Table 2: Architecture parameters and hyperparameters for
the hierarchical controller.
Configurations Value
Number of cores 2-128
Core architecture Intel Nehalem (x86)
V/F Levels (V/GHz) 1.20/2.0,1.08/1.8,0.96/1.6,0.84/1.4
Nominal V/F 1.20/2.0
L1-I/D cache 32KB, 4-way, LRU
L2 cache 512KB, 8-way, LRU
L3 cache 8MB, 16-way, LRU
Global/learning/swift ctrl. 10 ms, 500𝜇𝑠 , 4𝜇𝑠
NN Architecture 4-layer (19,32,32,|𝐴| + 1)
Learning rate 1 × 10−3
Discount reward factor 𝛾 = 0.95
Trajectory size for backprop 25
Optimizer Adam (𝛽1,2 = 0.9, 0.999)
Technology node 45nm
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Figure 2: Normalized energy consumption of F-LEMMA
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Figure 3: Normalized performance of F-LEMMA
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Figure 4: Energy delay product of F-LEMMA

Sniper in order to implement the hierarchical design. Sniper per-
forms timing simulations for multithreaded, shared-memory appli-
cations with tens to hundreds of cores, and has been validated for
Intel Core2 and Nehalem systems. We select representative bench-
marks that cover a wide range of scientific and computational do-
mains from the parsec, splash2, and NPB benchmark suites. The
global controller is triggered by user space power management.
The learning controllers operate every 500 microseconds, a rate
limited by the computational complexity of the learning algorithm.
The swift controllers work at 4 microsecond scales, as determined
by the voltage transition times of the integrated voltage regulators.

5.2 Performance of the Learning Controller
We compare F-LEMMA to the following techniques. For fairness,
F-LEMMA (learning controller), Profit, and GRAPE all operate at
a fixed timescale of 500 microseconds within Sniper.
• Default Race-to-Idle. Runs each benchmark as fast as pos-

sible. All other methodologies are normalized to this.
• Profit Style. State-of-the-art reinforcement learning based

power, and energy management for multicore and many-
core systems [5].
• GRAPEStyle. State-of-the-art feedback control based power

and energy management for multicore and manycore sys-
tems with performance constraints [11].

We evaluate energy consumption, not power dissipation, for a
standard comparison against workloads and configurations. The
energy metric evaluates net benefits and accounts for potential
losses due to extended execution time when lowering frequency.
We normalize energy results to the Default Race-to-Idle.

Fig. 2 shows the normalized energy consumption and Fig. 3 shows
the normalized performance loss (instructions per second). F-LEMMA
achieves 35.2% energy saving with an 11.8% performance penalty,

on average, compared to Default Race-to-Idle. The best case is the
fft benchmark which saves 30.4% energy with only a 1.0% perfor-
mance loss. The worst is the radix benchmark which saves 30.4%
energy at a 25.3% performance loss.

Compared to Profit and GRAPE, F-LEMMA achieves 6.6% and
11.5% extra energy saving with 3.5% and 2.6% performance penalty.
For the fft, lu.cont, cholesky, water.nsq, blackscholes and ft bench-
marks, DVFS saves significant amounts of energy with minimal
performance penalty across all three powermanagement approaches.

Fig. 4 shows the Energy-Delay Product normalized to Default
Race-to-Idle. Across most benchmarks, F-LEMMA has the highest
energy efficiency and smallest energy-delay product, after account-
ing for potential performance losses. On average, F-LEMMA, Profit
and GRAPE have normalized energy-delay products of 0.73, 0.78,
and 0.84, respectively.

5.3 Performance of Each F-LEMMA Layer
Figures 5–6 compare the energy savings and performance penal-
ties from F-LEMMA and alternatives that use only a subset of the
global, learning, and swift controllers. F-LEMMA outperforms a
framework with only global and learning controllers (i.e., the sec-
ond bar), achieving significant energy savings with only a tiny per-
formance loss. For example, on the lu.cont, ocean, and ft bench-
marks, F-LEMMA achieves 9%, 8% and 6% energy saving respec-
tively, while reducing performance by less than 1%. F-LEMMA also
outperforms a framework with only the swift controller (i.e., the
third bar).

We also compare full hierarchical management with different
configurations at each layer. Suppose the learning controller only
pursues energy savings because the global controller specifiesweights
(1,0,0) for its reward function (i.e., the fourth bar).The system achieves
more energy saving but with slightly greater performance penal-
ties. Finally, suppose the swift controller uses only power as the in-
put feature and neglects instruction throughput (i.e., the fifth bar).
Compared to F-LEMMA, this configuration induces larger perfor-
mance penalties for the same energy savings. With only power
measurements, the swift controller predicts the effects of DVFS
less accurately. These effects were discusssed in Section 3.3.
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Figure 5: Normalized energy consumption of F-LEMMA
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Figure 7: Normalized energy of F-LEMMA on multicore and
manycore processors
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Figure 8: Normalized performance of F-LEMMA on multi-
core and manycore processors

5.4 Scalability on Manycore Systems
Fig. 7 and Fig. 8 show the energy and performance when scaling
from 2 cores to 128 cores; some bars are blank because the bench-
mark does not support that configuration. Overall, as the number
of cores scales from 2 to 128, F-LEMMA achieves 35-42% energy
savings at a cost of 5-12% performance penalties. As the number of
cores increases, the performance penalty decreases as more DVFS
opportunities are created by more thread synchronizations.

6 CONCLUSION
In this paper, we proposed F-LEMMA, a hierarchical fast integrated
voltage and frequency scaling approach for multicore and many-
core processors. With integrated voltage regulators, DVFS power
management can reach microsecond timescales. A learning based
hierarchical approach, including a global controller in userspace, a
learning controller at the architecture level, and swift controllers
at the digital circuit level, is presented to guide microsecond level
power management. Experimental results show that on average
F-LEMMA can save 35.2% of energy with a 11.8% performance
decrease. Compared with two classic millisecond timescale DVFS
techniques using control theory and reinforcement learning, the
F-LEMMA achieves 5% and 11% EDP improvements, respectively.
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