
ECE 250 / CPS 250
Computer Architecture

C Programming

Benjamin Lee
Slides based on those from

Andrew Hilton (Duke), Alvy Lebeck (Duke)
Benjamin Lee (Duke), and Amir Roth (Penn)

2
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth ECE/CS 250

Outline

•  Previously:
!  Computer is a machine that does what we tell it to do

•  Next:

!  How do we tell computers what to do?
»  First a quick intro to C programming
»  Goal: to learn C, not teach you to be an expert in C

!  How do we represent data?
!  What is memory?

3
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth ECE/CS 250

High Level Language
Program

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

 We Use High Level Languages

•  There are many high level languages (HLLs)
!  Java, C, C++, C#, Fortran, Basic, Pascal, Lisp, Ada, Matlab, etc.

•  HLLs tend to be English-like languages that are “easy” for
programmers to understand

•  In this class, we’ll focus on C as our running example for
HLL code. Why?
!  C has pointers (will explain much more later)
!  C has explicit memory allocation/deallocation
!  Java hides these issues (don’t get me started on Matlab)

4
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth ECE/CS 250

High Level Language
Program

Assembly Language
Program

Compiler

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

 HLL " Assembly Language

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

•  Every computer architecture has an assembly language
•  Assembly languages tend to be pretty low-level, yet some

actual humans still write code in assembly
•  But most code is written in HLLs and compiled

•  Compiler is a program that automatically converts HLL to assembly

5
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth ECE/CS 250

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Compiler

Assembler

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

 Assembly Language " Machine Language

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

•  Assembler program automatically converts assembly code
into the binary machine language (zeros and ones) that
the computer actually executes

6
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth ECE/CS 250

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signals for
Finite State Machine

Compiler

Assembler

Machine Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

 Machine Language " Inputs to Digital System

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

Transistors (switches) turning on and off

7
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

What you know today

ECE/CS 250

JAVA
...
System.out.println("Please Enter In Your First Name: ");
String firstName = bufRead.readLine();
System.out.println("Please Enter In The Year You Were Born: ");
String bornYear = bufRead.readLine();
System.out.println("Please Enter In The Current Year: ");
String thisYear = bufRead.readLine();

int bYear = Integer.parseInt(bornYear);
int tYear = Integer.parseInt(thisYear);
int age = tYear – bYear ;

System.out.println("Hello " + firstName + ". You are " + age + " years
old");

8
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

How does a Java program execute?

•  Compile Java Source to Java Byte codes
•  Java Virtual Machine (JVM) interprets/translates Byte codes
•  JVM is a program executing on the hardware

•  Java has lots of features that make it easier to program without
making mistakes " training wheels are nice

•  JVM handles memory for you
! What do you do when you remove an entry from a hash

table, binary tree, etc.?

ECE/CS 250

9
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

The C Programming Language

•  No virtual machine
!  No dynamic type checking, array bounds, garbage collection, etc.
!  Compile source file directly to machine

•  Closer to hardware
!  Easier to make mistakes
!  Can often result in faster code " training wheels slow you down

•  Generally used for ‘systems programming’
!  Operating systems, embedded systems, database implementation
!  C++ is object-oriented version of C (C is a strict subset of C++)

ECE/CS 250

10
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Learning How to Program in C

•  You need to learn some C
•  I’ll present some slides next, but nobody has ever learned

programming by looking at slides or a book
!  You learn programming by programming!

•  Goals of these slides:
!  Give you the big picture of how C differs from Java
!  Give you some important pointers to get you started

•  Very useful resources
!  Kernighan & Richie book The C Programming Language
!  MIT open course Practical Programming in C (linked off webpage)
!  Prof. Drew Hilton’s video tutorials (linked off webpage)

ECE/CS 250

11
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Programming on Linux Machines

•  Remote Access
!  We will use Duke OIT Linux machines for portions of this course.

Read this document about remote access to these machines.
»  http://people.duke.edu/~bcl15/teachdir/ece250_fall15/

remoteaccess.pdf

•  Linux Tutorial
!  You should also go through this short tutorial on Linux.

»  http://www.cs.duke.edu/~alvy/courses/unixtut

ECE/CS 250

12
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Creating a C source file
•  We are not using a development environment (IDE)
•  You will create programs starting with an empty file!
•  Files should use .c file extension (e.g., hello.c)
•  On a linux machine, edit files with nedit (or emacs or …)

ECE/CS 250

13
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

The nedit window

•  nedit is a simple point & click editor
!  with ctrl-c, ctrl-x, ctrl-v, etc. short cuts

•  Feel free to use any text editor (gvim, emacs, etc.)

ECE/CS 250

14
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Hello World

•  Canonical beginner program
!  Prints out “Hello …”

•  nedit provides syntax highlighting

ECE/CS 250

15
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Compiling the Program

•  Use the gcc (or g++) compiler to turn .c file into executable file
•  gcc –o <outputname> <source file name>
•  gcc –o hello hello.c (you must be in same directory as hello.c)
•  If no –o option (i.e., gcc hello.c), then default output name is a.out

ECE/CS 250

16
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Running the Program

•  Type the program name on the command line
!  ./ before “hello” means look in current directory for hello program

ECE/CS 250

17
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Debugging (where most time is spent)

•  OK option #1: “printf debugging”
!  Just print info at different points in the program
!  Not the most efficient approach, but often good enough

•  Much better option #2: use a debugger
!  gdb (GNU debugger)
!  Run with: gdb <executable filename>
!  If you get good at using a debugger it is easier/better than printf

debugging…
!  Good for stopping at set points in program, inspecting variable

values.

ECE/CS 250

18
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Variables, operators, expressions – just like Java

Same as Java!

•  Variables types
!  Data types: int, float, double, char, void
!  Signed and unsigned int
!  char, short, int, long, long long can all be integer types

»  These specify how many bits to represent an integer

•  Operators
!  Mathematical +, -, *, /, %,
!  Logical !, &&, ||, ==, !=, <, >, <=, >=
!  Bitwise &, |, ~, ^ , <<, >> (we’ll get to what these do later)

•  Expressions: var1 = var2 + var3;

ECE/CS 250

19
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Arrays – same as Java

Same as Java (for now…)

•  char buf[256];
•  int grid[256][512]; /* two dimensional array */
•  float scores[4196];
•  double speed[100];

for (i = 0; i< 25; i++)
 buf[i] = ‘A’+i; /* what does this do? */

ECE/CS 250

20
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Strings – not quite like Java

•  Strings
!  char str1[256] = “hi”;
!  str1[0] = ‘h’, str1[1] = ‘i’,str1[2] = 0;
!  0 is value of NULL character ‘\0’, identifies end of string

•  What is C code to compute string length?
int len=0;
while (str1[len] != 0){
 len++;
}

•  Length does not include the NULL character
•  C has built-in string operations

!  #include <string.h> // includes a library with string operations
!  strlen(str1);

ECE/CS 250

21
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Structures

•  Structures are sort of like Java objects
!  They have member variables
!  But they do NOT have methods!

•  Structure definition with struct keyword

struct student_record {
 int id;
 float grade;

} rec1, rec2;

•  Declare a variable of the structure type with struct keyword
struct student_record onerec;

•  Access the structure member fields with ‘.’ structvar.member
onerec.id = 12;
onerec.grade = 79.3;

ECE/CS 250

22
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Array of Structures

#include <stdio.h>
struct student_record {

 int id;
 float grade;

};

struct student_record myroster[100]; /* declare array of structs */
int main()
{

 myroster[23].id = 99;
 myroster[23].grade = 88.5;

}

ECE/CS 250

23
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

C Allows Type Conversion with Casts

•  Use type casting to convert between types
!  variable1 = (new type) variable2;
!  Be careful with order of operations – cast often takes precedence
!  Example

 main() {
 float x;
 int i;
 x = 3.6;

 i = (int) x; // i is the integer cast of x
 printf(“x=%f, i=%d”, x, i)

 }
 result: x=3.600000, i=3

ECE/CS 250

24
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Variable Scope: Global Variables

•  Global variables are accessible from any function
•  Declared outside main()

#include <stdio.h>
int X = 0;
float Y = 0.0;
void setX() { X = 78; }
int main()
{
 X = 23;
 Y =0.31234;
 setX();
 // what is the value of X here?
}

•  What if we had “int X = 23;” in main()?

ECE/CS 250

25
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Control Flow – just like Java

Same as Java!
•  Conditionals

if (a < b) { … } else {…}
switch (a) {

 case 0: s0; break;
 case 1: s1; break;
 case 2: s2; break;
 default: break;

}

•  Loops
for (i = 0; i < max; i++) { ... }
while (i < max) {…}

ECE/CS 250

26
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Functions – mostly like Java

•  C has functions, just like Java
!  But these are not methods! (not attached to objects)

•  Must be declared before use
int div2(int x, int y); /* declaration here */
main() {

 int a;
 a = div2(10,2);

}
int div2(int x, int y) { /* implementation here */

 return (x/y);
}

•  Or put functions at top of file (doesn’t always work)

ECE/CS 250

27
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Back to our first program

•  #include <stdio.h> defines input/output functions in C
standard library (just like you have libraries in Java)

•  printf(args) writes to terminal

ECE/CS 250

28
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Input/Output (I/O)

•  Read/Write to/from the terminal
!  Standard input, standard output (defaults are terminal)

•  Character I/O
!  putchar(), getchar()

•  Formatted I/O
!  printf(), scanf()

ECE/CS 250

29
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Character I/O

#include <stdio.h> /* include the standard I/O library function defs */
int main()
{
 char c;
 while ((c = getchar()) != EOF) { /* read characters until end of file */
 if (c == ‘e’)
 c = ‘-’;

 putchar(c);
 }
 return 0;
}

•  EOF is End Of File (type ^d)

ECE/CS 250

30
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Formatted I/O
#include <stdio.h>
int main()
{
 int a = 23;
 float f =0.31234;
 char str1[] = “satisfied?”;
 /* some code here… */
 printf(“The variable values are %d, %f , %s\n”, a, f, str1);
 scanf(“%d %f”, &a, &f); /* we’ll come back to the & later */
 scanf(“%s”, str1);
 printf(“The variable values are now %d, %f , %s\n”,a,f,str1);
}
•  printf(“format string”, v1,v2,…);

!  \n is newline character

•  scanf(“format string”,…);
!  Returns number of matching items or EOF if at end-of-file

ECE/CS 250

printf() = print formatted
scanf() = scan (read) formatted

31
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Example: Reading Input in a Loop

#include <stdio.h>
int main()
{
 int an_int = 0;
 while(scanf("%d",&an_int) != EOF) {
 printf("The value is %d\n",an_int);
 }
}
•  This reads integers from the terminal until the user types ^d (ctrl-d)

!  Can use a.out < file.in

•  WARNING THIS IS NOT CLEAN CODE!!!
!  If the user makes a typo and enters a non-integer it can loop indefinitely!!!

•  How to stop a program that is in an infinite loop on Linux?
•  Type ^c (ctrl-c) It kills the currently executing program.
•  Type “man scanf” on a linux machine and you can read a lot about scanf

ECE/CS 250

32
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Header Files, Separate Compilation, Libraries

•  C pre-processor provides useful features
!  #include filename just inserts that file (like #include <stdio.h>)
!  #define MYFOO 8, replaces MYFOO with 8 in entire program

»  Good for constants
»  #define MAX_STUDENTS 100 (functionally equivalent to const int)

•  Separate Compilation
!  Many source files (e.g., main.c, students.c, instructors.c, deans.c)
!  gcc –o prog main.c students.c instructors.c deans.c
!  Produces one executable program from multiple source files

•  Libraries: Collection of common functions (some provided, you can build
your own)

»  We’ve already seen stdio.h for I/O
»  libc has I/O, strings, etc.
»  libm has math functions (pow, exp, etc.)
»  gcc –o prog file.c –lm (says use math library)
»  You can read more about this elsewhere

ECE/CS 250

33
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Command Line Arguments

•  Parameters to main (int argc, char *argv[])
!  argc = number of arguments (0 to argc-1)
!  argv is array of strings
!  argv[0] = program name

•  Example: myProgram ben 250
!  argc=3
!  argv[0] = “myProgram”, argv[1]=“ben”, argv[2]=“250”

main(int argc, char* argv[]) {
 int i;
 printf("%d arguments\n", argc);
 for (i=0; i< argc; i++)
 printf("argument %d: %s\n", i, argv[i]);
}

ECE/CS 250

34
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

The Big Differences Between C and Java

1) Java is object-oriented, while C is not
2) Memory management

 All variables live in memory (much more on this later!)
•  Java: the virtual machine worries about where the

variables “live” and how to allocate memory for them
•  C: the programmer does all of this

Everything else is approximately the same!
 Yes, there are differences, but they’re minor

Let’s delve into memory management now …

ECE/CS 250

35
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Reference vs. Pointer

Java
!  “The value of a reference type variable, in contrast to that of a

primitive type, is a reference to (an address of) the value or set of
values represented by the variable”

 http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html

!  Cannot manipulate value of reference

C
!  Pointer is variable that contains location of another variable
!  Pointer is memory location that contains address of another

memory location
!  Can manipulate value of pointer [insert evil cackle here]

ECE/CS 250

36
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Pointers

•  Declaration of pointer variables (yes, pointers are vars!)
!  int* x_ptr; // int* is a type – it’s a pointer to an int
!  char* c_ptr; // char* is not the same type as int*
!  void* ptr; // don’t ask ☺

•  How do we get the location (address) of a variable?
1.  Use the & ‘address of’ operator

»  x_ptr = &intvar;
2.  From another pointer (yes, we can do arithmetic on them)

»  x_ptr = y_ptr + 18;
3.  Return value from call to memory allocator malloc()

»  x_ptr = (int*) malloc(sizeof(int));

•  Much more about addresses and pointers later, after we
learn more about memory

ECE/CS 250

37
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Pointers

•  De-reference using *ptr to get what is pointed at

ECE/CS 250

statement x x_ptr
1 int x; ?? ??
2 int *x_ptr; ?? ??
3 x = 2 2 ??
4 x_ptr = &x; 2 &x
5 *x_ptr = 68;
6 x_ptr = 200;

38
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Pointers

•  De-reference using *ptr to get what is pointed at

ECE/CS 250

statement x x_ptr
1 int x; ?? ??
2 int *x_ptr; ?? ??
3 x = 2 2 ??
4 x_ptr = &x; 2 &x
5 *x_ptr = 68; 68 &x
6 x_ptr = 200; 68 200
7 *x_ptr = 42 68 200

•  Be careful with assignment to a pointer variable
!  You can make it point anywhere…can be very bad
!  You will, this semester, likely experience a “segmentation fault”
!  What is 200?

39
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Pass by Value vs. Pass by Reference

void swap (int x, int y){
 int temp = x;
 x = y;
 y = temp;
}
main() {
 int a = 3;
 int b = 4;
 swap(a, b);
 printf(“a = %d, b= %d
\n”, a, b);
}

void swap (int *x, int
*y){
 int temp = *x;
 *x = *y;
 *y = temp;
}
main() {
 int a = 3;
 int b = 4;
 swap(&a, &b);
 printf(“a = %d, b= %d
\n”, a, b);
}

ECE/CS 250

40
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

C Memory Allocation

•  How do you allocate an object in Java?
•  What do you do when you are finished with an object?
•  Garbage collection

!  Counts references to objects, when refs== 0 can reuse
•  C does not have garbage collection

!  Must explicitly manage memory

•  void* malloc(nbytes)
!  Obtain storage for your data (like new in Java)
!  Often use sizeof(type) built-in returns bytes needed for type
!  Cast return value into appropriate type (int) malloc(sizeof(int));

•  free(ptr)
!  Return the storage when you are finished (no Java equivalent)
!  ptr must be a value previously returned from malloc

ECE/CS 250

41
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Linked List

#include <stdio.h>
#include <stdlib.h>
struct entry {
 int id;
 struct entry* next;
};
main()
{
 struct entry *head, *ptr;
 head=(struct entry*)malloc(sizeof(struct entry));
 head->id = 66;
 head->next = NULL;

 ptr = (struct entry*)malloc(sizeof(struct entry));
 ptr->id = 23;
 ptr->next = NULL;

 head->next = ptr;

 printf("head id: %d, next id: %d\n",

 head->id, head->next->id);

 ptr = head;
 head = ptr->next;

 printf("head id: %d, next id: %d\n",

 head->id, ptr->id);

 free(head);
 free(ptr);
}

ECE/CS 250

42
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Summary

•  C Language is lower level than Java
•  Many things are similar

!  Data types
!  Expressions
!  Control flow

•  Two very important differences
!  No objects!
!  Explicit memory management

•  Up Next:
!  So what exactly are those chars, ints, floats?
!  And what exactly is an address?

ECE/CS 250

43
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth

Resources

•  MIT Open Course
•  Video snippets by Prof. Drew Hilton (Duke ECE/CS)

!  Doesn’t work with Firefox (use Safari or Chrome)

ECE/CS 250

44
© Daniel J. Sorin
From Hilton, Lebeck, Lee, Roth ECE/CS 250

Outline

•  Previously:
!  Computer is machine that does what we tell it to do

•  Next:
!  How do we tell computers what to do?

»  First a quick intro to C programming

!  How do we represent data?
!  What is memory, and what are these so-called addresses?

