
ECE 250 / CPS 250 
Computer Architecture 

 
From C to Binary 

Benjamin Lee 
Slides based on those from  

Andrew Hilton (Duke), Alvy Lebeck (Duke) 
Benjamin Lee (Duke), and Amir Roth (Penn) 



2 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Outline 

•  Previously: 
•  Computer is machine that does what we tell it to do 

•  Next: 
•  How do we tell computers what to do? 
•  How do we represent data objects in binary? 
•  How do we represent data locations in binary? 



3 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Representing High Level Things in Binary 

•  Computers represent everything in binary 
•  Instructions are specified in binary 
•  Instructions must be able to describe 

•  Operation types (add, subtract, shift, etc.) 
•  Data objects (integers, decimals, characters, etc.) 
•  Memory locations 

•  Example: 
int x, y;               // Where are x and y?  How to represent an int? 
bool decision;      // How do we represent a bool?  Where is it? 
y = x + 7;          // How do we specify “add”?  How to represent 7? 
decision=(y>18);  //  Etc. 
 



4 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Representing Operation Types 

•  How do we tell computer to add?  Shift?  Read from 
memory?  Etc. 

•  Arbitrarily!   ☺ 
•  Each Instruction Set Architecture (ISA) has its own binary 

encodings for each operation type 
•  E.g., in MIPS: 

•  Integer add is: 00000 010000 
•  Read from memory (load) is: 010011 
•  Etc. 



5 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Representing Data Types 

•  How do we specify an integer?  A character?  A floating 
point number?  A bool?  Etc. 

•  Same as before: binary! 
•  Key Idea: the same 32 bits might mean one thing if 

interpreted as an integer but another thing if interpreted 
as a floating point number 



6 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Basic Data Types 
Bit (bool):  0, 1 
 
Bit String:  sequence of bits of a particular length 
       4 bits is a nibble 
       8 bits is a byte 
     16 bits is a half-word 
     32 bits is a word 
     64 bits is a double-word 
   128 bits is a quad-word 
 
Integers (int, long): 
      “2's Complement” (32-bit or 64-bit representation) 
 
Floating Point (float, double): 
      Single Precision (32-bit representation) 
      Double Precision (64-bit representation) 
      Extended (Quad) Precision (128-bit representation) 
 
Character (char): 
      ASCII  7-bit code 



7 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Issues for Binary Representation of Numbers 

•  There are many ways to represent numbers in binary 
•  Binary representations are encodings " many encodings possible 
•  What are the issues that we must address? 

•  Issue #1: Complexity of arithmetic operations 
•  Issue #2: Negative numbers 
•  Issue #3: Maximum representable number 
•  Choose representation that makes these issues easy for 

machine, even if it’s not easy for humans (i.e., ECE/CS 
250 students) 

•  Why?  Machine has to do all the work! 



8 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Sign Magnitude 

•  Use leftmost bit for + (0) or – (1): 
•  6-bit example (1 sign bit + 5 magnitude bits): 
•    +17 = 010001 
•    -17 =  110001 
•  Pros:  

•  Conceptually simple 
•  Easy to convert 

•  Cons: 
•  Harder to compute (add, subtract, etc) with 
•  Positive and negative 0:  000000  and  100000  

ECE/CS 250 



9 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

1’s Complement Representation for Integers 

•  Use largest positive binary numbers 
to represent negative numbers 

•  To negate a number,  
 invert (“not”) each bit: 
 0 " 1 
 1 " 0 

•  Cons: 
•  Still two 0s (yuck) 
•  Still hard to compute with 

0000  0 
0001  1 
0010  2 
0011  3 
0100  4 
0101  5 
0110  6 
0111  7 
1000  -7 
1001  -6 
1010  -5 
1011  -4 
1100  -3 
1101  -2 
1110  -1 
1111  -0 



10 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

2’s Complement Integers 

•  Use large positives to represent 
negatives  

•  (-x) = 2n - x 

•  This is 1’s complement + 1 
•  (-x) = 2n - 1 - x + 1 

•  So, just invert bits and add 1 

6-bit examples: 
0101102 = 2210 ; 1010102 = -2210 
110 = 0000012; -110 = 1111112 

010 = 0000002; -010 = 0000002  " good! 

0000  0 
0001  1 
0010  2 
0011  3 
0100  4 
0101  5 
0110  6 
0111  7 
1000  -8 
1001  -7 
1010  -6 
1011  -5 
1100  -4 
1101  -3 
1110  -2 
1111  -1 



11 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Pros and Cons of 2’s Complement 

•  Advantages: 
•  Only one representation for 0 (unlike 1’s comp): 0 = 000000 
•  Addition algorithm is much easier than with sign and magnitude 

•  Independent of sign bits 

•  Disadvantage: 
•  One more negative number than positive 
•  Example: 6-bit 2’s complement number 
 1000002 = -3210;  but 3210 could not be represented 

 
 

All modern computers use 2’s complement for integers  



12 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

•  Most computers today support 32-bit (int) or 64-bit integers 
•  Specify 64-bit using gcc C compiler with long long 

•  To extend precision, use sign bit extension 
•  Integer precision is number of bits used to represent a number 

 

Examples 

1410 =  0011102 in 6-bit representation. 

1410 =  0000000011102 in 12-bit representation 
 

-1410 = 1100102  in 6-bit representation 

-1410 = 1111111100102  in 12-bit representation.  

  

2’s Complement Precision Extension 



13 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Binary Math : Addition 

•  Suppose we want to add two numbers: 

    00011101 

 +  00101011 

•  How do we do this? 

ECE/CS 250 



14 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Binary Math : Addition 

•  Suppose we want to add two numbers: 

    00011101           695 

 +  00101011         + 232     

•  How do we do this? 
•  Let’s revisit decimal addition 
•  Think about the process as we do it 

ECE/CS 250 



15 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Binary Math : Addition 

•  Suppose we want to add two numbers: 

    00011101           695 

 +  00101011         + 232     
                         7 

•  First add one’s digit 5+2 = 7  

ECE/CS 250 



16 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Binary Math : Addition 

•  Suppose we want to add two numbers: 
                                            1 
    00011101           695 

 +  00101011         + 232     
                        27 

•  First add one’s digit 5+2 = 7  
•  Next add ten’s digit 9+3 = 12  (2 carry a 1)  

ECE/CS 250 



17 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Binary Math : Addition 

•  Suppose we want to add two numbers: 
                                                
    00011101           695 

 +  00101011         + 232     
                       927 

•  First add one’s digit 5+2 = 7  
•  Next add ten’s digit 9+3 = 12  (2 carry a 1)  
•  Last add hundred’s digit 1+6+2 = 9 

ECE/CS 250 



18 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Binary Math : Addition 

•  Suppose we want to add two numbers: 
                                                   
    00011101  

 +  00101011 
            

•  Back to the binary: 
•   First add 1’s digit 1+1 = …? 

ECE/CS 250 



19 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Binary Math : Addition 

•  Suppose we want to add two numbers: 
                    1                                                  
    00011101  

 +  00101011 
           0           

•  Back to the binary: 
•   First add 1’s digit 1+1 = 2 (0 carry a 1) 

ECE/CS 250 



20 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Binary Math : Addition 

•  Suppose we want to add two numbers: 
         11                                                  
    00011101  

 +  00101011 
          00           

•  Back to the binary: 
•   First add 1’s digit 1+1 = 2 (0 carry a 1) 
•     Then 2’s digit: 1+0+1 =2 (0 carry a 1) 
•   You all finish it out…. 

ECE/CS 250 



21 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Binary Math : Addition 

•  Suppose we want to add two numbers: 
     111111                                                  
    00011101   = 29  

 +  00101011   = 43 
    01001000   = 72           

•  Can check our work in decimal 

ECE/CS 250 



22 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Binary Math : Addition 

•  What about this one: 
                                                       
    01011101 

 +  01101011 
     

ECE/CS 250 



23 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Binary Math : Addition 

•  What about this one: 
    1111111                                                      
    01011101   =  93 

 +  01101011   = 107 
    11001000   = -56 

•  But… that can’t be right? 
•  What do you expect for the answer? 
•  What is it in 8-bit signed 2’s complement? 

ECE/CS 250 



24 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Integer Overflow 

•  Answer should be 200 
•  Not representable in 8-bit signed representation 
•  No right answer 

•  Call Integer Overflow 
•  Real problem in programs 

ECE/CS 250 



25 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Subtraction 

•  2’s complement makes subtraction easy: 
•  Remember: A - B = A + (-B) 
•  And:  -B = ~B + 1 
                     # that means flip bits (“not”) 
•  So we just flip the bits and start with carry-in (CI) = 1 
•  Later: No new circuits to subtract (re-use adder hardware!)                                                   

                           1 

  0110101     ->     0110101             

- 1010010          + 0101101 

ECE/CS 250 



26 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

What About Non-integer Numbers? 

•  There are infinitely many real numbers between two 
integers 

•  Many important numbers are real 
•  Speed of light ~= 3x108 
•  Pi = 3.1415… 

•  Fixed number of bits limits range of integers 
•  Can’t represent some important numbers 

•  Humans use Scientific Notation 
•  1.3x104 



27 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Option 1: Fixed point 

•  Represent non-integer in two parts 
•  Integer and fraction parts separated by binary point 
•  Example: 8 bit fixed-point number with 3 fractional bits 
•  (00010.110)2 = 1*21 + 1*2-1 + 1*2-2 = (2.75)10 

•  Pros: 
•  Similar to integer representation, except for binary point 
•  Addition/subtraction just like integers 

•  Cons: 
•  Loss of range and precision 
•  Example: 1 fractional bit gives precision to within 0.5 

ECE/CS 250 



28 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Can we do better? 

•  Think about scientific notation for a second: 
•  For example: 

6.82 * 1023 

•  Real number, but comprised of ints: 
•  6           generally only 1 digit here 
•  82         any number here 
•  10         always 10 (base we work in) 
•  23         can be positive or negative 

•  Can we do something like this in binary? 

ECE/CS 250 



29 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Option 2: Floating Point 

•  How about: 
•   +/- X.YYYYYY * 2+/-N 

•  Big numbers:  large positive N 
•  Small numbers (<1): negative N 
•  Numbers near 0: small N 

•  This is “floating point” : most common way 

ECE/CS 250 



30 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

IEEE single precision floating point 

•  Specific format called IEEE single precision: 
•    +/-  1.YYYYY * 2(N-127) 

•  “float” in Java, C, C++,… 

•  Assume X is always 1 (saves us a bit) 
•  1 sign bit (+ = 0, 1 = -) 
•  8 bit biased exponent (do N-127) 
•  Implicit 1 before binary point   
•  23-bit mantissa (YYYYY) 

ECE/CS 250 



31 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Binary fractions 

•  1.YYYY   has a binary point 
•  Like a decimal point but in binary 
•  After a decimal point, you have  

•  tenths 
•  hundredths 
•  Thousandths 
•  …. 

•  So after a binary point you have… 

ECE/CS 250 



32 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Binary fractions 

•  1.YYYY   has a binary point 
•  Like a decimal point but in binary 
•  After a decimal point, you have  

•  Tenths 
•  Hundredths 
•  Thousandths 
•  …. 

•  So after a binary point you have… 
•  Halves 
•  Quarters 
•  Eighths 
•  …. 

ECE/CS 250 



33 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Floating point example 

•  Binary fraction example: 
•       101.101 =  4 + 1 + ½ + 1/8 = 5.625 
•  For floating point, needs normalization: 
•   1.01101 * 22 
•  Sign is +, which = 0 
•  Exponent = 127 + 2 = 129 = 1000 0001 
•  Mantissa = 1.011 0100 0000 0000 0000 0000 
    

ECE/CS 250 

0 1000 0001 011 0100 0000 0000 0000 0000 
0 22 23 30 31 



34 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Floating Point Representation 

Example: 
What floating-point number is:  
0xC1580000? 



35 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Answer 

What floating-point number is  
   0xC1580000? 
 1100 0001 0101 1000 0000 0000 0000 0000 

1 1000 0010 101 1000 0000 0000 0000 0000  X  = 
0 22 23 30 31 

s E F 

Sign = 1 which is negative 
Exponent = (128+2)-127 = 3 

Mantissa = 1.1011 
-1.1011x23  = -1101.1 = -13.5 



36 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Trick question 

•  How do you represent 0.0? 
•  Why is this a trick question? 

ECE/CS 250 



37 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Trick question 

•  How do you represent 0.0? 
•  Why is this a trick question? 
•  0.0 = 000000000    
•  But need 1.XXXXX representation? 

ECE/CS 250 



38 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Trick question 

•  How do you represent 0.0? 
•  Why is this a trick question? 
•  0.0 = 000000000    
•  But need 1.XXXXX representation? 

•  Exponent = 0000 0000 is denormalized 
•  Implicit 0. instead of 1. in mantissa 
•  Allows 0000….0000 to be 0 
•  Helps with very small numbers near 0 

•  Results in +/- 0 in FP (but they are “equal”) 

ECE/CS 250 



39 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Other Weird FP numbers 

•  Exponent = 1111 1111 also not standard 
•  All 0 mantissa:  +/- ∞ 

1/0 = +∞ 
-1/0 = -∞  

•  Non zero mantissa: Not a Number (NaN) 

sqrt(-42) = NaN 

ECE/CS 250 



40 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Floating Point Representation 

•  Double Precision Floating point: 
 
64-bit representation:  

•  1-bit sign 
•  11-bit (biased) exponent 
•  52-bit fraction (with implicit 1). 

•  “double” in Java, C, C++, …  
 

1 11-bit 52 - bit 
Exp S Mantissa 



41 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

What About Strings? 

•  Many important things stored as strings… 
•  E.g., your name 

•  How should we store strings? 



42 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

ASCII Character  Representation 

000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 007 bel 
010 bs  011 ht  012 nl  013 vt  014 np  015 cr  016 so  017 si  
020 dle 021 dc1 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb 
030 can 031 em  032 sub 033 esc 034 fs  035 gs  036 rs  037 us  
040 sp  041  !  042  "  043  #  044  $  045  %  046  &  047  '  
050  (  051  )  052  *  053  +  054  ,  055  -  056  .  057  /  
060  0  061  1  062  2  063  3  064  4  065  5  066  6  067  7  
070  8  071  9  072  :  073  ;  074  <  075  =  076  >  077  ?  
100  @  101  A  102  B  103  C  104  D  105  E  106  F  107  G  
110  H  111  I  112  J  113  K  114  L  115  M  116  N  117  O  
120  P  121  Q  122  R  123  S  124  T  125  U  126  V  127  W  
130  X  131  Y  132  Z  133  [  134  \  135  ]  136  ^  137  _  
140  `  141  a  142  b  143  c  144  d  145  e  146  f  147  g  
150  h  151  i  250  j  153  k  154  l  155  m  156  n  157  o  
160  p  161  q  162  r  163  s  164  t  165  u  166  v  167  w  
170  x  171  y  172  z  173  {  174  |  175  }  176  ~  177 del 

Oct. Char 

•  Each character represented by 7-bit ASCII code. 
•  Packed into 8-bits 



43 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Outline 

•  Previously: 
•  Computer is machine that does what we tell it to do 

•  Next: 
•  How do we tell computers what to do? 
•  How do we represent data objects in binary? 
•  How do we represent data locations in binary? 



44 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Computer Memory 

•  Where do we put the data (and instructions)? 
•  Registers  [more on these later] 

•  In the processor core 
•  Compute directly on them 
•  Relatively few of them (~16-64) 

•  Memory 



45 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Computer Memory 

•  Where do we put these numbers? 
•  Registers  [more on these later] 

•  In the processor core 
•  Compute directly on them 
•  Few of them (~16 or 32 registers, each 32-bit or 64-bit) 

•  Memory   [Our focus now] 
•  External to processor core 
•  Load/store values to/from registers 
•  Very large (multiple GB) 



46 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Memory Organization 

•  Memory: billions of locations…how to get the right one? 
•  Each memory location has an address 
•  Processor asks to read or write specific address 

•  Memory, please load address 0x123400 
•  Memory, please write 0xFE into address 0x8765000 

•  Kind of like a giant array 

ECE/CS 250 



47 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Memory Organization 

•  Memory: billions of locations…how to get the right one? 
•  Each memory location has an address 
•  Processor asks to read or write specific address 

•  Memory, please load address 0x123400 
•  Memory, please write 0xFE into address 0x8765000 

•  Kind of like a giant array 
•  Array of what?  

• Bytes? 
• 32-bit ints? 
• 64-bit ints? 

ECE/CS 250 



48 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Memory Organization 

•  Most systems: byte (8-bit) addressed 
 
•  Memory is “array of bytes” 

•  Each address specifies 1 byte 
 

•  Support to load/store 16, 32, 64 bit quantities 
•  Byte ordering varies from system to system 

ECE/CS 250 



49 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

msb  lsb 
3          2          1           0 

little endian byte 0 

0          1          2           3 

big endian byte 0 

Word of the Day: Endianess 

Byte Order 
•  Big Endian: byte 0 is 8 most significant bits IBM 360/370, 

Motorola 68k, MIPS, Sparc, HP PA 

•  Little Endian: byte 0 is 8 least significant bits Intel 80x86, DEC 
Vax, DEC Alpha 

(most significant bit) (least significant bit) 



50 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Memory Layout 

Stack 

Data 

Text 
Reserved 0 

2n-1 

Typical 
Address 

Space 
Heap 

•  Memory is array of bytes, but there 
are conventions as to what goes 
where in this array 

•  Text: instructions (the program to 
execute) 

•  Data: global variables 
•  Stack: local variables and other 

per-function state; starts at top & 
grows downward 

•  Heap: dynamically allocated 
variables; grows upward 

•  What if stack and heap overlap???? 



51 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Memory Layout: Example 
int anumber = 3; 
 
int factorial (int x) { 
  if (x == 0) { 
    return 1; 
  } 
  else { 
    return x * factorial (x – 1); 
  } 
} 
 
int main (void) { 
  int z = factorial (anumber); 
  printf(“%d\n”, z); 
  return 0; 
} 
  

Stack 

Data 

Text 
Reserved 0 

2n-1 

Typical 
Address 

Space 
Heap 



52 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do a little Java… 

public class Example { 
  public static void swap (int x, int y) { 
    int temp = x; 
    x = y; 
    y = temp; 
  } 
  public static void main (String[] args) { 
    int a = 42;  
    int b = 100; 
    swap (a, b); 
    System.out.println(“a =“ + a + “ b = “ + b); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 



53 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do a little Java… 

public class Example { 
  public static void swap (int x, int y) { 
    int temp = x; 
    x = y; 
    y = temp; 
  } 
  public static void main (String[] args) { 
    int a = 42;  
    int b = 100; 
    swap (a, b); 
    System.out.println(“a =“ + a + “ b = “ + b); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 

a        42 
b       100 

main 

Stack 



54 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do a little Java… 

public class Example { 
  public static void swap (int x, int y) { 
    int temp = x; 
    x = y; 
    y = temp; 
  } 
  public static void main (String[] args) { 
    int a = 42;  
    int b = 100; 
    swap (a, b); 
    System.out.println(“a =“ + a + “ b = “ + b); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 

a        42 
b       100 

main 

x        42 
y       100 
temp    ??? 
RA       c0 

swap 

c0 

Stack 



55 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do a little Java… 

public class Example { 
  public static void swap (int x, int y) { 
    int temp = x; 
    x = y; 
    y = temp; 
  } 
  public static void main (String[] args) { 
    int a = 42;  
    int b = 100; 
    swap (a, b); 
    System.out.println(“a =“ + a + “ b = “ + b); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 

a        42 
b       100 

main 

x        42 
y       100 
temp     42 
RA       c0 

swap 

c0 

Stack 



56 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do a little Java… 

public class Example { 
  public static void swap (int x, int y) { 
    int temp = x; 
    x = y; 
    y = temp; 
  } 
  public static void main (String[] args) { 
    int a = 42;  
    int b = 100; 
    swap (a, b); 
    System.out.println(“a =“ + a + “ b = “ + b); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 

a        42 
b       100 

main 

x       100 
y       100 
temp     42 
RA       c0 

swap 

c0 

Stack 



57 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do a little Java… 

public class Example { 
  public static void swap (int x, int y) { 
    int temp = x; 
    x = y; 
    y = temp; 
  } 
  public static void main (String[] args) { 
    int a = 42;  
    int b = 100; 
    swap (a, b); 
    System.out.println(“a =“ + a + “ b = “ + b); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 

a        42 
b       100 

main 

x       100 
y        42 
temp     42 
RA       c0 

swap 

c0 

Stack 



58 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do a little Java… 

public class Example { 
  public static void swap (int x, int y) { 
    int temp = x; 
    x = y; 
    y = temp; 
  } 
  public static void main (String[] args) { 
    int a = 42;  
    int b = 100; 
    swap (a, b); 
    System.out.println(“a =“ + a + “ b = “ + b); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 

a        42 
b       100 

main 

Stack 



59 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do some different Java… 

public class Ex2 { 
  int data; 
  public Ex2 (int d) { data = d; } 
  public static void swap (Ex2 x, Ex2 y) { 
    int temp = x.data; 
    x.data = y.data; 
    y.data = temp; 
  } 
  public static void main (String[] args) { 
    Example a = new Example (42);  
    Example b = new Example (100); 
    swap (a, b); 
    System.out.println(“a =“ + a.data + 
                       “ b = “ + b.data); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 

a ??    
b ?? 
      

main 

Stack 



60 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do some different Java… 

public class Ex2 { 
  int data; 
  public Ex2 (int d) { data = d; } 
  public static void swap (Ex2 x, Ex2 y) { 
    int temp = x.data; 
    x.data = y.data; 
    y.data = temp; 
  } 
  public static void main (String[] args) { 
    Example a = new Example (42);  
    Example b = new Example (100); 
    swap (a, b); 
    System.out.println(“a =“ + a.data + 
                       “ b = “ + b.data); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 

a       
b ?? 
      

main 

Ex2 
data   42 

Stack Heap 



61 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do some different Java… 

public class Ex2 { 
  int data; 
  public Ex2 (int d) { data = d; } 
  public static void swap (Ex2 x, Ex2 y) { 
    int temp = x.data; 
    x.data = y.data; 
    y.data = temp; 
  } 
  public static void main (String[] args) { 
    Example a = new Example (42);  
    Example b = new Example (100); 
    swap (a, b); 
    System.out.println(“a =“ + a.data + 
                       “ b = “ + b.data); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 

a       
b        
      

main 

Ex2 
data   42 

Ex2 
data  100  

Stack Heap 



62 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do some different Java… 

public class Ex2 { 
  int data; 
  public Ex2 (int d) { data = d; } 
  public static void swap (Ex2 x, Ex2 y) { 
    int temp = x.data; 
    x.data = y.data; 
    y.data = temp; 
  } 
  public static void main (String[] args) { 
    Example a = new Example (42);  
    Example b = new Example (100); 
    swap (a, b); 
    System.out.println(“a =“ + a.data + 
                       “ b = “ + b.data); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 

a       
b        
      

main 

Ex2 
data   42 

Ex2 
data  100  

x       
y      
temp  ?? 
RA    c0        
      

swap 

c0 

Stack Heap 



63 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do some different Java… 
public class Ex2 { 
  int data; 
  public Ex2 (int d) { data = d; } 
  public static void swap (Ex2 x, Ex2 y) { 
    int temp = x.data; 
    x.data = y.data; 
    y.data = temp; 
  } 
  public static void main (String[] args) { 
    Example a = new Example (42);  
    Example b = new Example (100); 
    swap (a, b); 
    System.out.println(“a =“ + a.data + 
                       “ b = “ + b.data); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 

a       
b        
      

main 

Ex2 
data   42 

Ex2 
data  100  

x       
y      
temp  42 
RA    c0        
      

swap 

c0 

Stack Heap 



64 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do some different Java… 

public class Ex2 { 
  int data; 
  public Ex2 (int d) { data = d; } 
  public static void swap (Ex2 x, Ex2 y) { 
    int temp = x.data; 
    x.data = y.data; 
    y.data = temp; 
  } 
  public static void main (String[] args) { 
    Example a = new Example (42);  
    Example b = new Example (100); 
    swap (a, b); 
    System.out.println(“a =“ + a.data + 
                       “ b = “ + b.data); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 

a       
b        
      

main 

Ex2 
data  100 

Ex2 
data  100  

x       
y      
temp  42 
RA    c0        
      

swap 

c0 

Stack Heap 



65 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do some different Java… 

public class Ex2 { 
  int data; 
  public Ex2 (int d) { data = d; } 
  public static void swap (Ex2 x, Ex2 y) { 
    int temp = x.data; 
    x.data = y.data; 
    y.data = temp; 
  } 
  public static void main (String[] args) { 
    Example a = new Example (42);  
    Example b = new Example (100); 
    swap (a, b); 
    System.out.println(“a =“ + a.data + 
                       “ b = “ + b.data); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 

a       
b        
      

main 

Ex2 
data  100 

Ex2 
data   42 

x       
y      
temp  42 
RA    c0        
      

swap 

c0 

Stack Heap 



66 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Let’s do some different Java… 

public class Ex2 { 
  int data; 
  public Ex2 (int d) { data = d; } 
  public static void swap (Ex2 x, Ex2 y) { 
    int temp = x.data; 
    x.data = y.data; 
    y.data = temp; 
  } 
  public static void main (String[] args) { 
    Example a = new Example (42);  
    Example b = new Example (100); 
    swap (a, b); 
    System.out.println(“a =“ + a.data + 
                       “ b = “ + b.data); 
  }  
}    

• What does this print?  Why? 

ECE/CS 250 

a       
b        
      

main 

Ex2 
data  100 

Ex2 
data   42 

Stack Heap 



67 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

References and Pointers 

•  Java has references: 
•  Any variable of object type is a reference 
•  Point at objects (which are all in the heap) 

•  Under the hood: is the memory address of the object 
•  Cannot explicitly manipulate them (e.g., add 4) 

ECE/CS 250 



68 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

References and Pointers (review) 

•  Java has references: 
•  Any variable of object type is a reference 
•  Point at objects (which are all in the heap) 

•  Under the hood: is the memory address of the object 
•  Cannot explicitly manipulate them (e.g., add 4) 

•  Some languages (C,C++,assembly) have explicit pointers: 
•  Hold the memory address of something 
•  Can explicitly compute on them 
•  Can de-reference the pointer (*ptr) to get thing-pointed-to 
•  Can take the address-of (&x) to get something’s address 
•  Can do very unsafe things, shoot yourself in the foot 

ECE/CS 250 



69 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Pointers 

•  “address of” operator & 
•  don’t confuse with bitwise AND operator (&&) 
 
Given 
 int x; int* p;  // p points to an int 
 p = &x; 

Then  
 *p = 2;  and x = 2; produce the same result 

   Note: p is a pointer, *p is an int 
 

•  What happens when stating p = 2? 

0x26cf0 

x 0x26cf0 

p 0x26d00 
... On 32-bit machine, p is 32 bits 

On 64-bit machine, p is 64 bits 



70 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Back to Arrays 

•  Java: 
int [] x = new int [nElems]; 
 

•  C: 
int data[42]; //if size is known constant 
int* data = (int*) malloc (nElem * sizeof(int)); 
 

•  sizeof tells how many bytes something takes 
•  malloc takes number of bytes 
•  malloc returns pointer to first allocated byte 



71 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

•  x is a pointer, what is x+33? 
•  A pointer, but where? 

•  what does calculation depend on? 
 

•  Result of adding an int to a 
pointer depends on size of 
object pointed to 

•  One reason why we tell 
compiler what type of pointer 
we have, even though all 
pointers are really the same 
thing (and same size) 

 

Arrays, Pointers, and Address Calculation 

0 1 33 199 

0 1 99 32 33 98 
a[33] is the same as *(a+33) 
if a is 0x00a0,  
then a+1 is 0x00a4, a+2 is 0x00a8 

(decimal 160, 164, 168) 

double* d =  
(double*) malloc(200*sizeof(double)); 

*(d+33) is the same as d[33] 
if d is 0x00b0,  
then d+1 is 0x00b8, d+2 is 0x00c0 

(decimal 176, 184, 192) 

int* a=  
(int*)malloc(100*sizeof(int)); 



72 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

0 1 43 15 16 42 

More Pointer Arithmetic 

•  address one past the end of an array 
is ok for pointer comparison only 

•  what’s at  *(begin+44)? 

•  what does begin++ mean? 

•  how are pointers compared using < 
and using == ? 

•  what is value of end - begin? 

char* a = new char[44]; 
char* begin = a; 
char* end = a + 44; 
 
while (begin < end) 
{ 
   *begin = ‘z’; 
   begin++; 
} 



73 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

More Pointers & Arrays 

int* a = new int[100]; 

0 1 99 32 33 98 

a is a pointer 
*a is an int 
a[0] is an int (same as *a)  
a[1] is an int 
a+1 is a pointer 
a+32 is a pointer 
*(a+1) is an int (same as a[1]) 
*(a+99) is an int 
*(a+100) is trouble 



74 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Array Example 
#include <stdio.h> 
 
main() 
{ 
  int* a = (int*)malloc (100 * sizeof(int)); 
  int* p = a; 
  int k; 
 
  for (k = 0; k < 100; k++) 
    { 
      *p = k; 
      p++; 
    } 
  printf(“entry 3 = %d\n”, a[3]) 
} 



75 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Strings as Arrays 

•  A string is an array of characters with ‘\0’ at the end 
•   Each element is one byte, ASCII code 
•  ‘\0’ is null (ASCII code 0) 

0 1 43 15 
s t ‘\0’ r i g 

16 42 



76 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Strlen() 

•  strlen() returns the number of characters in a string 
•  same as number elements in char array? 

  int strlen(char * s) 
  // pre: ‘\0’ terminated 
  // post: returns # chars 
  { 
      int count=0; 
      while (*s++) 
   count++; 

      return count; 
  } 



77 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Vector Class vs. Arrays 

•  Vector Class 
•  insulates programmers  
•  array bounds checking 
•  automagically growing/shrinking when more items are added/deleted 

•  How are Vectors implemented? 
•  Arrays, re-allocated as needed 

•  Arrays can be more efficient  



78 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth 

Memory Manager (Heap Manager) 

•  malloc() and free() 
•  Library routines that handle 

memory management 
(allocation, deallocation) for 
heap 

•  Java has garbage collection to 
reclaim memory of 
unreferenced objects 

•  C must use free, else memory 
leak 

ECE/CS 250 

Available Memory 

Allocated Memory 
(part of this is 
 data structures 
 for managing 
 memory 

Memory 

 
Text 

Stack 



79 
©  Daniel J. Sorin 
from Hilton, Lebeck, Lee, Roth ECE/CS 250 

Summary: From C to Binary 

•  Everything must be represented in binary! 
•  Computer memory is linear array of bytes 
•  Pointer is memory location that contains address of 

another memory location 
•  We’ll visit these topics again throughout semester 


