ECE 250/ CPS 250
Computer Architecture

From C to Binary

Benjamin Lee
Slides based on those from

Andrew Hilton (Duke), Alvy Lebeck (Duke)
Benjamin Lee (Duke), and Amir Roth (Penn)

Outline

e Previously:
e Computer is machine that does what we tell it to do

o Next:
 How do we tell computers what to do?

e How do we represent data objects in binary?
e How do we represent data locations in binary?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

Representing High Level Things in Binary

e Computers represent everything in binary
e Instructions are specified in binary

e Instructions must be able to describe

o Operation types (add, subtract, shift, etc.)
e Data objects (integers, decimals, characters, etc.)
e Memory locations

e Example:
intx, y; // Where are x and y? How to represent an int?
bool decision; // How do we represent a bool? Where is it?
y=X+7; // How do we specify “add”? How to represent 7?

decision=(y>18); // Etc.

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

Representing Operation Types

e How do we tell computer to add? Shift? Read from
memory? Etc.

e Arbitrarily! ©
e Each Instruction Set Architecture (ISA) has its own binary
encodings for each operation type
e E.g., in MIPS:
e Integer add is: 00000 010000
e Read from memory (load) is: 010011
o Etc.

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

Representing Data Types

e How do we specify an integer? A character? A floating
point number? A bool? Etc.

e Same as before: binary!

e Key Idea: the same 32 bits might mean one thing if
interpreted as an integer but another thing if interpreted
as a floating point number

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

Basic Data Types
Bit (bool): 0, 1

Bit String: sequence of bits of a particular length
4 bits is a nibble
8 bits is a byte
16 bits is a half-word
32 bits is a word
64 bits is a double-word
128 bits is a quad-word

Integers (int, long):
“2's Complement” (32-bit or 64-bit representation)

Floating Point (float, double):
Single Precision (32-bit representation)
Double Precision (64-bit representation)
Extended (Quad) Precision (128-bit representation)

Character (char):
ASCII 7-bit code

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

Issues for Binary Representation of Numbers

e There are many ways to represent numbers in binary
e Binary representations are encodings - many encodings possible
e What are the issues that we must address?

o Issue #1: Complexity of arithmetic operations
o Issue #2: Negative numbers
e Issue #3: Maximum representable number

o Choose representation that makes these issues easy for
machine, even if it's not easy for humans (i.e., ECE/CS
250 students)

e Why? Machine has to do all the work!

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

Sign Magnitude

e Use leftmost bit for + (0) or — (1):
e 6-bit example (1 sign bit + 5 magnitude bits):
e +17 =010001
e -17 = 110001

e Pros:
e Conceptually simple
e Easy to convert

e Cons:

e Harder to compute (add, subtract, etc) with
e Positive and negative 0: 000000 and 100000

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

1’s Complement Representation for Integers

e Use largest positive binary numbers 0000 0
to represent negative numbers ot
e To negate a number, 0011 3
. . . 0100 4
invert ("not”) each bit: 0101 5
0->1 0110 6
0111 7
1>0 1000 -7
: 1001 -6

o
Cons_. 1010 -5
e Still two Os (yuck) 1011 -4
e Still hard to compute with 1100 -3
1101 -2
1110 -1
1111 -0

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

2’s Complement Integers

e Use large positives to represent
negatives

o (-X) =2"-Xx

e This is 1's complement + 1

o (-x)=2"-1-x+1

e S0, just invert bits and add 1

6-bit examples:

010110, = 22,,; 101010, = -22,,

1,, = 000001,; -1,, = 111111,

0,, = 000000,; -0,, = 000000, - good!

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

0000
0001
0010
0011
0100
0101
0110
0111

1000
1001
1010
1011
1100
1101
1110
1111

L bhhbdNbNOoOhwNn 20

10

Pros and Cons of 2’s Complement

e Advantages:
e Only one representation for 0 (unlike 1's comp): 0 = 000000
e Addition algorithm is much easier than with sign and magnitude
e Independent of sign bits

e Disadvantage:
e One more negative number than positive

e Example: 6-bit 2's complement number
100000, = -32,,; but 32,, could not be represented

All modern computers use 2’s complement for integers

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250 11

2’s Complement Precision Extension

e Most computers today support 32-bit (int) or 64-bit integers
e Specify 64-bit using gcc C compiler with long long

e To extend precision, use sign bit extension
e Integer precision is number of bits used to represent a number

Examples
14,,= 001110, in 6-bit representation.
14,,= 000000001110, in 12-bit representation

-14,, = 110010, in 6-bit representation
-14,,= 111111110010, in 12-bit representation.

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

12

Binary Math : Addition

e Suppose we want to add two numbers:

00011101
+ 00101011

e How do we do this?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

13

Binary Math : Addition

e Suppose we want to add two numbers:

00011101 695
+ 00101011 + 232

e How do we do this?
e Let’s revisit decimal addition
e Think about the process as we do it

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

14

Binary Math : Addition

e Suppose we want to add two numbers:

00011101 695
+ 00101011 + 232
]

e First add one’s digit 5+2 = 7

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

15

Binary Math : Addition

e Suppose we want to add two numbers:

1
00011101 0695
+ 00101011 + 232
271

e First add one’s digit 5+2 = 7
e Next add ten’s digit 9+3 = 12 (2 carrya 1)

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

16

Binary Math : Addition

e Suppose we want to add two numbers:

00011101 695
+ 00101011 + 232
9277

e First add one’s digit 5+2 = 7
e Next add ten’s digit 9+3 = 12 (2 carrya 1)
e Last add hundred’s digit 1+6+2 =9

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

17

Binary Math : Addition

e Suppose we want to add two numbers:

00011101
+ 00101011

e Back to the binary:
. First add 1's digit 1+1 = ...?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

18

Binary Math : Addition

e Suppose we want to add two numbers:
1
00011101
+ 00101011
0
e Back to the binary:
o First add 1's digit 1+1 =2 (0O carrya 1)

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

19

Binary Math : Addition

e Suppose we want to add two numbers:
11

00011101
+ 00101011
00
e Back to the binary:
o First add 1's digit 1+1 =2 (0O carrya 1)
e Then 2's digit: 1+0+1 =2 (0 carrya 1)
. You all finish it out....

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

20

Binary Math : Addition

e Suppose we want to add two numbers:

111111
00011101 = 29
+ 00101011 = 43
01001000 = 72

e Can check our work in decimal

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

21

Binary Math : Addition

e \What about this one:

01011101
+ 01101011

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

22

Binary Math : Addition

e \What about this one:

1111111

01011101 = 93
+ 01101011 = 107

11001000 = —-50

e But... that can't be right?

e What do you expect for the answer?
e What is it in 8-bit signed 2's complement?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

23

Integer Overflow

e Answer should be 200
e Not representable in 8-bit signed representation
e No right answer

e Call Integer Overflow
e Real problem in programs

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

24

Subtraction

e 2's complement makes subtraction easy:
e Remember: A-B =A + (-B)
e And: -B=~B+1
A that means flip bits (“not”)
e S0 we just flip the bits and start with carry-in (CI) = 1
e Later: No new circuits to subtract (re-use adder hardware!)

1
0110101 -> 0110101
- 1010010 + 0101101

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

25

What About Non-integer Numbers?

e There are infinitely many real numbers between two
integers
e Many important numbers are real
e Speed of light ~= 3x108
e Pi = 3.1415...

e Fixed number of bits limits range of integers
e Can't represent some important numbers

e Humans use Scientific Notation
e 1.3x10%

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

26

Option 1: Fixed point

e Represent non-integer in two parts
e Integer and fraction parts separated by binary point
e Example: 8 bit fixed-point number with 3 fractional bits
e (00010.110), = 1*¥21 + 1*2°1 + 1%2-2 = (2.75),,

e Pros:
e Similar to integer representation, except for binary point
o Addition/subtraction just like integers

e Cons:
e Loss of range and precision
e Example: 1 fractional bit gives precision to within 0.5

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

27

Can we do better?

e Think about scientific notation for a second:

e For example:

6.82 * 1023
e Real number, but comprised of ints:
e 6 generally only 1 digit here
o 82 any number here
e 10 always 10 (base we work in)
e 23 can be positive or negative

e Can we do something like this in binary?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

28

Option 2: Floating Point

e How about:
. +/- X.YYYYYY * 2+/-N

e Big numbers: large positive N
e Small numbers (<1): negative N

e Numbers near 0: small N

e This is “floating point” : most common way

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

29

IEEE single precision floating point

e Specific format called IEEE single precision:
e +/- 1.YYYYY * 2(N-127)
e “float” in Java, C, C++,...

e Assume X is always 1 (saves us a bit)
e 1signbit(+=0,1="-)

e 8 bit biased exponent (do N-127)

o Implicit 1 before binary point

e 23-bit mantissa (YYYYY)

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

30

Binary fractions

e 1.YYYY has a binary point
e Like a decimal point but in binary
o After a decimal point, you have
e tenths
e hundredths
e Thousandths

e So after a binary point you have...

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

31

Binary fractions

e 1.YYYY has a binary point
e Like a decimal point but in binary
o After a decimal point, you have
e Tenths
e Hundredths
e Thousandths

e So after a binary point you have...
e Halves

e Quarters
e Eighths

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

32

Floating point example

e Binary fraction example:

101.101 =

4+ 1+ %+ 1g=15.625

e For floating point, needs normalization:
1.01101 * 22

e Sign is +, which = 0

e Exponent = 127 + 2 = 129 = 1000 0001

e Mantissa = 1.011 0100 0000 0000 0000 0000

3130 23

22 0

0

1000 0001

011 0100 0000 0000 0000 0000

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth

ECE/CS 250

33

Floating Point Representation

Example:
What floating-point number is:
0xC15800007?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

34

Answer

What floating-point number is
0xC15800007?
1100 0001 0101 1000 0000 0000 0000 0000

3130 23 22 0
X =1]1000 0010|101 1000 0000 0000 O0O0OO0 0OO0OO
S E F

Sign = 1 which is negative

Exponent = (128+2)-127 = 3
Mantissa = 1.1011

-1.1011x23 =-1101.1=-13.5

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

Trick question

e How do you represent 0.07?
e Why is this a trick question?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

36

Trick question

e How do you represent 0.07?
e Why is this a trick question?
e 0.0 = 000000000
e But need 1.XXXXX representation?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

37

Trick question

e How do you represent 0.07?
e Why is this a trick question?
e 0.0 = 000000000
e But need 1.XXXXX representation?

e Exponent = 0000 0000 is denormalized

e Implicit 0. instead of 1. in mantissa
e Allows 0000....0000 to be 0
e Helps with very small numbers near 0

e Results in +/- 0 in FP (but they are “equal”)

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

38

Other Weird FP numbers

e Exponent = 1111 1111 also not standard
e All 0 mantissa: +/- oo

1/0 = 400
-1/0 = -o0
e Non zero mantissa: Not a Number (NaN)

sqrt(-42) = NaN

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

39

Floating Point Representation

e Double Precision Floating point:

64-bit representation:
e 1-bit sign
e 11-bit (biased) exponent
e 52-bit fraction (with implicit 1).

e “double” in Java, C, C++, ...

S Exp Mantissa

1 11-bit 52 - bit

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

What About Strings?

e Many important things stored as strings...
e E.g., your name

e How should we store strings?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

41

ASCII Character Representation

Oct. Char

000| nul| 001 |soh|002|stx|003|etx |004 [eot |[005 |eng|006 |ack|007|bel
010| bs | 011 (ht |012|nl |013|vt |014 [np |015|cr |01l6(|so |017|si

020| dle| 021 |dc1|022|dc2|023|dc3 [024 |dc4 |025 [nak |026 |[syn|027|etb
030| can| 031 |em |[032|sub|033|esc |034 (fs |035|gs |036|rs |037|us

040 sp | 041 | ' |042| " |043| # (044 | $ |045| % |046| & |047| '

050 (| 051|) |052| * |053| + |054| , |055| - |056| . |057| /

060 O |061| 1 |062| 2 |063| 3 [064| 4 |065| 5 |066| 6 |067| 7

o070, 8 {071 9 |072| : |073| ; |074| < |075| = |076| > |077| »

100f @ |101|(A |102| B |103| C |104| D |105| E |106| F |107| G

110 H|111| T |112| J |113| K |114 | L |115| M |116| N |117| O

120 P |121| Q |122| R |123| S |124 | T |125| U |126| V |127| W

130 X |131| ¥ |132| 2 |133| [|134| \ |135| 1 |136| ~ |137| _

140 ~ | 141 | a |142| b |143| c (144 | d |145| e |146| £ |147| g

150/ h | 151 i |250| j |153| k |154| 1 |155| m |156| n |157| o

160 p|161| g |162| r |163| s |164| t |165| u |166| v |167| w

170 x |171| y |172| =z |173| { |174 | | |175| } |176| ~ |177|del

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth

e Each character represented by 7-bit ASCII code.
e Packed into 8-bits

ECE/CS 250

42

Outline

e Previously:
e Computer is machine that does what we tell it to do

o Next:
 How do we tell computers what to do?

 How do we represent data objects in binary?
e How do we represent data locations in binary?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

43

Computer Memory

e Where do we put the data (and instructions)?
e Registers [more on these later]
e In the processor core
e Compute directly on them
o Relatively few of them (~16-64)

e Memory

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

44

Computer Memory

e Where do we put these humbers?
e Registers [more on these later]
e In the processor core
e Compute directly on them
e Few of them (~16 or 32 registers, each 32-bit or 64-bit)

e Memory [Our focus now]
e External to processor core
e Load/store values to/from registers
e Very large (multiple GB)

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

45

Memory Organization

e Memory: billions of locations...how to get the right one?
e Each memory location has an address
e Processor asks to read or write specific address
e Memory, please load address 0x123400
e Memory, please write OxFE into address 0x8765000
e Kind of like a giant array

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

46

Memory Organization

e Memory: billions of locations...how to get the right one?
e Each memory location has an address
e Processor asks to read or write specific address
e Memory, please load address 0x123400
e Memory, please write OxFE into address 0x8765000
e Kind of like a giant array
e Array of what?
e Bytes?
e 32-bit ints?
¢ 64-bit ints?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

47

Memory Organization

e Most systems: byte (8-bit) addressed

e Memory is “array of bytes”
e Each address specifies 1 byte

e Support to load/store 16, 32, 64 bit quantities

e Byte ordering varies from system to system

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

48

Word of the Day: Endianess

Byte Order
byte 0 is 8 significant bits 1BM 360/370,
Motorola 68k, MIPS, Sparc, HP PA
e Little Endian: byte 0 is 8 significant bits intel 80x86, DEC
Vax, DEC Alpha
little endian byte 0
3 2 1 0 /
msb Isb
(most significant bit) (least significant bit)

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250 49

Memory Layout

e Memory is array of bytes, but there
are conventions as to what goes
where in this array

e Text: instructions (the program to
execute)

e Data: global variables

e Stack: local variables and other
per-function state; starts at top &
grows downward

e Heap: dynamically allocated
variables; grows upward

e What if stack and heap overlap????

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

2"-1

Stack

50

Memory Layout: Example

int anumber = 3;

int factorial (int =) {
if (x == 0) {
return 1;
}
else {

return x * factorial (x - 1);

int main (void) {
int z = factorial (anumber);
printf (“sd\n”, z);
return O;

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

2"-1

Stack

4

51

Let’s do a little Java...

public class Example {

public static void swap (int x, int y) {
int temp = x;
X =y,
y = temp;

}

public static void main (String[] args) {
int a = 42;
int b = 100;
swap (a, b);

11 11 11

System.out.println(‘a =“ + a + “ b =" + b);

}
eWhat does this print? Why?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

52

Let’s do a little Java...

public class Example {

public static void swap (int x, int y) {
int temp = x;
X =Y,
y = temp;

}

public static void main (String[] args) {
int a = 42;
int b = 100;

mmm)swap (a, b);

11

System.out.println(‘a =“ + a + “ b =" + b);

}
eWhat does this print? Why?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

53

Let’s do a little Java...

public class Example {
public static void swap (int x, int y) {
-qﬁnt temp = x;
X =y,
y = temp;
}
public static void main (String[] args) {
int a = 42;
int b = 100;
c0:>swap (a, b);

11

System.out.println(‘a =“ + a + “ b =" + b);

}
eWhat does this print? Why?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

Stack
main
a 42
b 100
swap
X 42
3% 100
temp 27?7
RA cO
54

Let’s do a little Java...

public class Example {
public static void swap (int x, int y) {

int temp = x;

& = vy
y = temp;

}

public static void main (String[] args) {
int a = 42;
int b = 100;
c0 swap (a, b);
=)

11

System.out.println(‘a =“ + a + “ b =" + b);

}
eWhat does this print? Why?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

Stack
main
a 42
b 100
swap
X 42
3% 100
temp 42
RA cO

Let’s do a little Java...

public class Example { Stack
public static void swap (int x, int y) { .
int temp = x; =
a 42
X =Y/ b 100
ﬁ(= temp;
} swap
. X 100
public static void main (String[] args) ({ ; 100
int a = 42; temp 42
int b = 100; RA c0
c0 swap (a, b);
:> . 11 11 11 f
System.out.println(a = + a + b = + b);

}
eWhat does this print? Why?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

Let’s do a little Java...

public class Example {
public static void swap (int x, int y) {
int temp = x;

X =YV,

y = temp;
public static void main (String[] args) {
int a = 42;
int b = 100;
c0 swap (a, b);
=)

11

System.out.println(‘a =“ + a + “ b =" + b);

}
eWhat does this print? Why?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

Stack
main
a 42
b 100
swap
X 100
% 42
temp 42
RA cO

Let’s do a little Java...

public class Example {

public static void swap (int x, int y) {
int temp = x;
X =y,
y = temp;

}

public static void main (String[] args) {
int a = 42;
int b = 100;
swap (a, b);

11

mm)System.out.println(“a =" + a + “ b =" + b);

}
}
eWhat does this print? Why?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

58

Let’s do some different Java...

public class Ex2 ({ Stack
int data; .
maln
public Ex2 (int d) { data = d; } oo
a 7%
public static void swap (Ex2 x, Ex2 y) { |, -,

int temp = x.data;

x.data = y.data;
y.data = temp;
}
public static void main (String[] args) {
mm)ryample a = new Example (42);
Example b = new Example (100);
swap (a, b);

+ a.data +

b = + b.data) ;

System.out.println(“a =

[11

}
eWhat does this print? Why?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

59

Let’s do some different Java...

public class Ex2 ({ Stack Heap
int data;
public Ex2 (int d) { data = d; }

public static void swap (Ex2 x, Ex2 y) { |,

D
D

data 42

int temp = x.data;

x.data = y.data;
y.data = temp;
}
public static void main (String[] args) {
Example a = new Example (42);
mmfxample b = new Example (100);
swap (a, b);

+ a.data +

b = + b.data) ;

System.out.println(“a =

[11

}
eWhat does this print? Why?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250 60

Let’s do some different Java...

public class Ex2 {
int data;
public Ex2 (int d) { data

public static void swap (Ex2 x, Ex2 y) {

int temp = x.data;
x.data = y.data;
y.data = temp;

}

public static void main (String[] args) {

Example a = new Example

Example b = new Example
mmm)swap (a, b);

System.out.println(“a =

“« b o=

}
eWhat does this print? Why?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth

=d; }

(42) ;
(100) ;

+ a.data +

ECE/CS 250

Heap

+ b.data) ;

=
"
N

data 42

=1
%
N

data 100

61

Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; }
a ——
public static void swap (Ex2 x, Ex2 y) { |, - Ex2
'int temp = x.data; SEieE! £
x.data = y.data; swap
y.data = temp; %
} y
public static void main (String[] args) { temp 2?7
Example a = new Example (42); RA cO
Example b = new Example (100); _: Ex?2
cO swap (a, b); data 100
System.out.println(“a =“ + a.data +
“b ="+ b.data);
}
}
eWhat does this print? Why?
© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250 62

Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; }
: . . a —_—
public static void swap (Ex2 x, Ex2 y) { K - Ex2
int temp = x.data; data 42
-x.data = y.data; swap
y.data = temp; %
} y
public static void main (String[] args) {temp 42
Example a = new Example (42); RA cO
= : —>,
Example b new Example (100); Y Ex2
c0 swap (a, b); data 100
I::::>System.out.println(“a =“ + a.data +
“b ="+ b.data);
}
}
eWhat does this print? Why?
© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250 63

Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; }
a —
public static void swap (Ex2 x, Ex2 y) { |, - Ex2
int temp = x.data; daitz LUl
x.data = y.data; swap
‘y.data = temp; %
} y
public static void main (String[] args) { temp 42
Example a = new Example (42); RA cO
Example b = new Example (100); _: Ex?2
cO swap (a, b); data 100
System.out.println(“a =“ + a.data +
“b ="+ b.data);
}
}
eWhat does this print? Why?
© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250 64

Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; }
a ——
public static void swap (Ex2 x, Ex2 y) { |, - Ex2
int temp = x.data; caica LOL
x.data = y.data; swap
y.data = temp; %
m—) y
public static void main (String[] args) { temp 42
Example a = new Example (42); RA cO
Example b = new Example (100); _: Ex?2
c0 swap (a, b); data 42
System.out.println(“a =“ + a.data +
“b ="+ b.data);
}
}
eWhat does this print? Why?
© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250 65

Let’s do some different Java...

public class Ex2 { Stack Heap
int data; .
main
public Ex2 (int d) { data = d; }
a —
public static void swap (Ex2 x, Ex2 y) { | Ex2
int temp = x.data; caica LOL
x.data = y.data;
y.data = temp;
}
public static void main (String[] args) {
Example a = new Example (42);
Example b = new Example (100) ; - Ex?2
swap (a, b); data 42
-System.out.println(“a =“ + a.data +

[11 [11

b = + b.data) ;

}
eWhat does this print? Why?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250 66

References and Pointers

e Java has references:
e Any variable of object type is a reference
e Point at objects (which are all in the heap)
e Under the hood: is the memory address of the object
e Cannot explicitly manipulate them (e.g., add 4)

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

67

References and Pointers (review)

e Java has references:
e Any variable of object type is a reference
e Point at objects (which are all in the heap)
e Under the hood: is the memory address of the object
e Cannot explicitly manipulate them (e.g., add 4)

e Some languages (C,C++,assembly) have explicit pointers:
e Hold the memory address of something
e Can explicitly compute on them
e Can de-reference the pointer (*ptr) to get thing-pointed-to
e Can take the address-of (&x) to get something’s address
e Can do very unsafe things, shoot yourself in the foot

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

Pointers

e “address of” operator &

e don't confuse with bitwise AND operator (&&)

Given
int x; int* p; // p points to an int
P = &x;
Then
*p = 2; and x = 2; produce the same result

Note: p is a pointer, *p is an int

e What happens when statingp = 22

On 32-bit machine, p is 32 bits
On 64-bit machine, p is 64 bits

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth

x 0x26cf0

p 0x26d00

ECE/CS 250

0x26¢cf0

69

Back to Arrays

e Java:
int [] x = new int [nElems];

¢ C:
int data[42]; //if size is known constant
int* data = (int*) malloc (nElem * sizeof (int));

« sizeof tells how many bytes something takes
« malloc takes number of bytes
« malloc returns pointer to first allocated byte

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250 70

Arrays, Pointers, and Address Calculation

e X is a pointer, what is x+337?

A pointer, but where?
o what does calculation depend on?

e Result of adding an int to a
pointer depends on size of
object pointed to

e One reason why we tell
compiler what type of pointer
we have, even though all
pointers are really the same
thing (and same size)

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth

int* a=

(int*)malloc (100*sizeof (int)) ;

0

(decimal 160,

double* d =

le64,

32 33

168)

98 99

a[33] is the same as * (a+33)
if a is 0x00a0,
then a+l is 0x00a4, a+2 is 0x00a8

(double*) malloc (200*sizeof (double)) ;

0

1

33

* (d+33) is the same as d[33]
if 4 is 0x00bO,
then d+1 is 0x00b8, d+2 is 0x00cO

(decimal 176,

ECE/CS 250

184,

192)

199

71

More Pointer Arithmetic

e address one past the end of an array

is ok for pointer comparison only
e what'sat * (begin+44)?
e what does begin++ mean?

e how are pointers compared using <
and using == 7?

e whatis value of end - begin?

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

0 1 15 16 42 43

char* a = new char[44];
char* begin = a;
char* end = a + 44;

while (begin < end)
{
*begin = ‘z’;
begin++;

72

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth

More Pointers & Arrays

int* a = new int[100];

a+32 is a pointer

*(a+l) is an int (same as a[l])
* (a+99) is an int

* (a+100) is trouble

ECE/CS 250

73

Array Example

#include <stdio.h>

main ()
{
int* a = (int*)malloc (100 * sizeof(int));
int* p = a;
int k;
for (k = 0; k < 100; k++)
{
*p = k;
pt++;
}

printf (“entry 3 = %d\n”, a[3])

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

74

Strings as Arrays

% I S I O

st
0O 1 1516 42 43

e A string is an array of characters with "\0’ at the end
e Each element is one byte, ASCII code
e \O"is null (ASCII code 0)

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

Strien()

e strlen () returns the number of characters in a string
e same as number elements in char array?

int strlen(char * s)

// pre: ‘\0’ terminated
// post: returns # chars
{
int count=0;
while (*s++)
count++;
return count;

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

Vector Class vs. Arrays

e Vector Class

e insulates programmers
e array bounds checking
e automagically growing/shrinking when more items are added/deleted

e How are Vectors implemented?
e Arrays, re-allocated as needed

e Arrays can be more efficient

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

77

Memory Manager (Heap Manager)

Stack

e malloc() and free()

e Library routines that handle
memory management
(allocation, deallocation) for
heap

Available Memory -

Allocated Memory
(part of this is
data structures
for managing
memory

e Java has garbage collection to
reclaim memory of
unreferenced objects

e C must use free, else memory
leak Text

Memory

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250 78

Summary: From C to Binary

e Everything must be represented in binary!
e Computer memory is linear array of bytes

e Pointer is memory location that contains address of
another memory location

o We'll visit these topics again throughout semester

© Daniel J. Sorin
from Hilton, Lebeck, Lee, Roth ECE/CS 250

79

