
ECE 250 / CPS 250
Computer Architecture

Basics of Logic Design

Boolean Algebra, Logic Gates

Benjamin Lee
Slides based on those from

Andrew Hilton (Duke), Alvy Lebeck (Duke)
Benjamin Lee (Duke), and Amir Roth (Penn)

2 © Daniel J. Sorin, from Hilton and Lebeck

Reading

•  Appendix B (parts 1,2,3,5,6,7,8,9,10)
•  This material is covered in MUCH greater depth in

ECE/CS 350 – please take ECE/CS 350 if you want to
learn enough digital design to build your own
processor

ECE/CS 250

3 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

What We’ve Done, Where We’re Going

I/O system CPU

Compiler

Operating
System

Application

Digital Design
Circuit Design

Instruction Set
Architecture,
Memory, I/O

Firmware

Memory

Software

Hardware

Interface Between
HW and SW

Top Down

(Almost) Bottom UP to CPU

4 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

Computer = Machine That Manipulates Bits

•  Everything is in binary (bunches of 0s and 1s)
− Instructions, numbers, memory locations, etc.

•  Computer is a machine that operates on bits
− Executing instructions ! operating on bits

•  Computers physically made of transistors
− Electrically controlled switches

•  We can use transistors to build logic
− E.g., if this bit is a 0 and that bit is a 1, then set some other

bit to be a 1
− E.g., if the first 5 bits of the instruction are 10010 then set this

other bit to 1 (to tell the adder to subtract instead of add)

5 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

How Many Transistors Are We Talking About?

Pentium III
•  Processor Core 9.5 Million Transistors
•  Total: 28 Million Transistors
Pentium 4
•  Total: 42 Million Transistors
Core2 Duo (two processor cores)
•  Total: 290 Million Transistors
Core2 Duo Extreme (4 processor cores, 8MB cache)
•  Total: 590 Million Transistors
Core i7 with 6-cores
•  Total: 2.27 Billion Transistors

How do they design such a thing? Carefully!

6 © Daniel J. Sorin, from Hilton and Lebeck

Abstraction!

•  Use of abstraction (key to design of any large system)
− Put a few (2-8) transistors into a logic gate (or, and, xor, …)
− Combine gates into logical functions (add, select,….)
− Combine adders, shifters, etc., together into modules

Units with well-defined interfaces for large tasks: e.g., decode
− Combine a dozen of those into a core…
− Stick 4 cores on a chip…

ECE/CS 250

7 © Daniel J. Sorin, from Hilton and Lebeck

You are here:

•  Use of abstraction (key to design of any large system)
− Put a few (2-8) transistors into a logic gate
− Combine gates into logical functions (add, select,….)
− Combine adders, muxes, etc together into modules

Units with well-defined interfaces for large tasks: e.g., decode
− Combine a dozen of those into a core…
− Stick 4 cores on a chip…

ECE/CS 250

8 © Daniel J. Sorin, from Hilton and Lebeck

Boolean Algebra

•  First step to logic: Boolean Algebra
− Manipulation of True / False (1/0)
− After all: everything is just 1s and 0s

•  Given inputs (variables): A, B, C, P, Q…
− Compute outputs using logical operators, such as:

•  NOT: !A (= ~A = A)
•  AND: A&B (= A⋅B = A*B = AB = A∧B) = A&&B in C/C++
•  OR: A | B (= A+B = A ∨ B) = A || B in C/C++
•  XOR: A ^ B (= A ⊕ B)
•  NAND, NOR, XNOR, Etc.

ECE/CS 250

9 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

a NOT(a)
0 1
1 0

Truth Tables

•  Can represent as Truth Table: shows outputs for all inputs

10 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

a NOT(a)
0 1
1 0

a b AND(a,b)
0 0 0
0 1 0
1 0 0
1 1 1

Truth Tables

•  Can represent as truth table: shows outputs for all inputs

11 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

a NOT(a)
0 1
1 0

a b AND(a,b)
0 0 0
0 1 0
1 0 0
1 1 1

a b OR(a,b)
0 0 0
0 1 1
1 0 1
1 1 1

Truth Tables

•  Can represent as truth table: shows outputs for all inputs

12 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

a NOT(a)
0 1
1 0

a b AND(a,b)
0 0 0
0 1 0
1 0 0
1 1 1

a b OR(a,b)
0 0 0
0 1 1
1 0 1
1 1 1

a b XOR(a,b)
0 0 0
0 1 1
1 0 1
1 1 0

a b XNOR(a,b)
0 0 1
0 1 0
1 0 0
1 1 1

a b NOR(a,b)
0 0 1
0 1 0
1 0 0
1 1 0

Truth Tables

•  Can represent as truth table: shows outputs for all inputs

13 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

a b c f1f2
0 0 0 0 1
0 0 1 1 1
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
1 1 0 0 1
1 1 1 1 1

Any Inputs, Any Outputs

•  Can have any # of inputs, any # of outputs
•  Can have arbitrary functions:

14 © Daniel J. Sorin, from Hilton and Lebeck

Let’s Write a Truth Table for a Function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

ECE/CS 250

A B C Output

15 © Daniel J. Sorin, from Hilton and Lebeck

Let’s write a Truth Table for a function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

Fill in Inputs
Counting in Binary

ECE/CS 250

A B C Output
0 0 0

16 © Daniel J. Sorin, from Hilton and Lebeck

Let’s write a Truth Table for a function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

Fill in Inputs
Counting in Binary

ECE/CS 250

A B C Output
0 0 0
0 0 1

17 © Daniel J. Sorin, from Hilton and Lebeck

Let’s write a Truth Table for a function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

Fill in Inputs
Counting in Binary

ECE/CS 250

A B C Output
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

18 © Daniel J. Sorin, from Hilton and Lebeck

Let’s write a Truth Table for a function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

Fill in Inputs
Counting in Binary

Compute Output
 (0 & 0) | !0 = 0 | 1 = 1

ECE/CS 250

A B C Output
0 0 0 1
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

19 © Daniel J. Sorin, from Hilton and Lebeck

Let’s write a Truth Table for a function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

Fill in Inputs
Counting in Binary

Compute Output
 (0 & 0) | !1 = 0 | 0 = 0

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

20 © Daniel J. Sorin, from Hilton and Lebeck

Let’s write a Truth Table for a function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

Fill in Inputs
Counting in Binary

Compute Output
 (0 & 1) | !0 = 0 | 1 = 1

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

21 © Daniel J. Sorin, from Hilton and Lebeck

Let’s write a Truth Table for a function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

Fill in Inputs
Counting in Binary

Compute Output

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

22 © Daniel J. Sorin, from Hilton and Lebeck

You try one…

•  Try one yourself:
(!A | B) & !C

ECE/CS 250

23 © Daniel J. Sorin, from Hilton and Lebeck

You try one…

•  Try one yourself:
(!A | B) & !C

Answer:

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

24 © Daniel J. Sorin, from Hilton and Lebeck

Suppose I turn it around…

•  Given a Truth Table, find the formula?

Hmmm..

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

25 © Daniel J. Sorin, from Hilton and Lebeck

Suppose I turn it around…

•  Given a Truth Table, find the formula?

Hmmm …
Could write down every “true” case
Then OR together:

(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A & B &!C) |
(A & B &C)

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

26 © Daniel J. Sorin, from Hilton and Lebeck

Suppose I turn it around…

•  Given a Truth Table, find the formula?

Hmmm..
Could write down every “true” case
Then OR together:

(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A & B &!C) |
(A & B &C)

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

27 © Daniel J. Sorin, from Hilton and Lebeck

Suppose I turn it around…

•  Given a Truth Table, find the formula?

Hmmm..
Could write down every “true” case
Then OR together:

(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A & B &!C) |
(A & B &C)

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

28 © Daniel J. Sorin, from Hilton and Lebeck

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A & B &!C) |
(A & B &C)

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

29 © Daniel J. Sorin, from Hilton and Lebeck

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A & B &!C) |
(A & B &C)

Could just be (A & B) here ?

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

30 © Daniel J. Sorin, from Hilton and Lebeck

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A&B)

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

31 © Daniel J. Sorin, from Hilton and Lebeck

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A&B)
 Could just be (!A & !B) here

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

32 © Daniel J. Sorin, from Hilton and Lebeck

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !B) |
(!A & B & !C) |
(A&B)
 Could just be (!A & !B) here

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

33 © Daniel J. Sorin, from Hilton and Lebeck

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !B) |
(!A & B & !C) |
(A&B)

Looks nicer…
Can we do better?

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

34 © Daniel J. Sorin, from Hilton and Lebeck

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !B) |
(!A & B & !C) |
(A&B)

This has a lot in common:
 !A & (something)

 ECE/CS 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

35 © Daniel J. Sorin, from Hilton and Lebeck

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !(B & C)) |
(A & B)

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

36 © Daniel J. Sorin, from Hilton and Lebeck

Just did some of these by intuition.. but

•  Somewhat intuitive approach to simplifying
•  This is math, so there are formal rules

− Just like “regular” algebra

ECE/CS 250

37 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

Boolean Function Simplification

•  Boolean expressions can be simplified by using the
following rules (bitwise logical):
− A & A = A A | A = A
− A & 0 = 0 A | 0 = A
− A & 1 = A A | 1 = 1
− A & !A = 0 A | !A = 1

− !!A = A

− & and | are both commutative and associative
− & and | can be distributed: A & (B | C) = (A & B) | (A & C)
− & and | can be subsumed: A | (A & B) = A

38 © Daniel J. Sorin, from Hilton and Lebeck

DeMorgan’s Laws

•  Two (less obvious) Laws of Boolean Algebra:
− Let’s push negations inside, flipping & and |

!(A & B) = (!A) | (!B)

!(A | B) = (!A) & (!B)

− You should try this at home – build truth tables for both the

left and right sides and see that they’re the same

ECE/CS 250

39 © Daniel J. Sorin, from Hilton and Lebeck

Suppose I turn it around…

•  One more simplification on early example:

(!A & !(B & C)) |
(A & B)

=
(!A & (!B | !C)) |
(A & B)

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

40 © Daniel J. Sorin, from Hilton and Lebeck

Simplification Example:

! (!A | !(A & (B | C)))

ECE/CS 250

41 © Daniel J. Sorin, from Hilton and Lebeck

Simplification Example:

! (!A | !(A & (B | C)))
DeMorgan’s

!!A & !! (A & (B | C))

ECE/CS 250

42 © Daniel J. Sorin, from Hilton and Lebeck

Simplification Example:

! (!A | !(A & (B | C)))
DeMorgan’s

!!A & !! (A & (B | C))
Double Negation Elimination

A & (A & (B | C))

ECE/CS 250

43 © Daniel J. Sorin, from Hilton and Lebeck

Simplification Example:

! (!A | !(A & (B | C)))
DeMorgan’s

!!A & !! (A & (B | C))
Double Negation Elimination

A & (A & (B | C))
Associativity of &

(A & A) & (B | C)

ECE/CS 250

44 © Daniel J. Sorin, from Hilton and Lebeck

Simplification Example:

! (!A | !(A & (B | C)))
DeMorgan’s

!!A & !! (A & (B | C))
Double Negation Elimination

A & (A & (B | C))
Associativity of &

(A & A) & (B | C)
A & A = A

A & (B | C)

ECE/CS 250

45 © Daniel J. Sorin, from Hilton and Lebeck

You try this:

Come up with a formula for this Truth Table
Simplify as much as possible

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

46 © Daniel J. Sorin, from Hilton and Lebeck

You try this:

Come up with a formula for this Truth Table
Simplify as much as possible

Sum of Products:

(!A & !B & !C) |
(!A & B & !C) |
(A & !B & C) |
(A & B & C)

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

47 © Daniel J. Sorin, from Hilton and Lebeck

You try this:

Simplify:
 (!A & !B & !C) | (!A & B & !C)

ECE/CS 250

48 © Daniel J. Sorin, from Hilton and Lebeck

You try this:

Simplify:
 (!A & !B & !C) | (!A & B & !C)
Regroup (associative/commutative):
 ((!A & !C) & !B) | ((!A & !C) & B)

ECE/CS 250

49 © Daniel J. Sorin, from Hilton and Lebeck

You try this:

Simplify:
 (!A & !B & !C) | (!A & B & !C)
Regroup (associative/commutative):
 ((!A & !C) & !B) | ((!A & !C) & B)
Un-distribute:
 (!A & !C) & (!B | B)

ECE/CS 250

50 © Daniel J. Sorin, from Hilton and Lebeck

You try this:

Simplify:
 (!A & !B & !C) | (!A & B & !C)
Regroup (associative/commutative):
 ((!A & !C) & !B) | ((!A & !C) & B)
Un-distribute:
 (!A & !C) & (!B | B)
OR identities:
 (!A & !C) & true = (!A & !C)

ECE/CS 250

51 © Daniel J. Sorin, from Hilton and Lebeck

You try this:

Come up with a formula for this Truth Table
Simplify as much as possible

Sum of Products:

(!A & !C) |
(A & !B & C) |
(A & B & C)

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

52 © Daniel J. Sorin, from Hilton and Lebeck

You try this:

Come up with a formula for this Truth Table
Simplify as much as possible

Sum of Products:

(!A & !C)|
(A & C)

ECE/CS 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

53 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

Applying the Theory

•  Lots of good theory
•  Can reason about complex Boolean expressions
•  But why is this useful? (fun party trick)

54 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

a
b

AND(a,b) a
b

OR(a,b)

XOR(a,b) a
b

NAND(a,b) a
b

a
b

NOR(a,b) XNOR(a,b) a
b

a NOT(a)

Boolean Gates

•  Gates are electronic devices that implement simple
Boolean functions (building blocks of hardware)

Examples

55 © Daniel J. Sorin, from Hilton and Lebeck

 Guide to Remembering your Gates

•  This one looks like it just points its input where to go
− It just produces its input as its output
− Called a buffer

ECE/CS 250

a a

56 © Daniel J. Sorin, from Hilton and Lebeck

 Guide to Remembering your Gates

•  This one looks like it just points its input where to go
− It just produces its input as its output
− Called a buffer

•  A circle always means negate (invert)

ECE/CS 250

a a

a NOT(a)

Circle = NOT

57 © Daniel J. Sorin, from Hilton and Lebeck

 Brief Interlude: Building An Inverter

ECE/CS 250

a NOT(a)

ground= 0

Vdd = power = 1

a NOT(a)

P-type: switch is
“on” if input is 0

N-type: switch is
“on” if input is 1

58 © Daniel J. Sorin, from Hilton and Lebeck

 Guide to Remembering Your Gates

•  AND Gates have a straight edge, like an A (in AND)

OR Gates have a curved edge, like an O (in OR)

ECE/CS 250

a
b

AND(a,b)

Straight like an A

a
b

OR(a,b)

Curved, like an O

59 © Daniel J. Sorin, from Hilton and Lebeck

 Guide to Remembering Your Gates

•  If we stick a circle on them…

•  We get NAND (NOT-AND) and NOR (NOT-OR)
− NAND(a,b) = NOT(AND(a,b))

ECE/CS 250

a
b

AND(a,b)

a
b

OR(a,b)

NAND(a,b) a
b

a
b

NOR(a,b)

Circle = NOT

60 © Daniel J. Sorin, from Hilton and Lebeck

 Guide to Remembering Your Gates

•  XOR looks like OR (curved line)
− But has two lines (like an X does)

•  Can put a dot for XNOR
− XNOR is 1-bit “equals” by the way

ECE/CS 250

XOR(a,b) a
b

XNOR(a,b) a
b

61 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

(!A & !C)|(A & C)

A

C Out

Boolean Functions, Gates and Circuits

•  Circuits are made from a network of gates.

62 © Daniel J. Sorin, from Hilton and Lebeck

A few more words about gates

•  Gates have inputs and outputs
− If you try to hook up two outputs, bad things happen
(your processor catches fire)

− If you don’t hook up an input, it behaves kind of randomly
(also not good, but not set-your-chip-on-fire bad)

ECE/CS 250

a
b

c
d

BAD!

63 © Daniel J. Sorin, from Hilton and Lebeck

Let’s Make a Useful Circuit

•  Pick between 2 inputs (called 2-to-1 MUX)
− Short for multiplexor

•  What might we do first?

ECE/CS 250

64 © Daniel J. Sorin, from Hilton and Lebeck

Let’s Make a Useful Circuit

•  Pick between 2 inputs (called 2-to-1 MUX)
− Short for multiplexor

•  What might we do first?
− Make a truth table?

•  S is selector:
•  S=0, pick A
•  S=1, pick B

ECE/CS 250

A B S Output
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

65 © Daniel J. Sorin, from Hilton and Lebeck

Let’s Make a Useful Circuit

•  Pick between 2 inputs (called 2-to-1 MUX)
− Short for multiplexor

•  What might we do first?
− Make a truth table?

•  S is selector:
•  S=0, pick A
•  S=1, pick B

•  Next: sum-of-products
(!A & B & S) |
(A & !B & !S) |
(A & B & !S) |
(A & B & S)

ECE/CS 250

A B S Output
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

66 © Daniel J. Sorin, from Hilton and Lebeck

Let’s Make a Useful Circuit

•  Pick between 2 inputs (called 2-to-1 MUX)
− Short for multiplexor

•  What might we do first?
− Make a truth table?

•  S is selector:
•  S=0, pick A
•  S=1, pick B

•  Next: sum-of-products
•  Simplify

(A & !S) |
(B & S)

ECE/CS 250

A B S Output
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

67 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

s

a
b

output

Circuit Example: 2x1 MUX

MUX(A, B, S) = (A & !S) | (B & S)
Draw it in gates:

output

A

B

S

OR

AND

AND

So common, we give it
its own symbol:

68 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

Example 4x1 MUX

3

2

1

0 a

b

c

d

y

S

2

a
b

c
d

out

s0 s1

The / 2 on the wire means “2 bits”

69 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

Arithmetic and Logical Operations in ISA

•  What operations are there?
•  How do we implement them?

− Consider a 1-bit Adder

70 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

A 1-bit Full Adder

a b Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

01101100

 01101101
+00101100
 10011001

a

b

Cin

Cout

Sum

71 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

a0 a1 a2 a3 b0 b1 b2 b3

Cout

S0 S1 S2 S3

Full AdderFull AdderFull AdderFull Adder

Example: 4-bit adder

72 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

Subtraction

•  How do we perform integer subtraction?
•  What is the hardware?

− Recall: hardware was why 2’s complement was good idea

•  Remember: Subtraction is just addition
X – Y =
X + (-Y) =
X + (~Y +1)

73 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

Full AdderFull AdderFull AdderFull Adder

a0 a1 a2 a3 b0 b1 b2 b3

Cout

S0 S1 S2 S3

Add/Sub

Example: Adder/Subtractor

74 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

Overflow

•  We can detect unsigned overflow by looking at CO
•  How would we detect signed overflow?

− If adding positive numbers and result “is” negative
− If adding negative numbers and result “is” positive
− At most significant bit of adder, check if CI != CO
− Can check with XOR gate

75 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

Add/Subtract With Overflow Detection

Full AdderFull AdderFull AdderFull Adder

S0 S1 Sn- 2 Sn- 1

Overflow

a0 a1 b0 b1 an- 2 bn- 2 an- 1 bn- 1

Add/Sub

76 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

Add/sub

C in

C ou t

Add/sub F

2

0

1

2

3

a

b

Q

A F Q
0 0 a + b
1 0 a - b
- 1 NOT b
- 2 a OR b
- 3 a AND b

ALU Slice

77 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

The ALU

ALU Slice ALU Slice ALU Slice ALU Slice

ALU control

a 0 b 0 a 1 b 1 a n-2 b n-2 a n-1 b n-1

Q 0 Q 1 Q n-2 Q n-1

Overflow = Zero

78 © Daniel J. Sorin, from Hilton and Lebeck ECE/CS 250

Summary

•  Boolean Algebra & functions
•  Logic gates (AND, OR, NOT, etc)
•  Multiplexors
•  Adder
•  Arithmetic Logic Unit (ALU)

