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Reading 

•  Appendix B (parts 1,2,3,5,6,7,8,9,10)  
•  This material is covered in MUCH greater depth in 

ECE/CS 350 – please take ECE/CS 350 if you want to 
learn enough digital design to build your own 
processor 

ECE/CS 250 
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What We’ve Done, Where We’re Going 

I/O system CPU 

Compiler 

Operating 
System 

Application 

Digital Design 
Circuit Design 

Instruction Set 
Architecture, 
Memory, I/O 

Firmware 

Memory 

Software 

Hardware 

Interface Between 
HW and SW 

Top Down 

(Almost) Bottom UP to CPU 
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Computer = Machine That Manipulates Bits 

•  Everything is in binary (bunches of 0s and 1s) 
− Instructions, numbers, memory locations, etc. 

•  Computer is a machine that operates on bits 
− Executing instructions ! operating on bits 

•  Computers physically made of transistors 
− Electrically controlled switches 

•  We can use transistors to build logic 
− E.g., if this bit is a 0 and that bit is a 1, then set some other 

bit to be a 1 
− E.g., if the first 5 bits of the instruction are 10010 then set this 

other bit to 1 (to tell the adder to subtract instead of add) 
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How Many Transistors Are We Talking About? 

Pentium III  
•  Processor Core 9.5 Million Transistors 
•  Total: 28 Million Transistors 
Pentium 4 
•  Total: 42 Million Transistors 
Core2 Duo (two processor cores) 
•  Total: 290 Million Transistors 
Core2 Duo Extreme (4 processor cores, 8MB cache) 
•  Total: 590 Million Transistors 
Core i7 with 6-cores 
•  Total: 2.27 Billion Transistors 

How do they design such a thing?   Carefully! 
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Abstraction! 

•  Use of abstraction (key to design of any large system) 
− Put a few (2-8) transistors into a logic gate (or, and, xor, …) 
− Combine gates into logical functions (add, select,….) 
− Combine adders, shifters, etc., together into modules 

Units with well-defined interfaces for large tasks: e.g., decode 
− Combine a dozen of those into a core… 
− Stick 4 cores on a chip…  

ECE/CS 250 
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You are here: 

•  Use of abstraction (key to design of any large system) 
− Put a few (2-8) transistors into a logic gate 
− Combine gates into logical functions (add, select,….) 
− Combine adders, muxes, etc together into modules 

Units with well-defined interfaces for large tasks: e.g., decode 
− Combine a dozen of those into a core… 
− Stick 4 cores on a chip…  

ECE/CS 250 
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Boolean Algebra 

•  First step to logic: Boolean Algebra 
− Manipulation of True / False (1/0) 
− After all: everything is just 1s and 0s 

•  Given inputs (variables): A, B, C, P, Q… 
− Compute outputs using logical operators, such as: 

•  NOT:  !A  (= ~A = A) 
•  AND: A&B (= A⋅B = A*B = AB = A∧B) = A&&B in C/C++  
•  OR:  A | B (= A+B = A ∨ B) =  A || B in C/C++ 
•  XOR: A ^ B (= A ⊕ B) 
•  NAND, NOR, XNOR, Etc. 

ECE/CS 250 
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a  NOT(a) 
0    1 
1    0 

Truth Tables 

•  Can represent as Truth Table: shows outputs for all inputs 
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a  NOT(a) 
0    1 
1    0 

a  b  AND(a,b) 
0  0     0 
0  1     0 
1  0     0 
1  1     1 

Truth Tables 

•  Can represent as truth table: shows outputs for all inputs 
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a  NOT(a) 
0    1 
1    0 

a  b  AND(a,b) 
0  0     0 
0  1     0 
1  0     0 
1  1     1 

a  b  OR(a,b) 
0  0     0 
0  1     1 
1  0     1 
1  1     1 

Truth Tables 

•  Can represent as truth table: shows outputs for all inputs 
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a  NOT(a) 
0    1 
1    0 

a  b  AND(a,b) 
0  0     0 
0  1     0 
1  0     0 
1  1     1 

a  b  OR(a,b) 
0  0     0 
0  1     1 
1  0     1 
1  1     1 

a  b  XOR(a,b) 
0  0     0 
0  1     1 
1  0     1 
1  1     0 

a  b  XNOR(a,b) 
0  0     1 
0  1     0 
1  0     0 
1  1     1 

a  b  NOR(a,b) 
0  0     1 
0  1     0 
1  0     0 
1  1     0 

Truth Tables 

•  Can represent as truth table: shows outputs for all inputs 
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a b c  f1f2 
0 0 0  0 1 
0 0 1  1 1 
0 1 0  1 0 
0 1 1  0 0 
1 0 0  1 0 
1 1 0  0 1 
1 1 1  1 1 
 

Any Inputs, Any Outputs 

•  Can have any # of inputs, any # of outputs 
•  Can have arbitrary functions: 
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Let’s Write a Truth Table for a Function… 

•  Example: 
(A & B) | !C 
 

Start with Empty TT 
Column Per Input 
Column Per Output 

ECE/CS 250 

A B C Output 
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Let’s write a Truth Table for a function… 

•  Example: 
(A & B) | !C 
 

Start with Empty TT 
Column Per Input 
Column Per Output 
 

Fill in Inputs 
Counting in Binary 

ECE/CS 250 

A B C Output 
0 0 0 
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Let’s write a Truth Table for a function… 

•  Example: 
(A & B) | !C 
 

Start with Empty TT 
Column Per Input 
Column Per Output 
 

Fill in Inputs 
Counting in Binary 

ECE/CS 250 

A B C Output 
0 0 0 
0 0 1 
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Let’s write a Truth Table for a function… 

•  Example: 
(A & B) | !C 
 

Start with Empty TT 
Column Per Input 
Column Per Output 
 

Fill in Inputs 
Counting in Binary 

ECE/CS 250 

A B C Output 
0 0 0 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
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Let’s write a Truth Table for a function… 

•  Example: 
(A & B) | !C 
 

Start with Empty TT 
Column Per Input 
Column Per Output 
 

Fill in Inputs 
Counting in Binary 
 

Compute Output  
 (0 & 0) | !0 = 0 | 1 = 1 

ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
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Let’s write a Truth Table for a function… 

•  Example: 
(A & B) | !C 
 

Start with Empty TT 
Column Per Input 
Column Per Output 
 

Fill in Inputs 
Counting in Binary 
 

Compute Output  
 (0 & 0) | !1 = 0 | 0 = 0 

ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 0 
0 1 0 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
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Let’s write a Truth Table for a function… 

•  Example: 
(A & B) | !C 
 

Start with Empty TT 
Column Per Input 
Column Per Output 
 

Fill in Inputs 
Counting in Binary 
 

Compute Output  
 (0 & 1) | !0 = 0 | 1 = 1 

ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 
1 0 0 
1 0 1 
1 1 0 
1 1 1 
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Let’s write a Truth Table for a function… 

•  Example: 
(A & B) | !C 
 

Start with Empty TT 
Column Per Input 
Column Per Output 
 

Fill in Inputs 
Counting in Binary 
 

Compute Output  
  

ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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You try one… 

•  Try one yourself: 
(!A | B) & !C 
 

  
  

ECE/CS 250 
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You try one… 

•  Try one yourself: 
(!A | B) & !C 
 
 

Answer: 
 

  
  

ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 0 
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Suppose I turn it around… 

•  Given a Truth Table, find the formula? 
 

Hmmm.. 
 

  
  

ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Suppose I turn it around… 

•  Given a Truth Table, find the formula? 
 

Hmmm … 
Could write down every “true” case 
Then OR together: 
 
(!A & !B & !C) |  
(!A & !B & C)  | 
(!A & B & !C) | 
(A & B &!C) | 
(A & B &C) 

 
  

  
ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Suppose I turn it around… 

•  Given a Truth Table, find the formula? 
 

Hmmm.. 
Could write down every “true” case 
Then OR together: 
 
(!A & !B & !C) |  
(!A & !B & C)  | 
(!A & B & !C) | 
(A & B &!C) | 
(A & B &C) 

 
  

  
ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Suppose I turn it around… 

•  Given a Truth Table, find the formula? 
 

Hmmm.. 
Could write down every “true” case 
Then OR together: 
 
(!A & !B & !C) |  
(!A & !B & C)  | 
(!A & B & !C) | 
(A & B &!C) | 
(A & B &C) 

 
  

  
ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Suppose I turn it around… 

•  This approach: “sum of products” 
− Works every time 
− Result is right… 
− But really ugly 

 
(!A & !B & !C) |  
(!A & !B & C)  | 
(!A & B & !C) | 
(A & B &!C) | 
(A & B &C) 

 
  

  
ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Suppose I turn it around… 

•  This approach: “sum of products” 
− Works every time 
− Result is right… 
− But really ugly 

 
(!A & !B & !C) |  
(!A & !B & C)  | 
(!A & B & !C) | 
(A & B &!C) | 
(A & B &C) 

Could just be (A & B) here ? 
  

  
ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Suppose I turn it around… 

•  This approach: “sum of products” 
− Works every time 
− Result is right… 
− But really ugly 

 
(!A & !B & !C) |  
(!A & !B & C)  | 
(!A & B & !C) | 
(A&B) 
  

  

ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Suppose I turn it around… 

•  This approach: “sum of products” 
− Works every time 
− Result is right… 
− But really ugly 

 
(!A & !B & !C) |  
(!A & !B & C)  | 
(!A & B & !C) | 
(A&B) 
  Could just be (!A & !B) here 
  

  

ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Suppose I turn it around… 

•  This approach: “sum of products” 
− Works every time 
− Result is right… 
− But really ugly 

 
(!A & !B) | 
(!A & B & !C) | 
(A&B) 
  Could just be (!A & !B) here 
  

  

ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Suppose I turn it around… 

•  This approach: “sum of products” 
− Works every time 
− Result is right… 
− But really ugly 

 
(!A & !B) | 
(!A & B & !C) | 
(A&B) 
   
Looks nicer…  
Can we do better? 
  

  
ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Suppose I turn it around… 

•  This approach: “sum of products” 
− Works every time 
− Result is right… 
− But really ugly 

 
(!A & !B) | 
(!A & B & !C) | 
(A&B) 
   
This has a lot in common: 
  !A  & (something) 
 
  

  ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Suppose I turn it around… 

•  This approach: “sum of products” 
− Works every time 
− Result is right… 
− But really ugly 

 
(!A & !(B & C)) | 
(A & B) 
   
 
  

  

ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Just did some of these by intuition.. but 

•  Somewhat intuitive approach to simplifying 
•  This is math, so there are formal rules   

− Just like “regular” algebra 

ECE/CS 250 
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Boolean Function Simplification 

•  Boolean expressions can be simplified by using the 
following rules (bitwise logical): 
− A & A = A                        A | A = A 
− A & 0 = 0                        A | 0 = A 
− A & 1 = A                        A | 1 = 1 
− A & !A = 0                       A | !A = 1 

− !!A  = A 
 

− & and | are both commutative and associative 
− & and | can be distributed:  A & (B | C) = (A & B) | (A & C) 
− & and | can be subsumed: A | (A & B) = A 
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DeMorgan’s Laws 

•  Two (less obvious) Laws of Boolean Algebra: 
− Let’s push negations inside, flipping & and | 

!(A & B) = (!A) | (!B) 

!(A | B) = (!A) & (!B) 
 
− You should try this at home – build truth tables for both the 

left and right sides and see that they’re the same 
 

ECE/CS 250 
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Suppose I turn it around… 

•  One more simplification on early example: 
 
(!A & !(B & C)) | 
(A & B) 
 
= 
(!A & (!B | !C)) | 
(A & B) 
   
 
  

  
ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 1 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Simplification Example: 

! (!A | !(A & (B | C))) 

ECE/CS 250 
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Simplification Example: 

! (!A | !(A & (B | C))) 
DeMorgan’s 

!!A & !! (A & (B | C)) 

ECE/CS 250 
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Simplification Example: 

! (!A | !(A & (B | C))) 
DeMorgan’s 

!!A & !! (A & (B | C)) 
Double Negation Elimination 

A & (A & (B | C)) 

ECE/CS 250 
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Simplification Example: 

! (!A | !(A & (B | C))) 
DeMorgan’s 

!!A & !! (A & (B | C)) 
Double Negation Elimination 

A & (A & (B | C)) 
Associativity of & 

(A & A) & (B | C) 

ECE/CS 250 
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Simplification Example: 

! (!A | !(A & (B | C))) 
DeMorgan’s 

!!A & !! (A & (B | C)) 
Double Negation Elimination 

A & (A & (B | C)) 
Associativity of & 

(A & A) & (B | C) 
A & A = A 

A & (B | C) 

ECE/CS 250 
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You try this: 

Come up with a formula for this Truth Table 
Simplify as much as possible 

 

ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 
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You try this: 

Come up with a formula for this Truth Table 
Simplify as much as possible 
 
Sum of Products: 

(!A & !B & !C) | 
(!A & B & !C)  | 
(A & !B & C)   | 
(A & B & C) 
 

ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 
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You try this: 

Simplify: 
  (!A & !B & !C) | (!A & B & !C) 

ECE/CS 250 
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You try this: 

Simplify: 
  (!A & !B & !C) | (!A & B & !C) 
Regroup (associative/commutative): 
  ((!A & !C) & !B) | ((!A & !C) & B) 

ECE/CS 250 
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You try this: 

Simplify: 
  (!A & !B & !C) | (!A & B & !C) 
Regroup (associative/commutative): 
  ((!A & !C) & !B) | ((!A & !C) & B) 
Un-distribute: 
  (!A & !C) & (!B | B) 

ECE/CS 250 
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You try this: 

Simplify: 
  (!A & !B & !C) | (!A & B & !C) 
Regroup (associative/commutative): 
  ((!A & !C) & !B) | ((!A & !C) & B) 
Un-distribute: 
  (!A & !C) & (!B | B) 
OR identities: 
  (!A & !C) & true  = (!A & !C) 

ECE/CS 250 
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You try this: 

Come up with a formula for this Truth Table 
Simplify as much as possible 
 
Sum of Products: 

(!A & !C) | 
(A & !B & C)   | 
(A & B & C) 
 

ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 
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You try this: 

Come up with a formula for this Truth Table 
Simplify as much as possible 
 
Sum of Products: 

(!A & !C)| 
(A & C)         
 

ECE/CS 250 

A B C Output 
0 0 0 1 
0 0 1 0 
0 1 0 1 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 0 
1 1 1 1 
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Applying the Theory 

•  Lots of good theory 
•  Can reason about complex Boolean expressions 
•  But why is this useful?   (fun party trick) 
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a 
b 

AND(a,b) a 
b 

OR(a,b) 

XOR(a,b) a 
b 

NAND(a,b) a 
b 

a 
b 

NOR(a,b) XNOR(a,b) a 
b 

a NOT(a) 

Boolean Gates  

•  Gates are electronic devices that implement simple 
Boolean functions (building blocks of hardware) 

Examples 
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 Guide to Remembering your Gates 

•  This one looks like it just points its input where to go 
− It just produces its input as its output 
− Called a buffer 
  

ECE/CS 250 

a a 
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 Guide to Remembering your Gates 

•  This one looks like it just points its input where to go 
− It just produces its input as its output 
− Called a buffer 

•  A circle always means negate (invert) 
  

ECE/CS 250 

a a 

a NOT(a) 

Circle = NOT 
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 Brief Interlude: Building An Inverter 

  

ECE/CS 250 

a NOT(a) 

ground= 0 

Vdd = power = 1 

a NOT(a) 

P-type: switch is 
“on” if input is 0 

N-type: switch is 
“on” if input is 1 
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 Guide to Remembering Your Gates 

•  AND Gates have a straight edge, like an A (in AND) 

 

OR Gates have a curved edge, like an O (in OR) 
 

ECE/CS 250 

a 
b 

AND(a,b) 

Straight like an A 

a 
b 

OR(a,b) 

Curved, like an O 
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 Guide to Remembering Your Gates 

•  If we stick a circle on them… 

•  We get NAND (NOT-AND) and NOR (NOT-OR) 
− NAND(a,b) = NOT(AND(a,b)) 

 
ECE/CS 250 

a 
b 

AND(a,b) 

a 
b 

OR(a,b) 

NAND(a,b) a 
b 

a 
b 

NOR(a,b) 

Circle = NOT 
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 Guide to Remembering Your Gates 

•  XOR looks like OR (curved line)  
− But has two lines (like an X does) 

•  Can put a dot for XNOR 
− XNOR is 1-bit “equals” by the way 

ECE/CS 250 

XOR(a,b) a 
b 

XNOR(a,b) a 
b 
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(!A & !C)|(A & C)         

A 

C Out 

Boolean Functions, Gates  and Circuits 

•  Circuits are made from a network of gates.  
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A few more words about gates 

•  Gates have inputs and outputs 
− If you try to hook up two outputs, bad things happen 
(your processor catches fire) 
 
 
 
 
 
 
− If you don’t hook up an input, it behaves kind of randomly 
(also not good, but not set-your-chip-on-fire bad) 

ECE/CS 250 

a 
b 

c 
d 

BAD! 
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Let’s Make a Useful Circuit 

•  Pick between 2 inputs (called 2-to-1 MUX) 
− Short for multiplexor 

•  What might we do first? 

ECE/CS 250 
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Let’s Make a Useful Circuit 

•  Pick between 2 inputs (called 2-to-1 MUX) 
− Short for multiplexor 

•  What might we do first? 
− Make a truth table? 

•  S is selector: 
•  S=0, pick A 
•  S=1, pick B 

ECE/CS 250 

A B S Output 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Let’s Make a Useful Circuit 

•  Pick between 2 inputs (called 2-to-1 MUX) 
− Short for multiplexor 

•  What might we do first? 
− Make a truth table? 

•  S is selector: 
•  S=0, pick A 
•  S=1, pick B 

•  Next: sum-of-products 
(!A & B & S) |  
(A & !B & !S) | 
(A & B & !S ) |  
(A & B & S) 

ECE/CS 250 

A B S Output 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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Let’s Make a Useful Circuit 

•  Pick between 2 inputs (called 2-to-1 MUX) 
− Short for multiplexor 

•  What might we do first? 
− Make a truth table? 

•  S is selector: 
•  S=0, pick A 
•  S=1, pick B 

•  Next: sum-of-products 
•  Simplify 

(A & !S) |  
(B &  S) 

ECE/CS 250 

A B S Output 
0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 1 
1 0 0 1 
1 0 1 0 
1 1 0 1 
1 1 1 1 
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s 

a 
b 

output 

Circuit Example: 2x1  MUX 

MUX(A, B, S) = (A & !S) | (B & S) 
Draw it in gates: 

output 

A 

B 

S 

OR 

AND 

AND 

So common, we give it 
its own symbol: 
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Example 4x1 MUX 

3 

2 

1 

0 a 

b 

c 

d 

y 

S 

2 

a 
b 

c 
d 

out 

s0 s1 

The / 2 on the wire means “2 bits” 
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Arithmetic and Logical Operations in ISA 

•  What operations are there? 
•  How do we implement them? 

− Consider a 1-bit Adder 
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A 1-bit Full Adder 

a  b  Cin  Sum  Cout 
0  0  0    0    0 
0  0  1    1    0 
0  1  0    1    0 
0  1  1    0    1 
1  0  0    1    0 
1  0  1    0    1 
1  1  0    0    1 
1  1  1    1    1 

01101100 
 

 01101101 
+00101100 
 10011001 

a 

b 

Cin 

Cout 

Sum 
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a0 a1 a2 a3 b0 b1 b2 b3 

Cout 

S0 S1 S2 S3 

Full AdderFull AdderFull AdderFull Adder

Example: 4-bit adder 
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Subtraction 

•  How do we perform integer subtraction? 
•  What is the hardware? 

− Recall: hardware was why 2’s complement was good idea 

•  Remember: Subtraction is just addition 
X – Y =  
X + (-Y) = 
X + (~Y +1) 
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Full AdderFull AdderFull AdderFull Adder

a0 a1 a2 a3 b0 b1 b2 b3 

Cout 

S0 S1 S2 S3 

Add/Sub 

Example: Adder/Subtractor 
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Overflow 

•  We can detect unsigned overflow by looking at CO 
•  How would we detect signed overflow? 

− If adding positive numbers and result “is” negative 
− If adding negative numbers and result “is” positive 
− At most significant bit of adder, check if CI != CO  
− Can check with XOR gate 
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Add/Subtract With Overflow Detection 

Full AdderFull AdderFull AdderFull Adder

S0 S1 Sn- 2 Sn- 1 

Overflow 

a0 a1 b0 b1 an- 2 bn- 2 an- 1 bn- 1 

Add/Sub 
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Add/sub 

C in 

C ou t 

Add/sub F 

2 

0 

1 

2 

3 

a 

b 

Q 

A   F         Q 
0   0        a + b 
1   0        a - b 
-    1      NOT b 
-    2      a OR b 
-    3      a AND b 

ALU Slice 
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The ALU 

ALU Slice ALU Slice ALU Slice ALU Slice 

ALU control 

a 0 b 0 a 1 b 1 a n-2 b n-2 a n-1 b n-1 

Q 0 Q 1 Q n-2 Q n-1 

Overflow = Zero 
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Summary 

•  Boolean Algebra & functions 
•  Logic gates (AND, OR, NOT, etc) 
•  Multiplexors 
•  Adder 
•  Arithmetic Logic Unit (ALU) 


