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The ALU 

ALU Slice ALU Slice ALU Slice ALU Slice 
ALU control 

a 0 b 0 a 1 b 1 a n-2 b n-2 a n-1 b n-1 

Q 0 Q 1 Q n-2 Q n-1 

Overflow = Zero 
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Abstraction: The ALU 

•  General structure 
•  Two operand inputs 
•  Control inputs 

•  We can build 
circuits for 
− Multiplication 
− Division 
− They are more 

complex 

Input A 

Input B 

ALU Operation 

Carry Out 

Result 
Overflow 

Zero 
ALU 
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Another Operations We Might Want: Shift 

•  Remember the << and >> operations? 
− Shift left/shift right? 
− How would we implement these? 

•  Suppose you have an 8-bit number 
b7b6b5b4b3b2b1b0 

•  And you can shift it left by a 3-bit number 
s2s1s0 
 

•  Option 1: Truth Table? 
− 211 = 2048 rows?  Yuck. 
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Let’s simplify 

•  Simpler problem: 8-bit number shifted by 1 bit 
number (shift amount selects each mux) 

ECE/CS 250 

b0 

b1 

b2 

b3 

b4 

b7 

b6 

b5 

0 
out0 

out1 

out2 

out3 

out4 

out5 

out6 

out7 
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Let’s simplify 

•  Simpler problem: 8-bit number shifted by 2 bit 
number 

ECE/CS 250 

b0 

b1 

b2 

b3 

b4 

b7 

b6 

b5 

0 
out0 

out1 

out2 

out3 

out4 

out5 

out6 

out7 
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Now shifted by 3-bit number 

•  Full problem: 8-bit number shifted by 3 bit number 
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b0 

b1 

b2 

b3 

b4 

b7 

b6 

b5 

0 out0 

out1 

out2 

out3 

out4 

out5 

out6 

out7 
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Now shifted by 3-bit number 

•  Shifter in action: shift by 000 (all muxes have S=0) 
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b0 

b1 

b2 

b3 

b4 

b7 

b6 

b5 

0 out0 

out1 

out2 

out3 

out4 

out5 

out6 

out7 
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Now shifted by 3-bit number 

•  Shifter in action: shift by 010 
− Mux control signals from R to L: S = 0, 1, 0 
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b0 

b1 

b2 

b3 

b4 

b7 

b6 

b5 

0 out0 

out1 

out2 

out3 

out4 

out5 

out6 

out7 
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Now shifted by 3-bit number 

•  Shifter in action: shift by 011 
− Mux control signals from R to L: S= 0, 1, 1 
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b0 

b1 

b2 

b3 

b4 

b7 

b6 

b5 

0 out0 

out1 

out2 

out3 

out4 

out5 

out6 

out7 
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So far… 

•  We can make logic to compute “math” 
− Add, subtract … and you can do mul/div in 350 

•  Assume for now that mul/div can be built 

− Bitwise: AND, OR, NOT,… 
− Shifts (left or right) 
− Selection (MUX) 
− …pretty much anything 

•  But processors need state (hold value) 
− Registers 
− … 
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Storage 

•  All the circuits we looked at so far are combinational 
circuits: the output is a Boolean function of the 
inputs. 

•  We need circuits that can remember values  
(registers, memory) 

•  The output of the circuit is a function of the input and 
a function of a stored value (state)    

•  Circuits with storage are called sequential circuits 

•  Key to storage: feedback loops from outputs to 
inputs 
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Ideal Storage – Where We’re Headed 

•  We want something that can hold 1 bit 

•  We want to control when it is re-written 

•  We’re going to dig a bit into the box 

“flip flop” = 
device that  
holds one 
bit (0 or 1) 

bit to be written 
bit currently being held 

bit to control 
when we write 
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FF Step #1: Set-Reset (SR) Latch 

R 

S 

Q 

Q 

0 
1 0 

1 
0 
0 

R 

S 

Q 

Q 

0 
0 1 

0 
1 
0 

R  S  Q 
0  0  Q 
0  1  1 
1  0  0 
1  1  - Don’t set both S & R to 1. 

Seriously, don’t do it. 
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R 

S 

Q 

Q 

0 
1 0 

1 
0 
0 

R 

S 

Q 

Q 

0 
0 1 

0 
1 
1 

Set-Reset Latch (Continued) 

Time 

S 0 
1 

R 
0 
1 

Q 
0 
1 
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R 

S 

Q 

Q 

0 
1 0 

1 
0 
0 

R 

S 

Q 

Q 

0 
0 1 

0 
1 
1 

Set-Reset Latch (Continued) 

Time 

S 0 
1 

R 
0 
1 

Q 
0 
1 

Set Signal Goes High 

Output Signal Goes High 
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R 

S 

Q 

Q 

0 
1 0 

1 
0 
0 

R 

S 

Q 

Q 

0 
0 1 

0 
1 
1 

Set-Reset Latch (Continued) 

Time 

S 0 
1 

R 
0 
1 

Q 
0 
1 

Set Signal Goes Low 

Output Signal Stays High 
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R 

S 

Q 

Q 

0 
1 0 

1 
0 
0 

R 

S 

Q 

Q 

0 
0 1 

0 
1 
1 

Set-Reset Latch (Continued) 

Time 

S 0 
1 

R 
0 
1 

Q 
0 
1 

Until Reset Signal  
Goes High 

Then Output Signal Goes Low 
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SR Latch 

•  Downside: S and R at once = chaos 

•  Downside: Bad interface 

•  So let’s build on it to do better 
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FF Step #2: Data Latch (“D Latch”) 

Q 

Q 

Starting with SR Latch 

R 

S 
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Data Latch (D Latch) 

Data 

Enable 
Q 

Q 

Starting with SR Latch 
 
Change interface to  
 Data + Enable (D + E) 
 
If E=0, then R=S=0. 
If E=1, then S=D and R=!D 
 

R 

S 
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Data Latch (D Latch) 

Data 

Enable 
Q 

Q 

D   E   Q 
0   1   0 
1   1   1 
-   0   Q 

Time 

D 0 
1 

E 
0 
1 

Q 
0 
1 

E goes high 

D “latched” 
Stays as output 

R 

S 
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Data Latch (D Latch) 

Data 

Enable 
Q 

Q 

D   E   Q 
0   1   0 
1   1   1 
-   0   Q 

Time 

D 0 
1 

E 
0 
1 

Q 
0 
1 

Does not 
 affect Output 

E goes low 

Output unchanged 
By changes to D 

R 

S 
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Data Latch (D Latch) 

Data 

Enable 
Q 

Q 

D   E   Q 
0   1   0 
1   1   1 
-   0   Q 

Time 

D 0 
1 

E 
0 
1 

Q 
0 
1 

E goes high 

D “latched” 
Becomes new output 

R 

S 
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Data Latch (D Latch) 

Data 

Enable 
Q 

Q 

D   E   Q 
0   1   0 
1   1   1 
-   0   Q 

Time 

D 0 
1 

E 
0 
1 

Q 
0 
1 

Slight Delay 

(Logic gates take time) 

R 

S 
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Logic Takes Time 

•  Logic takes time: 

− Gate delays: delay to switch each gate 

− Wire delays: delay for signal to travel down wire 

− Other factors (not going into them here) 

•  Need to make sure that signals timing is right 

− Don’t want to have races or wacky conditions.. 
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Clocks 

•  Processors have a clock: 
− Alternates 0 1 0 1 
− Like the processor’s internal metronome 
− Latch ! logic ! latch in one clock cycle 

− 3 GHz processor = 3 Billion clock cycles/sec  

ECE/CS 250 

One clock cycle 
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FF Step #3: Using Level-Triggered D Latches 

•  First thoughts: Level Triggered 
− Latch captures new value when clock is high 
− Latch holds existing value when clock is low 

ECE/CS 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 
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Strawman: Level Triggered 

•  How we’d like this to work 
− Clock is low, all values stable 

ECE/CS 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

010 111 100 001 

0 

Clk 
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Strawman: Level Triggered 

•  How we’d like this to work 
− Clock goes high, latches capture and xmit new val 

ECE/CS 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

010 010 100 100 

0 

Clk 



31 © Daniel J. Sorin from Hilton and Lebeck 

Strawman: Level Triggered 

•  How we’d like this to work 
− Signals work their way through logic w/ high clk 

ECE/CS 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

010 010 100 100 

0 

Clk 
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Strawman: Level Triggered 

•  How we’d like this to work 
− Clock goes low before signals reach next latch 

ECE/CS 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

010 010 100 100 

0 

Clk 
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Strawman: Level Triggered 

•  How we’d like this to work 
− Clock goes low before signals reach next latch 

ECE/CS 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

111 010 000 100 

0 

Clk 
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Strawman: Level Triggered 

•  How we’d like this to work 
− Everything stable before clk goes high 

ECE/CS 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

111 010 000 100 

0 

Clk 
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Strawman: Level Triggered 

•  How we’d like this to work 
− Clk goes high again, repeat 

ECE/CS 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

111 111 000 000 

0 

Clk 
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Strawman: Level Triggered 

•  Problem: What if signal reaches latch too early? 
− I.e., while clk is still high 

ECE/CS 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

111 111 101 000 

0 

Clk 
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Strawman: Level Triggered 

•  Problem: What if signal reaches latch too early? 
− Signal goes right through latch, into next stage.. 

ECE/CS 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

111 111 101 101 

0 

Clk 
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That would be bad… 

•  Getting into a stage too early is bad 
− Something else is going on there ! corrupted 
− Also may be a loop with one latch 

ECE/CS 250 



39 © Daniel J. Sorin from Hilton and Lebeck 

FF Step #4: Edge Triggered 

•  Instead of level triggered 
− Latch a new value at a clock level (high or low) 

•  We use edge triggered 
− Latch a value at an clock edge (rising or falling) 

ECE/CS 250 

Rising Edges 

Falling Edges 
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Our Ultimate Goal: D Flip-Flop 

•  Rising edge triggered D Flip-flop 
− Two D Latches w/ opposite clking of enables 

ECE/CS 250 

D 
latch 

D Q 

E 

D 
latch 

D Q 

E Q Q 

Q D 

C 
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D Flip-Flop 

•  Rising edge triggered D Flip-flop 
− Two D Latches w/ opposite clking of enables 
− On Low Clk, first latch enabled (propagates value) 

•  Second not enabled, maintains value 

ECE/CS 250 

D 
latch 

D Q 

E 

D 
latch 

D Q 

E Q Q 

Q D 

C 
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D Flip-Flop 

•  Rising edge triggered D Flip-flop 
− Two D Latches w/ opposite clking of enables 
− On Low Clk, first latch enabled (propagates value) 

•  Second not enabled, maintains value 

− On High Clk, second latch enabled 
•  First latch not enabled, maintains value  

ECE/CS 250 

D 
latch 

D Q 

E 

D 
latch 

D Q 

E Q Q 

Q D 

C 
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D Flip-Flop 

•  No possibility of “races” anymore 
− Even if I put 2 DFFs back-to-back… 
− By the time signal gets through 2nd latch of 1st DFF 
1st latch of 2nd DFF is disabled 

•  Still must ensure signals reach DFF before clk rises 
− Important concern in logic design “making timing”  

ECE/CS 250 

D 
latch 

D Q 

E 

D 
latch 

D Q 

E Q 

D 

C 

D 
latch 

D Q 

E 

D 
latch 

D Q 

E Q 

C 
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D Flip-Flop 

•  Could also trigger on falling edge 
− Switch which latch has NOT on clk  

•  D Flip-flop is ubiquitous 
− Typically people just say “latch” and mean DFF 
− Which edge: doesn’t matter 

•  As long as consistent in entire design 
•  We’ll use rising edge 

ECE/CS 250 
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D flip flops 

•  Generally don’t draw clk input 
− Have one global clk, assume it goes there 
− Often see > as symbol meaning clk  

•  Maybe have explicit enable 
− Might not want to write every cycle 
− If no enable signal shown, implies always enabled 

•  Get output and NOT(output) for “free” 

ECE/CS 250 

DFF 
D Q 

E Q 
DFF 

D Q 

Q 

DFF 
D Q 

> Q 
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More Storage Than a D-FF: Register File 

•  A MIPS register can be made with 32 flip flops 
•  One register can store one 32-bit value 
•  So do we just replicate this 32 times to get the 32 

registers for a MIPS processor? 
− Not exactly 

  
•  Register File (the physical storage for the regs) 

− MIPS register file has 32 32-bit registers 
•  How do we build a Register File using D Flip-Flops? 
•  What other components do we need? 
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Register File Design 

•  Use a mux to pick read ? 
− 32-input mux = slow 
− (other regs not pictured) 

ECE/CS 250 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

… … 
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Register File Design 

•  Use a mux to pick read ? 
− 32 input mux = slow 
− other regs not pictured 

•  Writing the registers 
− Need to pick which reg 
− Have reg num (e.g., 19) 
− Need to make En19=1 

•  En0, En1,… = 0 

ECE/CS 250 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

… … WrData 

En0 

En1 

En30 

En31 
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First: A Decoder 

•  First task:  convert binary number to “one hot” 
− N bits in 
− 2N bits out 
− 2N-1 bits are 0, 1 bit (matching the input) is 1 

ECE/CS 250 

D
ec

od
er 

3 

101 
0 

0 
0 

0 
0 

1 
0 

0 
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Decoder Logic 

•  Decoder comprised of AND gates for each output: 
− Out0 = 1 only if input 000 

ECE/CS 250 

In0 

In1 

In2 

Out0 

3-input gates are fine. 
In theory, gates can have any # of inputs 
In practice >4 converted to multiple gates 
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Decoder Logic 

•  Decoder comprised of AND gates for each output: 
− Out1 =1 only if input 001 

ECE/CS 250 

In0 

In1 

In2 

Out0 

Out1 

Repeat for all outputs: 
AND together right bits 
(gets messy fast on a slide) 
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Register File 

•  Now we know how to write: 
− Use decoder to convert reg # to one hot 
− Send write data to all regs 
− Use one hot encoding of reg # to enable right reg 

•  How do we read? 
− 32-input mux is not realistic 
− To do this: expand our world from {0, 1} to {0, 1, Z} 

ECE/CS 250 
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Kind of like water in a pipe… 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− This wire is 0 (it has no water) 

ECE/CS 250 
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Kind of like water in a pipe… 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− This wire is 1 (it is full of water) 

ECE/CS 250 
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Kind of like water in a pipe… 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− Suppose a gate drives a 0 onto this wire 
•  Think of it as sucking the water out 

ECE/CS 250 

0 
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Kind of like water in a pipe… 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− Suppose a gate drives a 0 onto this wire 
•  Think of it as sucking the water out 

ECE/CS 250 

0 
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Kind of like water in a pipe… 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− Suppose a gate drives a 0 onto this wire 
•  Think of it as sucking the water out 
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0 
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Kind of like water in a pipe… 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− Suppose a gate drives a 0 onto this wire 
•  Think of it as sucking the water out 
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0 



59 © Daniel J. Sorin from Hilton and Lebeck 

Kind of like water in a pipe… 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− Suppose the gate now drives a 1 
•  Think of it as pumping water in 

ECE/CS 250 

1 
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Kind of like water in a pipe… 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− Suppose the gate now drives a 1 
•  Think of it as pumping water in 
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1 
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Kind of like water in a pipe… 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− Suppose the gate now drives a 1 
•  Think of it as pumping water in 
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1 
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Remember this rule? 

•  Remember I told you not to connect two outputs? 

•  If one gate tries to drive a 1 and the other drives a 0 
− One pumps water in.. The other sucks it out 
− Except it’s electric charge, not water 
− “Short circuit” ! lots of current ! lots of heat 

ECE/CS 250 

a 
b 

c 
d 

BAD! 
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So this third option: Z 

•  There is a third possibility:  Z (“high impedance”) 
− Neither pushing water in, nor sucking it out 
− Simply prevents water flow with no effect on pipe 
− Prevents electricity from flowing through 

•  Gate that gives us {0,1,Z} : Tri-state 
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D  E  Q 
0  1  0 
1  1  1 
-  0  Z 

D Q 

E 
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It’s ok to connect multiple outputs together 
Under one circumstance:  

All but one must be outputting Z at any time 

D0

E0

D1

E1

Dn-2

En-2

Dn-1

En-1

We’ve had this rule one day… and you break it 
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Mux, implemented with tri-states 

•  We can build effectively a mux 
from tri-states 
− Much more efficient for 

large #s of inputs (e.g., 32) 
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D
ec

od
er 

5 

11110 
0 

0 

1 
0 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

… … 

… … 
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Ports 

•  Read Port(s) 
− Ability to do one read per clock cycle 
− Adding a read port 

•  Another decoder 
•  Another set of tri-states 
•  Another output bus (wire connecting the tri-states) 

− Read 2 source registers per instr? 
•  Maybe even more if we do many instrs at once 

•  Write Port 
− Ability to do one write per cycle 
− Adding a write port 

•  Add muxes to select write values 

ECE/CS 250 
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Minor Detail 

•  FYI:  This is not how a register file is implemented 
− (Though it is how other things are implemented) 
− Actually done with SRAM 
− We’ll see that later this semester… 

ECE/CS 250 
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Summary 

Can layout logic to compute things 
Add, subtract,… 

Now can store things 
D flip-flops 
Registers 

Also understand clocks 
 
Just about ready to make a datapath! 
 


