
ECE 250 / CPS 250
Computer Architecture

Basics of Logic Design

ALU and Storage Elements

Benjamin Lee
Slides based on those from

Andrew Hilton (Duke), Alvy Lebeck (Duke)
Benjamin Lee (Duke), and Amir Roth (Penn)

2 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

The ALU

ALU Slice ALU Slice ALU Slice ALU Slice
ALU control

a 0 b 0 a 1 b 1 a n-2 b n-2 a n-1 b n-1

Q 0 Q 1 Q n-2 Q n-1

Overflow = Zero

3 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

Abstraction: The ALU

•  General structure
•  Two operand inputs
•  Control inputs

•  We can build
circuits for
− Multiplication
− Division
− They are more

complex

Input A

Input B

ALU Operation

Carry Out

Result
Overflow

Zero
ALU

4 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

Another Operations We Might Want: Shift

•  Remember the << and >> operations?
− Shift left/shift right?
− How would we implement these?

•  Suppose you have an 8-bit number
b7b6b5b4b3b2b1b0

•  And you can shift it left by a 3-bit number
s2s1s0

•  Option 1: Truth Table?
− 211 = 2048 rows? Yuck.

5 © Daniel J. Sorin from Hilton and Lebeck

Let’s simplify

•  Simpler problem: 8-bit number shifted by 1 bit
number (shift amount selects each mux)

ECE/CS 250

b0

b1

b2

b3

b4

b7

b6

b5

0
out0

out1

out2

out3

out4

out5

out6

out7

6 © Daniel J. Sorin from Hilton and Lebeck

Let’s simplify

•  Simpler problem: 8-bit number shifted by 2 bit
number

ECE/CS 250

b0

b1

b2

b3

b4

b7

b6

b5

0
out0

out1

out2

out3

out4

out5

out6

out7

7 © Daniel J. Sorin from Hilton and Lebeck

Now shifted by 3-bit number

•  Full problem: 8-bit number shifted by 3 bit number

ECE/CS 250

b0

b1

b2

b3

b4

b7

b6

b5

0 out0

out1

out2

out3

out4

out5

out6

out7

8 © Daniel J. Sorin from Hilton and Lebeck

Now shifted by 3-bit number

•  Shifter in action: shift by 000 (all muxes have S=0)

ECE/CS 250

b0

b1

b2

b3

b4

b7

b6

b5

0 out0

out1

out2

out3

out4

out5

out6

out7

9 © Daniel J. Sorin from Hilton and Lebeck

Now shifted by 3-bit number

•  Shifter in action: shift by 010
− Mux control signals from R to L: S = 0, 1, 0

ECE/CS 250

b0

b1

b2

b3

b4

b7

b6

b5

0 out0

out1

out2

out3

out4

out5

out6

out7

10 © Daniel J. Sorin from Hilton and Lebeck

Now shifted by 3-bit number

•  Shifter in action: shift by 011
− Mux control signals from R to L: S= 0, 1, 1

ECE/CS 250

b0

b1

b2

b3

b4

b7

b6

b5

0 out0

out1

out2

out3

out4

out5

out6

out7

11 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

So far…

•  We can make logic to compute “math”
− Add, subtract … and you can do mul/div in 350

•  Assume for now that mul/div can be built

− Bitwise: AND, OR, NOT,…
− Shifts (left or right)
− Selection (MUX)
− …pretty much anything

•  But processors need state (hold value)
− Registers
− …

12 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

Storage

•  All the circuits we looked at so far are combinational
circuits: the output is a Boolean function of the
inputs.

•  We need circuits that can remember values
(registers, memory)

•  The output of the circuit is a function of the input and
a function of a stored value (state)

•  Circuits with storage are called sequential circuits

•  Key to storage: feedback loops from outputs to
inputs

13 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

Ideal Storage – Where We’re Headed

•  We want something that can hold 1 bit

•  We want to control when it is re-written

•  We’re going to dig a bit into the box

“flip flop” =
device that
holds one
bit (0 or 1)

bit to be written
bit currently being held

bit to control
when we write

14 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

FF Step #1: Set-Reset (SR) Latch

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
0

R S Q
0 0 Q
0 1 1
1 0 0
1 1 - Don’t set both S & R to 1.

Seriously, don’t do it.

15 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Set-Reset Latch (Continued)

Time

S 0
1

R
0
1

Q
0
1

16 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Set-Reset Latch (Continued)

Time

S 0
1

R
0
1

Q
0
1

Set Signal Goes High

Output Signal Goes High

17 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Set-Reset Latch (Continued)

Time

S 0
1

R
0
1

Q
0
1

Set Signal Goes Low

Output Signal Stays High

18 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Set-Reset Latch (Continued)

Time

S 0
1

R
0
1

Q
0
1

Until Reset Signal
Goes High

Then Output Signal Goes Low

19 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

SR Latch

•  Downside: S and R at once = chaos

•  Downside: Bad interface

•  So let’s build on it to do better

20 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

FF Step #2: Data Latch (“D Latch”)

Q

Q

Starting with SR Latch

R

S

21 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

Data Latch (D Latch)

Data

Enable
Q

Q

Starting with SR Latch

Change interface to
 Data + Enable (D + E)

If E=0, then R=S=0.
If E=1, then S=D and R=!D

R

S

22 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

Data Latch (D Latch)

Data

Enable
Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

E goes high

D “latched”
Stays as output

R

S

23 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

Data Latch (D Latch)

Data

Enable
Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

Does not
 affect Output

E goes low

Output unchanged
By changes to D

R

S

24 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

Data Latch (D Latch)

Data

Enable
Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

E goes high

D “latched”
Becomes new output

R

S

25 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

Data Latch (D Latch)

Data

Enable
Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

Slight Delay

(Logic gates take time)

R

S

26 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

Logic Takes Time

•  Logic takes time:

− Gate delays: delay to switch each gate

− Wire delays: delay for signal to travel down wire

− Other factors (not going into them here)

•  Need to make sure that signals timing is right

− Don’t want to have races or wacky conditions..

27 © Daniel J. Sorin from Hilton and Lebeck

Clocks

•  Processors have a clock:
− Alternates 0 1 0 1
− Like the processor’s internal metronome
− Latch ! logic ! latch in one clock cycle

− 3 GHz processor = 3 Billion clock cycles/sec

ECE/CS 250

One clock cycle

28 © Daniel J. Sorin from Hilton and Lebeck

FF Step #3: Using Level-Triggered D Latches

•  First thoughts: Level Triggered
− Latch captures new value when clock is high
− Latch holds existing value when clock is low

ECE/CS 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

29 © Daniel J. Sorin from Hilton and Lebeck

Strawman: Level Triggered

•  How we’d like this to work
− Clock is low, all values stable

ECE/CS 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

010 111 100 001

0

Clk

30 © Daniel J. Sorin from Hilton and Lebeck

Strawman: Level Triggered

•  How we’d like this to work
− Clock goes high, latches capture and xmit new val

ECE/CS 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

010 010 100 100

0

Clk

31 © Daniel J. Sorin from Hilton and Lebeck

Strawman: Level Triggered

•  How we’d like this to work
− Signals work their way through logic w/ high clk

ECE/CS 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

010 010 100 100

0

Clk

32 © Daniel J. Sorin from Hilton and Lebeck

Strawman: Level Triggered

•  How we’d like this to work
− Clock goes low before signals reach next latch

ECE/CS 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

010 010 100 100

0

Clk

33 © Daniel J. Sorin from Hilton and Lebeck

Strawman: Level Triggered

•  How we’d like this to work
− Clock goes low before signals reach next latch

ECE/CS 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 010 000 100

0

Clk

34 © Daniel J. Sorin from Hilton and Lebeck

Strawman: Level Triggered

•  How we’d like this to work
− Everything stable before clk goes high

ECE/CS 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 010 000 100

0

Clk

35 © Daniel J. Sorin from Hilton and Lebeck

Strawman: Level Triggered

•  How we’d like this to work
− Clk goes high again, repeat

ECE/CS 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 111 000 000

0

Clk

36 © Daniel J. Sorin from Hilton and Lebeck

Strawman: Level Triggered

•  Problem: What if signal reaches latch too early?
− I.e., while clk is still high

ECE/CS 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 111 101 000

0

Clk

37 © Daniel J. Sorin from Hilton and Lebeck

Strawman: Level Triggered

•  Problem: What if signal reaches latch too early?
− Signal goes right through latch, into next stage..

ECE/CS 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 111 101 101

0

Clk

38 © Daniel J. Sorin from Hilton and Lebeck

That would be bad…

•  Getting into a stage too early is bad
− Something else is going on there ! corrupted
− Also may be a loop with one latch

ECE/CS 250

39 © Daniel J. Sorin from Hilton and Lebeck

FF Step #4: Edge Triggered

•  Instead of level triggered
− Latch a new value at a clock level (high or low)

•  We use edge triggered
− Latch a value at an clock edge (rising or falling)

ECE/CS 250

Rising Edges

Falling Edges

40 © Daniel J. Sorin from Hilton and Lebeck

Our Ultimate Goal: D Flip-Flop

•  Rising edge triggered D Flip-flop
− Two D Latches w/ opposite clking of enables

ECE/CS 250

D
latch

D Q

E

D
latch

D Q

E Q Q

Q D

C

41 © Daniel J. Sorin from Hilton and Lebeck

D Flip-Flop

•  Rising edge triggered D Flip-flop
− Two D Latches w/ opposite clking of enables
− On Low Clk, first latch enabled (propagates value)

•  Second not enabled, maintains value

ECE/CS 250

D
latch

D Q

E

D
latch

D Q

E Q Q

Q D

C

42 © Daniel J. Sorin from Hilton and Lebeck

D Flip-Flop

•  Rising edge triggered D Flip-flop
− Two D Latches w/ opposite clking of enables
− On Low Clk, first latch enabled (propagates value)

•  Second not enabled, maintains value

− On High Clk, second latch enabled
•  First latch not enabled, maintains value

ECE/CS 250

D
latch

D Q

E

D
latch

D Q

E Q Q

Q D

C

43 © Daniel J. Sorin from Hilton and Lebeck

D Flip-Flop

•  No possibility of “races” anymore
− Even if I put 2 DFFs back-to-back…
− By the time signal gets through 2nd latch of 1st DFF
1st latch of 2nd DFF is disabled

•  Still must ensure signals reach DFF before clk rises
− Important concern in logic design “making timing”

ECE/CS 250

D
latch

D Q

E

D
latch

D Q

E Q

D

C

D
latch

D Q

E

D
latch

D Q

E Q

C

44 © Daniel J. Sorin from Hilton and Lebeck

D Flip-Flop

•  Could also trigger on falling edge
− Switch which latch has NOT on clk

•  D Flip-flop is ubiquitous
− Typically people just say “latch” and mean DFF
− Which edge: doesn’t matter

•  As long as consistent in entire design
•  We’ll use rising edge

ECE/CS 250

45 © Daniel J. Sorin from Hilton and Lebeck

D flip flops

•  Generally don’t draw clk input
− Have one global clk, assume it goes there
− Often see > as symbol meaning clk

•  Maybe have explicit enable
− Might not want to write every cycle
− If no enable signal shown, implies always enabled

•  Get output and NOT(output) for “free”

ECE/CS 250

DFF
D Q

E Q
DFF

D Q

Q

DFF
D Q

> Q

46 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

More Storage Than a D-FF: Register File

•  A MIPS register can be made with 32 flip flops
•  One register can store one 32-bit value
•  So do we just replicate this 32 times to get the 32

registers for a MIPS processor?
− Not exactly

•  Register File (the physical storage for the regs)

− MIPS register file has 32 32-bit registers
•  How do we build a Register File using D Flip-Flops?
•  What other components do we need?

47 © Daniel J. Sorin from Hilton and Lebeck

Register File Design

•  Use a mux to pick read ?
− 32-input mux = slow
− (other regs not pictured)

ECE/CS 250

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

… …

48 © Daniel J. Sorin from Hilton and Lebeck

Register File Design

•  Use a mux to pick read ?
− 32 input mux = slow
− other regs not pictured

•  Writing the registers
− Need to pick which reg
− Have reg num (e.g., 19)
− Need to make En19=1

•  En0, En1,… = 0

ECE/CS 250

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

… … WrData

En0

En1

En30

En31

49 © Daniel J. Sorin from Hilton and Lebeck

First: A Decoder

•  First task: convert binary number to “one hot”
− N bits in
− 2N bits out
− 2N-1 bits are 0, 1 bit (matching the input) is 1

ECE/CS 250

D
ec

od
er

3

101
0

0
0

0
0

1
0

0

50 © Daniel J. Sorin from Hilton and Lebeck

Decoder Logic

•  Decoder comprised of AND gates for each output:
− Out0 = 1 only if input 000

ECE/CS 250

In0

In1

In2

Out0

3-input gates are fine.
In theory, gates can have any # of inputs
In practice >4 converted to multiple gates

51 © Daniel J. Sorin from Hilton and Lebeck

Decoder Logic

•  Decoder comprised of AND gates for each output:
− Out1 =1 only if input 001

ECE/CS 250

In0

In1

In2

Out0

Out1

Repeat for all outputs:
AND together right bits
(gets messy fast on a slide)

52 © Daniel J. Sorin from Hilton and Lebeck

Register File

•  Now we know how to write:
− Use decoder to convert reg # to one hot
− Send write data to all regs
− Use one hot encoding of reg # to enable right reg

•  How do we read?
− 32-input mux is not realistic
− To do this: expand our world from {0, 1} to {0, 1, Z}

ECE/CS 250

53 © Daniel J. Sorin from Hilton and Lebeck

Kind of like water in a pipe…

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− This wire is 0 (it has no water)

ECE/CS 250

54 © Daniel J. Sorin from Hilton and Lebeck

Kind of like water in a pipe…

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− This wire is 1 (it is full of water)

ECE/CS 250

55 © Daniel J. Sorin from Hilton and Lebeck

Kind of like water in a pipe…

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− Suppose a gate drives a 0 onto this wire
•  Think of it as sucking the water out

ECE/CS 250

0

56 © Daniel J. Sorin from Hilton and Lebeck

Kind of like water in a pipe…

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− Suppose a gate drives a 0 onto this wire
•  Think of it as sucking the water out

ECE/CS 250

0

57 © Daniel J. Sorin from Hilton and Lebeck

Kind of like water in a pipe…

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− Suppose a gate drives a 0 onto this wire
•  Think of it as sucking the water out

ECE/CS 250

0

58 © Daniel J. Sorin from Hilton and Lebeck

Kind of like water in a pipe…

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− Suppose a gate drives a 0 onto this wire
•  Think of it as sucking the water out

ECE/CS 250

0

59 © Daniel J. Sorin from Hilton and Lebeck

Kind of like water in a pipe…

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− Suppose the gate now drives a 1
•  Think of it as pumping water in

ECE/CS 250

1

60 © Daniel J. Sorin from Hilton and Lebeck

Kind of like water in a pipe…

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− Suppose the gate now drives a 1
•  Think of it as pumping water in

ECE/CS 250

1

61 © Daniel J. Sorin from Hilton and Lebeck

Kind of like water in a pipe…

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− Suppose the gate now drives a 1
•  Think of it as pumping water in

ECE/CS 250

1

62 © Daniel J. Sorin from Hilton and Lebeck

Remember this rule?

•  Remember I told you not to connect two outputs?

•  If one gate tries to drive a 1 and the other drives a 0
− One pumps water in.. The other sucks it out
− Except it’s electric charge, not water
− “Short circuit” ! lots of current ! lots of heat

ECE/CS 250

a
b

c
d

BAD!

63 © Daniel J. Sorin from Hilton and Lebeck

So this third option: Z

•  There is a third possibility: Z (“high impedance”)
− Neither pushing water in, nor sucking it out
− Simply prevents water flow with no effect on pipe
− Prevents electricity from flowing through

•  Gate that gives us {0,1,Z} : Tri-state

ECE/CS 250

D E Q
0 1 0
1 1 1
- 0 Z

D Q

E

64 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

It’s ok to connect multiple outputs together
Under one circumstance:

All but one must be outputting Z at any time

D0

E0

D1

E1

Dn-2

En-2

Dn-1

En-1

We’ve had this rule one day… and you break it

65 © Daniel J. Sorin from Hilton and Lebeck

Mux, implemented with tri-states

•  We can build effectively a mux
from tri-states
− Much more efficient for

large #s of inputs (e.g., 32)

ECE/CS 250

D
ec

od
er

5

11110
0

0

1
0

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

… …

… …

66 © Daniel J. Sorin from Hilton and Lebeck

Ports

•  Read Port(s)
− Ability to do one read per clock cycle
− Adding a read port

•  Another decoder
•  Another set of tri-states
•  Another output bus (wire connecting the tri-states)

− Read 2 source registers per instr?
•  Maybe even more if we do many instrs at once

•  Write Port
− Ability to do one write per cycle
− Adding a write port

•  Add muxes to select write values

ECE/CS 250

67 © Daniel J. Sorin from Hilton and Lebeck

Minor Detail

•  FYI: This is not how a register file is implemented
− (Though it is how other things are implemented)
− Actually done with SRAM
− We’ll see that later this semester…

ECE/CS 250

68 © Daniel J. Sorin from Hilton and Lebeck ECE/CS 250

Summary

Can layout logic to compute things
Add, subtract,…

Now can store things
D flip-flops
Registers

Also understand clocks

Just about ready to make a datapath!

