
ECE 250 / CPS 250
Computer Architecture

Basics of Logic Design
Finite State Machines

Benjamin Lee
Slides based on those from

Andrew Hilton (Duke), Alvy Lebeck (Duke)
Benjamin Lee (Duke), and Amir Roth (Penn)

Finite State Machine (FSM)

•  FSM = States + Transitions
•  Next state = function (current state, inputs)
•  Outputs = function (current state, inputs)

•  What you do depends on what state you’re in
•  Think of a calculator … if you type “+3=“, the result depends on

what you did before, i.e., the state of the calculator

•  Canonical Example: Combination Lock
•  Must enter 3 8 4 to unlock

Daniel J. Sorin from Hilton and Roth 2

Finite State Machines: Example

•  Combination Lock Example:
•  Need to enter 3 8 4 to unlock

•  Initial State called “start”: no valid piece of combo seen
•  All FSMs get reset to their start state

Daniel J. Sorin from Hilton and Roth 3

Start

Finite State Machines: Example

•  Combination Lock Example:
•  Need to enter 3 8 4 to unlock

•  Input of 3: transition to new state, output=0
•  Any other input: stay in same state, output=0
Daniel J. Sorin from Hilton and Roth 4

start saw 3
3/0

{0-2,4-9}/0

if input = 3, go to state
“saw 3” and set output=0

if input != 3, go to state
“start” and set output=0

Finite State Machines: Example

•  Combination Lock Example:
•  Need to enter 3 8 4 to unlock

•  If in state “saw 3”:
•  Input = 8? Goto state “saw 38” and output=0

Daniel J. Sorin from Hilton and Roth 5

start saw 3
3/0

{0-2,4-9}/0

saw 38

8/0

3/0

{0-2,4-7,9}/0

Finite State Machines: Example

•  Combination Lock Example:
•  Need to enter 3 8 4 to unlock

•  If in state “saw 38”:
•  Input = 4? Goto state “saw 384” and set output=1 ! Unlock!

Daniel J. Sorin from Hilton and Roth 6

start saw 3
3/0

{0-2,4-9}/0

saw 38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw
384

4/1

Finite State Machines: Example

•  Combination Lock Example:
•  Need to enter 3 8 4 to unlock

•  If in state “saw 384”:
•  Stay in this state forever and output=1

Daniel J. Sorin from Hilton and Roth 7

start saw 3
3/0

{0-2,4-9}/0

saw 38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw
384

4/1

{0-9}/1

Finite State Machines: Example

Daniel J. Sorin from Hilton and Roth 8

In this picture, the circles are states.
The arcs between the states are transitions.

The figure is a state transition diagram, and it’s the first thing
you make when designing a finite state machine (FSM).

start saw 3
3/0

{0-2,4-9}/0

saw 38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw
384

4/1

{0-9}/1

Finite State Machines: Caveats

Daniel J. Sorin from Hilton and Roth 9

Do NOT assume all FSMs are like this one!

• A finite state machine (FSM) has at least two states, but can have many,
many more. There’s nothing sacred about 4 states (as in this example).
Design your FSMs to have the appropriate number of states for the problem
they’re solving.

•  Question: how many states would we need to detect sequence
384384?

• Most FSMs don’t have state from which they can’t escape.

FSM Types: Moore and Mealy

Daniel J. Sorin from Hilton and Roth 10

•  Recall: FSM = States + Transitions
•  Next state = function (current state, inputs)
•  Outputs = function (current state, inputs)

•  This is the most general case
•  Called a “Mealy Machine”
•  We will assume Mealy Machines from now on

•  A more restrictive FSM type is a “Moore Machine”
•  Outputs = function (current state)

State Transition Diagram ! Truth Table

Daniel J. Sorin from Hilton and Roth 11

Current State Input Next state Output

Start 3 Saw 3 0 (closed)

Start Not 3 Start 0

Saw 3 8 Saw 38 0

Saw 3 3 Saw 3 0

Saw 3 Not 8 or 3 Start 0

Saw 38 4 Saw 384 1 (open)

Saw 38 3 Saw 3 0

Saw 38 Not 4 or 3 Start 0

Saw 384 Any Saw 3 1

start saw 3
3/0

{0-2,4-9}/0

saw
38

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
saw
384

4/1

{0-9}/1

State Transition Diagram ! Truth Table

Daniel J. Sorin from Hilton and Roth 12

00 01
3/0

{0-2,4-9}/0

10

8/0

{0-2,5-9}/0

3/0

3/0

{0-2,4-7,9}/0
11

4/1

{0-9}/1

Digital logic ! must represent everything in binary, including state
names. But mapping is arbitrary!

We’ll use this mapping:
start = 00
saw 3 = 01
saw 38 = 10
saw 384 = 11

State Transition Diagram ! Truth Table

Daniel J. Sorin from Hilton and Roth 13

Current State Input Next state Output

00 (start) 3 01 0 (closed)

00 Not 3 00 0

01 8 10 0

01 3 01 0

01 Not 8 or 3 00 0

10 4 11 1 (open)

10 3 01 0

10 Not 4 or 3 00 0

11 Any 11 1

4 states ! 2 flip-flops to hold the current state of the FSM
Next state given by inputs to flip-flops are D1D0
Current state given by outputs of flip-flops: Q1Q0

State Transition Diagram ! Truth Table

Daniel J. Sorin from Hilton and Roth 14

Q1 Q0 Input D1 D0 Output

0 0 3 0 1 0 (closed)

0 0 Not 3 0 0 0

0 1 8 1 0 0

0 1 3 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 4 1 1 1 (open)

1 0 3 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Input can be 0-9 ! requires 4 bits
input bits are in3, in2, in1, in0

State Transition Diagram ! Truth Table

Daniel J. Sorin from Hilton and Roth 15

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put

0 0 0 0 1 1 0 1 0

0 0 Not 3 0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

From here, it’s just like combinational logic design!
Write out product-of-sums equations, optimize, and build.

State Transition Diagram ! Truth Table

Daniel J. Sorin from Hilton and Roth 16

Output = (Q1!•Q0•!In3•In2•!In1•!In0) + (Q1•Q0)
D1 = (!Q1•Q0•In3•!In2•!In1•!In0) + (Q1•!Q0•!In3•In2•!In1•!In0) + Q1•Q0
D0 = do the same thing

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put

0 0 0 0 1 1 0 1 0

0 0 Not 3 0 0 0

0 1 1 0 0 0 1 0 0

0 1 0 0 1 1 0 1 0

0 1 Not 8 or 3 0 0 0

1 0 0 1 0 0 1 1 1

1 0 0 0 1 1 0 1 0

1 0 Not 4 or 3 0 0 0

1 1 Any 1 1 1

Truth Table ! Sequential Circuit

Daniel J. Sorin from Hilton and Roth 17

D1 Q1
FF1

!Q1

D0 Q0
FF0

!Q0

Start with 2 FFs and 4 input bits. FFs hold current state of FSM.
(not showing clock/enable inputs on flip flops)

in3
in2
in1
in0

Truth Table ! Sequential Circuit

Daniel J. Sorin from Hilton and Roth 18

D1 Q1
FF1

!Q1

D0 Q0
FF0

!Q0

output = (Q1•!Q0•!In3•In2•!In1•!In0) + Q1•Q0

in3
in2
in1
in0

output

Truth Table ! Sequential Circuit

Daniel J. Sorin from Hilton and Roth 19

D1 Q1
FF1

!Q1

D0 Q0
FF0

!Q0

D1 = (!Q1•Q0•In3•!In2•!In1•!In0) + (Q1•!Q0•!In3•In2•!In1•!In0) + Q1•Q0

in3
in2
in1
in0

output

Truth Table ! Sequential Circuit

Daniel J. Sorin from Hilton and Roth 20

D1 Q1
FF1

!Q1

D0 Q0
FF0

!Q0

D0 = ?? Fill this in and do it at home.

in3
in2
in1
in0

output

FSM Design Principles

•  Systematic approach that always works:
•  Start with state transition diagram
•  Make truth table
•  Write out product-of-sums logic equations
•  Optimize logic equations (optional)
•  Implement logic in circuit

•  Sometimes can do something non-systematic
•  Requires cleverness, but tough to do in general

•  Do not do the following!
•  Use clock as an input (D input of FF)
•  Perform logic on clock signal

Daniel J. Sorin from Hilton and Roth 21

