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Finite State Machine (FSM) 

•  FSM = States + Transitions 
•  Next state = function (current state, inputs) 
•  Outputs = function (current state, inputs) 

•  What you do depends on what state you’re in 
•  Think of a calculator … if you type “+3=“, the result depends on 

what you did before, i.e., the state of the calculator 

•  Canonical Example: Combination Lock 
•  Must enter 3 8 4  to unlock 
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Finite State Machines: Example 

•  Combination Lock Example: 
•  Need to enter 3 8 4 to unlock 

•  Initial State called “start”: no valid piece of combo seen 
•  All FSMs get reset to their start state 
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Start 



Finite State Machines: Example 

•  Combination Lock Example: 
•  Need to enter 3 8 4 to unlock 

•  Input of 3: transition to new state, output=0 
•  Any other input: stay in same state, output=0 
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start saw 3 
3/0 

{0-2,4-9}/0 

if input = 3, go to state 
“saw 3” and set output=0 

if input != 3, go to state  
“start” and set output=0 



Finite State Machines: Example 

•  Combination Lock Example: 
•  Need to enter 3 8 4 to unlock 

•  If in state “saw 3”:  
•  Input = 8?  Goto state “saw 38” and output=0 
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start saw 3 
3/0 

{0-2,4-9}/0 

saw 38 

8/0 

3/0 

{0-2,4-7,9}/0 



Finite State Machines: Example 

•  Combination Lock Example: 
•  Need to enter 3 8 4 to unlock 

•  If in state “saw 38”:  
•  Input = 4?  Goto state “saw 384” and set output=1 ! Unlock! 
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start saw 3 
3/0 

{0-2,4-9}/0 

saw 38 

8/0 

{0-2,5-9}/0 

3/0 

3/0 

{0-2,4-7,9}/0 
saw 
384 

4/1 



Finite State Machines: Example 

•  Combination Lock Example: 
•  Need to enter 3 8 4 to unlock 

•  If in state “saw 384”:  
•  Stay in this state forever and output=1 
 

Daniel J. Sorin from Hilton and Roth 7 

start saw 3 
3/0 

{0-2,4-9}/0 

saw 38 

8/0 

{0-2,5-9}/0 

3/0 

3/0 

{0-2,4-7,9}/0 
saw 
384 

4/1 

{0-9}/1 



Finite State Machines: Example 
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In this picture, the circles are states.   
The arcs between the states are transitions. 
 
The figure is a state transition diagram, and it’s the first thing 
you make when designing a finite state machine (FSM). 

start saw 3 
3/0 

{0-2,4-9}/0 

saw 38 

8/0 

{0-2,5-9}/0 

3/0 

3/0 

{0-2,4-7,9}/0 
saw 
384 

4/1 

{0-9}/1 



Finite State Machines: Caveats 
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Do NOT assume all FSMs are like this one! 
 

• A finite state machine (FSM) has at least two states, but can have many, 
many more.  There’s nothing sacred about 4 states (as in this example).  
Design your FSMs to have the appropriate number of states for the problem 
they’re solving.   

•  Question: how many states would we need to detect sequence 
384384? 

• Most FSMs don’t have state from which they can’t escape. 



FSM Types: Moore and Mealy 
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•  Recall: FSM = States + Transitions 
•  Next state = function (current state, inputs) 
•  Outputs = function (current state, inputs) 

•  This is the most general case 
•  Called a “Mealy Machine”  
•  We will assume Mealy Machines from now on 

•  A more restrictive FSM type is a “Moore Machine” 
•  Outputs = function (current state) 



State Transition Diagram ! Truth Table 
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Current State Input Next state Output 

Start 3 Saw 3 0 (closed) 

Start Not 3 Start 0 

Saw 3 8 Saw 38 0 

Saw 3 3 Saw 3 0 

Saw 3 Not 8 or 3 Start 0 

Saw 38 4 Saw 384 1 (open) 

Saw 38 3 Saw 3 0 

Saw 38 Not 4 or 3 Start 0 

Saw 384 Any Saw 3 1 

start saw 3 
3/0 

{0-2,4-9}/0 

saw 
38 

8/0 

{0-2,5-9}/0 

3/0 

3/0 

{0-2,4-7,9}/0 
saw 
384 

4/1 

{0-9}/1 



State Transition Diagram ! Truth Table 
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00 01 
3/0 

{0-2,4-9}/0 

10 

8/0 

{0-2,5-9}/0 

3/0 

3/0 

{0-2,4-7,9}/0 
11 

4/1 

{0-9}/1 

Digital logic ! must represent everything in binary, including state 
names.  But mapping is arbitrary! 
 
We’ll use this mapping: 
start  = 00 
saw 3  = 01 
saw 38  = 10 
saw 384 = 11 



State Transition Diagram ! Truth Table 
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Current State Input Next state Output 

00 (start) 3 01 0 (closed) 

00 Not 3 00 0 

01 8 10 0 

01 3 01 0 

01 Not 8 or 3 00 0 

10 4 11 1 (open) 

10 3 01 0 

10 Not 4 or 3 00 0 

11 Any 11 1 

4 states ! 2 flip-flops to hold the current state of the FSM 
Next state given by inputs to flip-flops are D1D0 
Current state given by outputs of flip-flops: Q1Q0  



State Transition Diagram ! Truth Table 
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Q1 Q0 Input D1 D0 Output 

0 0 3 0 1 0 (closed) 

0 0 Not 3 0 0 0 

0 1 8 1 0 0 

0 1 3 0 1 0 

0 1 Not 8 or 3 0 0 0 

1 0 4 1 1 1 (open) 

1 0 3 0 1 0 

1 0 Not 4 or 3 0 0 0 

1 1 Any 1 1 1 

Input can be 0-9 ! requires 4 bits 
input bits are in3, in2, in1, in0 



State Transition Diagram ! Truth Table 
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Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put 

0 0 0 0 1 1 0 1 0 

0 0 Not 3 0 0 0 

0 1 1 0 0 0 1 0 0 

0 1 0 0 1 1 0 1 0 

0 1 Not 8 or 3 0 0 0 

1 0 0 1 0 0 1 1 1 

1 0 0 0 1 1 0 1 0 

1 0 Not 4 or 3 0 0 0 

1 1 Any 1 1 1 

From here, it’s just like combinational logic design! 
Write out product-of-sums equations, optimize, and build. 



State Transition Diagram ! Truth Table 
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Output = (Q1!•Q0•!In3•In2•!In1•!In0) + (Q1•Q0) 
D1 = (!Q1•Q0•In3•!In2•!In1•!In0) + (Q1•!Q0•!In3•In2•!In1•!In0) + Q1•Q0 
D0 = do the same thing 

Q1 Q0 In3 In2 In1 In0 D1 D0 Out
put 

0 0 0 0 1 1 0 1 0 

0 0 Not 3 0 0 0 

0 1 1 0 0 0 1 0 0 

0 1 0 0 1 1 0 1 0 

0 1 Not 8 or 3 0 0 0 

1 0 0 1 0 0 1 1 1 

1 0 0 0 1 1 0 1 0 

1 0 Not 4 or 3 0 0 0 

1 1 Any 1 1 1 



Truth Table ! Sequential Circuit 
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D1      Q1  
FF1 

!Q1 

D0      Q0  
FF0 

!Q0 

Start with 2 FFs and 4 input bits.  FFs hold current state of FSM. 
(not showing clock/enable inputs on flip flops) 

in3 
in2 
in1 
in0 



Truth Table ! Sequential Circuit 
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D1      Q1  
FF1 

!Q1 

D0      Q0  
FF0 

!Q0 
 

output = (Q1•!Q0•!In3•In2•!In1•!In0) + Q1•Q0 

in3 
in2 
in1 
in0 

output 



Truth Table ! Sequential Circuit 
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D1      Q1  
FF1 

!Q1 

D0      Q0  
FF0 

!Q0 
 

D1 = (!Q1•Q0•In3•!In2•!In1•!In0) + (Q1•!Q0•!In3•In2•!In1•!In0) + Q1•Q0  

in3 
in2 
in1 
in0 

output 



Truth Table ! Sequential Circuit 
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D1      Q1  
FF1 

!Q1 

D0      Q0  
FF0 

!Q0 
 

D0 = ??   Fill this in and do it at home. 

in3 
in2 
in1 
in0 

output 



FSM Design Principles 

•  Systematic approach that always works: 
•  Start with state transition diagram 
•  Make truth table 
•  Write out product-of-sums logic equations 
•  Optimize logic equations (optional) 
•  Implement logic in circuit 

•  Sometimes can do something non-systematic 
•  Requires cleverness, but tough to do in general 

•  Do not do the following! 
•  Use clock as an input (D input of FF) 
•  Perform logic on clock signal 
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