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Where We Are in This Course Right Now

e So far:
e We know what a computer architecture is
e We know what kinds of instructions it might execute
e We know how to perform arithmetic and logic in an ALU

e Now:

e We learn how to design a processor in which the ALU is just one
component

e Processor must be able to fetch instructions, decode them, and
execute them

e There are many ways to do this, even for a given ISA

e Next:
e We learn how to design memory systems
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This Unit: Processor Design
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Readings

e Patterson and Hennessy
e Chapter 4: Sections 4.1-4.4

e Read this chapter carefully
e It has many more examples than I can cover in class
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So You Have an ALU...

e Important reminder: a processor is just a big finite state
machine (FSM) that interprets some ISA

e Start with one instruction
add $3,$2,5%4
e ALU performs just a small part of execution of instruction
e You have to read and write registers
e You have have to fetch the instruction to begin with

e What about loads and stores?
e Need some sort of memory interface

e \What about branches?
e Need some hardware for that, too
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Datapath and Control

‘ datapath
> -
fetch
v | Insn o Register | Data
PC [— | >
memory File Memory
° : get instruction, translate into control

e Control: which registers read/write, which ALU operation
: registers, memories, ALUs (computation)
e Processor Cycle:

© 2013 Daniel J. Sorin
from Roth

— Decode —

ECE250




Building a Processor for an ISA

e Fetch is pretty straightforward

e Just need a register (called the Program Counter or PC) to hold
the next address to fetch from instruction memory

e Provide address to instruction memory - instruction memory
provides instruction at that address

e Let’ s start with the datapath
1. Look at ISA
2. Make sure datapath can implement every instruction
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Datapath for MIPS ISA

e Consider only the following instructions
add $1,$2,S3
addi $1,2,S3
1w $1,4($3)
sw $1,4($3)
beq $1,$2,PC relative target
j Absolute target

e Why only these?
e Most other instructions are similar from datapath viewpoint
o I leave the ones that aren’ t for you to figure out
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Review: A Register

D, : QO
_|DFF
= = < N N
DFF
L) D+’ 7L>Q
Dy R 9N-1 >
WE —b— | |DFF e |
CLK— WE

e Register: DFF array with shared clock, write-enable (WE)
e Notice: both a clock and a WE (DFF = clock & register,g)
e Convention I: clock represented by wedge
e Convention II: if no WE, DFF is written on every clock
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Uses of Registers: Program Counter

‘ datapath
> -
fetch
| Insn : o Register | Data
memory File M Memory

" control >

e A single register is good for some things
e PC: program counter

e Other things which aren’ t the ISA registers (more later in
semester)
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Uses of Registers: Architected Registers

RDVAL RS1VAL
+. +’
Register File RS2VAL
> —
RD =
T /T’ /T’ /T’ dest reg
WE RD RS1 RS2 RS = source reg

e Register file: the ISA (“architectural”, "visible™) registers
e Two read “ports” + one write “port”
e Maximum number of reads/writes in single instruction (R-type)
e Port: wires for accessing an array of data
e Data bus: width of data element (MIPS: 32 bits)
e Address bus: width of log, number of elements (MIPS: 5 bits)

e Write enable: if it’ s a write port
e M ports = M parallel and independent accesses
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A Register File With Four Registers
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Add a Read Port for RS1

RS1VAL

.

»
»
»
»
»
»
»
»

1RS1

e Qutput of each register into 4to1 mux (RS1VAL)
e RS1 is select input of RS1VAL mux
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Add Another Read Port for RS2

'RS2VAL

2 = > = :} RS1VAL

+RS21RS1

e Qutput of each register into another 4to1 mux (RS2VAL)
e RS2 is select input of RS2VAL mux

© 2013 Daniel J. Sorin
from Roth ECE250 14



Add a Write Port for RD

2-to-1 decoder

RDVAL a a a

'RS2VAL

RS1VAL

—

VVYVYYVY

WE!| -TRD ARS21RS1

e Input RDVAL into each register
e Enable only one register’ s WE: (Decoded RD) & (WE)

e What if we needed two write ports?
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Another Read Port Implementation

e A read port that uses muxes is fine for 4 registers
e Not so good for 32 registers (32-to-1 mux is very slow)

e Alternative implementation uses tri-state buffers
e Truth table (E = enable, D = input

, Q = output
ED—Q i?&_
1D—D £
OD—-2Z

e Z: “high impedance” state, no current flowing

e Mux: connect multiple tri-stated buses to one output bus

e Key: only one input “driving” at any time, all others must be in “Z”

e Else, all hell breaks loose (electrically)
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Register File With Tri-State Read Ports

y
Z N\
vV y 'R y
RDVAL g U U kg
' ~ D] | RSTVAL
> > > >
S 1| RS2VAL
ﬁv
WE | -'RD RS1-1~ RS2
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Another Useful Component: Memory

DATAIN 5 _, \DATAOUT
ADDRES § S Memory
f
WE

e Memory: where instructions and data reside
e One address bus
e One input data bus for writes
e One output data bus for reads

o Actually, a more traditional definition of memory is
e One input/output data bus
e No clock = asynchronous “strobe” instead
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Let’” s Build A MIPS-like Datapath
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Start With Fetch

3

e PC and instruction memory
e A +4 incrementer computes default next instruction PC
e Why +4 (and not +1)?
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First Instruction: add $rd, $rs, $rt

+
o 4

1 Insn
Mem

Vo

Register
File

s1s2 d

R-type | Op(6)

rs(5)

1(©)

e Add register file and ALU
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rd(5) Func(6)

rs + rt
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Second Instruction: addi $rt, $rs, imm

sign extension (sx) unit

+
o 4

P J Insn : Register
C Mem File
> > >T sls2 d
ﬁ—‘ Extended(imm)
I-type | Op(6) od(16

e Destination register can now be either rd or rt
e Add sign extension unit and mux into second ALU input
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Third Instruction: Iw $rt, imm($rs)

+
o 4

P J Insn : Register ? >
C Mem File ) :
>| b >T s1s ¢ T
2 Y.
I-type | Op(6) od(16

o Add data memory, address is ALU output (rs+imm)
e Add register write data mux to select memory output or ALU output
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Fourth Instruction: sw $rt, imm($rs)

+
o 4

> :\ »a
P J Insn Register > Data
C Mem File ? L OIMem
> B >Ts‘1 s2 ¢ Lt _’I>T
Lzl 4@*3&
I-type | Op(6) ed(16

e Add path from second input register to data memory data input
e Disable RegFile’ s WE signal
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Fifth Instruction: beq $1,$2, target

[
»
o
»

+
o 4

[P L | Insn | Register -~ 7T Data
C Mem File qMem
> > > 5152 d B

BHES - |
I-type | Op(6) od(16

e Add left shift unit (why?) and adder to compute PC-relative branch target
e Add mux to do what?
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Sixth Instruction: j

4
//////

)
i
\

X 0

Jtype [ Op(6) _w

e Add shifter to compute left shift of 26-bit immediate
e Add additional PC input mux for jump target
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P Insn Register S B Data
C Mem File L qMem
P> P> > 5182 ] /( _’|>
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Seventh, Eight, Ninth Instructions

e Are these the paths we would need for all instructions?
sll $1,$2,4 // shift left logical
e Like an arithmetic operation, but need a shifter too
slt $1,$2,$3 // set less than (slt)
o Like subtract, but need to write the condition bits, not the result
e Need zero extension unit for condition bits
e Need additional input to register write data mux
jal absolute target // jump and link
e Like a jump, but also need to write PC+4 into $ra ($31)
e Need path from PC+4 adder to register write data mux
e Need to be able to specify $31 as an implicit destination
jr $31 // jump register
e Like a jump, but need path from register read to PC write mux
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Clock Timing

e Must deliver clock(s) to avoid races

e Can’t write and read same value at same clock edge
e Particularly a problem for RegFile and Memory

e May create multiple clock edges (from single input clock)
by using buffers (to delay clock) and inverters
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This Unit: Processor Design

Application
OS
Compiler Firmware
CPU /0
Memory

Digital Circuits

Gates & Transistors
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e Datapath components and timing
e Registers and register files
e Memories (RAMs)
e (Clocking strategies

e Mapping an ISA to a datapath
e Control
e EXxceptions
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What Is Control?

+
o 4

Insn
Mem

Voo

<2< " JP
> . :\_ »a >
Register > Data
File Mem | Rwd
e d
>T s1s2 ¢ ] /( _’|>T
Rwe (;_?4—‘ > )S'( » ALUop DMwe
Rdst ALUinB

e 9 signals control flow of data through this datapath
e MUX selectors, or register/memory write enable signals
e Datapath of current microprocessor has 100s of control signals
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Example: Control for add

3
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Register
File

k)

Rdst=1 ALUInB=0
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Rwd=0
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Example: Control for sw

3

o Difference between a sw and an add is 5 signals
e 3if you don’ t count the X (“don’ t care”) signals
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Register

Rdst=X ALUinB=1
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Example: Control for beq $1,$2, target

3

Register

Rdst=X ALUinB=0
e Difference between a store and a branch is only 4 signals
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How Is Control Implemented?

+
o 4

S:E]BR

Insn

Voo

Mem
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<2< JP
> . :\_ »la
Register > Data ‘
File ‘ gMem | Rwd
> 5182 « /( B
Rwe | ~ (:'_')W /)S( ALUop | pMwe
Rds ALUInB
0 0
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Implementing Control

e Each instruction has a unique set of control signals
e Most signals are function of opcode
e Some may be encoded in the instruction itself
e E.g., the ALUop signal is some portion of the MIPS Func field
+ Simplifies controller implementation
— Requires careful ISA design

e Options for implementing control
1. Use instruction type to look up control signals in a table
2. Design FSM whose outputs are control signals
e Either way, goal is same: turn instruction into control signals
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Control Implementation: ROM

e ROM (read only memory): like a RAM but unwritable
e Bits in data words are control signals

e Lines indexed by opcode

e Example: ROM control for our simple datapath

opcode

/

N\

© 2013 Daniel J. Sorin
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Vb ov

add
addi

SW
beq

BR | JP | ALUInB | ALUop | DMwe | Rwe | Rdst | Rwd
0f O 0 0 0 1 1 0
0f O 1 0 0 1 1 0
0f O 1 0 0 1 0 1
0f O 1 0 1 0 0 0
11 O 0 1 0 0 0 0
0 1 0 0 0 0 0 0
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ROM vs. Combinational Logic

e A control ROM is fine for 6 insns and 9 control signals

e A real machine has 100+ insns and 300+ control signals

e Even “RISC”s have lots of instructions
e 30,000+ control bits (~4KB)
— Not huge, but hard to make fast
e Control must be faster than datapath

e Alternative: combinational logic
e Exploits observation: many signals have few 1s or few 0s
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Control Implementation: Combinational Logic

e Example: combinational logic control for our simple
datapath

opcode/ add

_ °
addi ® ®
Il = > o o ®
SW ®
beq o °

D BR A A S

BR JP DMwe Rwe Rwd Rdst ALUop ALUinB
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Datapath and Control Timing

8 Data ‘
>

Control (ROM or combinational logic)

SN
{1
[PL1 | Insn | Register
C Mem File
> > > s 32
BB R
A
d
Read IMem Read Registers
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T

Read DMEM  Write DMEM
Write Registers
Write PC
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“Single-Cycle” Performance

o Useful metric: cycles per instruction (CPI)

+ Easy to calculate for single-cycle processor: CPI = 1
e Seconds/program = (insns/program) * 1 CPI * (N seconds/cycle)
e ICQ: How many cycles/second in 3.8 GHz processor?

— Slow!
e Clock period must be elongated to accommodate longest operation

e In our datapath: Iw

e Goes through five structures in series: insn mem, register file
(read), ALU, data mem, register file again (write)

e No one will buy a machine with a slow clock

e Later: faster processor cores
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This Unit: Processor Design

Application
OS
Compiler Firmware
CPU /0
Memory

Digital Circuits

Gates & Transistors
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e Registers and register files
e Memories (RAMs)
e (Clocking strategies

e Mapping an ISA to a datapath
e Control
e EXxceptions
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Program Execution

e Threads of Control
e Multiple threads, programs run within a system
e Each thread, program has its own program counter

e Program Execution
e Fetch instruction from memory with address in PC
e EXxecute instruction
e Increment PC

e Begin PC at known location after system start-up
e Load the operating system kernel
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Execution Context

e Program context defined by processor state
e General purpose registers (integer, floating-point)
o Status registers (e.g., condition codes)
e Program counter, stack pointer
e Memory hierarchy
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Context Switches

e (Context switches (Motivation)
e Allows programs to share machine, increases machine utilization
e OS schedules, switches between multiple programs
e Permits different execution modes (e.g., user versus OS kernel)

e Context switches (Mechanism)
e Save current context, restore next context

e Context switches (Triggers)
e User <-> User: Timeslice for multiple programs (e.g., 10-100ms)
e User <-> 0OS: Invoke OS to handle external events (e.g., I/O)
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Interrupts and Exceptions

e Exception is external event requiring response
e Clock interrupts for time-slicing, context switches
e [/O operations for network, disk, keyboard, etc.
e “Exception, "“trap” are used interchangeably

7 \\;

Interrupt,

e Exceptions are infrequent

e Input/Output, illegal instruction, divide-by-zero, page fault,
protection fault, ctrl-C, ctrl-Z, timer

e Exception handling requires OS
e OS kernel includes instructions for exception handling
e Exception handling is transparent to application code
e Handlers fix & restart (e.g., I/0), or terminate (e.g., illegal insn)
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Detecting Exceptions

e Undefined Instruction
e Detect unknown opcodes

e Arithmetic Exceptions
e Add logic in ALU to detect overflow
e Add logic in divider to detect divide-by-zero

e Unaligned Access
e Add circuit to check addresses
e Word-aligned addresses have {00} in the least significant bits
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Handling Exceptions

User Program

1d
add

st
div
beq

1d
sub
bne

/'

\

© 2013 Daniel J. Sorin
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Interrupt Handler
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Identify interrupt’s cause
Invoke OS routine

e | = ID for interrupt’s cause

e PC = interrupt_table[i]

o Kernel initializes table @ boot

Clear interrupt signal

Return from interrupt handler
e Return to user context
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Handling System Calls

e Special instruction invokes OS
e Read or write I/O devices

User Program Kernel e Create new process
Id
add 7| Trap e Invoke OS routine

St 7 Handler

Svyscall 6 |+—_ e | =ID for syscall

bea - e PC = interrupt_table[i]
1d e Kernel initializes table @ boot
sub )
Service
bne

Routines/ o - Clear interrupt signal

e Return from interrupt handler
e Return to user context
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Exceptions as “Procedure Calls”

1. Processor saves address of user instruction
e Address of instruction stored in Exception Program Counter (EPC)

2. Processor transfers control to OS
o Set PC to address of exception handler within OS code

3. OS executes handler, which resolves exception

4. OS returns to user program (EPC), or terminates program
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Exceptions and Register Support

1. Exception Program Counter (EPC)
o 32-bit register holds address of affected instruction

2. Cause Register
e 32-bit register encodes exception cause

3. BadVAddr

e 32-bit register holds address that triggers memory access exception
e See memory hierarchy, virtual memory for detail

4. Status
e 32-bit register tracks interrupt handling, multiple interrupts, etc.
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Exception Handling

e What does exception handling look like to software?
e When exception happens...

Control transfers to OS at pre-specified exception handler address
OS has privileged access to registers user processes do not see

e These registers hold information about exception

o Cause of exception (e.g., page fault, arithmetic overflow)

e Other exception info (e.qg., address that caused page fault)

e PC of application insn to return to after exception is fixed
OS uses privileged (and non-privileged) registers to do its “thing”
OS returns control to user application

e Same mechanism available programmatically via SYSCALL
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MIPS Exception Handling

e MIPS uses registers for state during exception handling
e These registers live on “coprocessor 0”
e $14: EPC (holds PC of user program during exception handling)
o $13: exception type (SYSCALL, overflow, etc.)
e $8: virtual address (produced page/protection fault)
e $12: exception mask (which exceptions trigger OS)

e Access registers with privileged instructions m£c0, mtc0
e Privileged = user program cannot execute them
e mfcO: move (register) from coprocessor 0 (to user req)
e mtcO: move (register) to coprocessor 0 (from user reqg)

e Restore user mode with privileged instruction rfe
e Kernel executes this instruction to restore user program
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Implementing Exceptions

e Why do architects care about exceptions?
e Because we use datapath and control to implement them
e More precisely... to implement aspects of exception handling
e Recognition of exceptions
e Transfer of control to OS
e Privileged OS mode

e Later in semester, we’ Il talk more about exceptions (b/c
we need them for I/0)
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Datapath with Support for Exceptions

PSRs ~ —
S smd | Co- —>@—>p—> ! ¥ PcwC
SR
‘D— - 1~ 1~ '\ZJ
PSRr| CRwd |CRwe .
S WA R R R
> . R >\ »a > >
JPLLl Insn [ 11| | Register _',AILU_ A ] Data
Cl| [Mem| [R File ‘ jn B em
> | b > || B sts2 g TR =
T 3 . ‘ ! T
-0~
o Co-processor register (CR) file needn’ t be implemented as
RF

e Independent registers connected directly to pertinent muxes
ce01 PRI (processor status r%gjﬁig(c)er): in privileged mode?
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This Unit: Processor Design

Application e Datapath components and timing
95 e Registers and register files
Compiler Firmware e Memories (RAMs)
CPU o  Clocking strategies
Memory e Mapping an ISA to a datapath
Digital Circuits » Control
Gates & Transistors

Next up: Memory Systems
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Summary

e We now know how to build a fully functional processor

e But..
e We're still treating memory as a black box
e Our fully functional processor is slow. Really, really slow.
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