ECE 250 / CPS 250
Computer Architecture

Processor Design
Datapath and Control

Benjamin Lee
Slides based on those from

Andrew Hilton (Duke), Alvy Lebeck (Duke)
Benjamin Lee (Duke), and Amir Roth (Penn)

Where We Are in This Course Right Now

e So far:
e We know what a computer architecture is
e We know what kinds of instructions it might execute
e We know how to perform arithmetic and logic in an ALU

e Now:

e We learn how to design a processor in which the ALU is just one
component

e Processor must be able to fetch instructions, decode them, and
execute them

e There are many ways to do this, even for a given ISA

e Next:
e We learn how to design memory systems

© 2013 Daniel J. Sorin
from Roth ECE250

This Unit: Processor Design

Applicati ..
PRicalial Datapath components and timing
0S : : :
_) Registers and register files
Compiler Firmware e Memories (RAMs)
CPU o e Mapping an ISA to a datapath
Memory ® ContrOI
Digital Circuits » Exceptions
Gates & Transistors

© 2013 Daniel J. Sorin
from Roth ECE250

Readings

e Patterson and Hennessy
e Chapter 4: Sections 4.1-4.4

e Read this chapter carefully
e It has many more examples than I can cover in class

© 2013 Daniel J. Sorin
from Roth ECE250

So You Have an ALU...

e Important reminder: a processor is just a big finite state
machine (FSM) that interprets some ISA

e Start with one instruction
add $3,$2,5%4
e ALU performs just a small part of execution of instruction
e You have to read and write registers
e You have have to fetch the instruction to begin with

e What about loads and stores?
e Need some sort of memory interface

e \What about branches?
e Need some hardware for that, too

© 2013 Daniel J. Sorin
from Roth ECE250

Datapath and Control

‘ datapath
> -
fetch
v | Insn o Register | Data
PC [— | >
memory File Memory
° : get instruction, translate into control

e Control: which registers read/write, which ALU operation
: registers, memories, ALUs (computation)
e Processor Cycle:

© 2013 Daniel J. Sorin
from Roth

— Decode —

ECE250

Building a Processor for an ISA

e Fetch is pretty straightforward

e Just need a register (called the Program Counter or PC) to hold
the next address to fetch from instruction memory

e Provide address to instruction memory - instruction memory
provides instruction at that address

e Let’ s start with the datapath
1. Look at ISA
2. Make sure datapath can implement every instruction

© 2013 Daniel J. Sorin
from Roth ECE250

Datapath for MIPS ISA

e Consider only the following instructions
add $1,$2,S3
addi $1,2,S3
1w $1,4($3)
sw $1,4($3)
beq $1,$2,PC relative target
j Absolute target

e Why only these?
e Most other instructions are similar from datapath viewpoint
o I leave the ones that aren’ t for you to figure out

© 2013 Daniel J. Sorin
from Roth ECE250

Review: A Register

D, : QO
_|DFF
= = < N N
DFF
L) D+’ 7L>Q
Dy R 9N-1 >
WE —b— | |DFF e |
CLK— WE

e Register: DFF array with shared clock, write-enable (WE)
e Notice: both a clock and a WE (DFF = clock & register,g)
e Convention I: clock represented by wedge
e Convention II: if no WE, DFF is written on every clock

© 2013 Daniel J. Sorin
from Roth ECE250 9

Uses of Registers: Program Counter

‘ datapath
> -
fetch
| Insn : o Register | Data
memory File M Memory

" control >

e A single register is good for some things
e PC: program counter

e Other things which aren’ t the ISA registers (more later in
semester)

© 2013 Daniel J. Sorin
from Roth ECE250 10

Uses of Registers: Architected Registers

RDVAL RS1VAL
+. +’
Register File RS2VAL
> —
RD =
T /T’ /T’ /T’ dest reg
WE RD RS1 RS2 RS = source reg

e Register file: the ISA (“architectural”, "visible™) registers
e Two read “ports” + one write “port”
e Maximum number of reads/writes in single instruction (R-type)
e Port: wires for accessing an array of data
e Data bus: width of data element (MIPS: 32 bits)
e Address bus: width of log, number of elements (MIPS: 5 bits)

e Write enable: if it’ s a write port
e M ports = M parallel and independent accesses

© 2013 Daniel J. Sorin
from Roth ECE250 11

A Register File With Four Registers

© 2013 Daniel J. Sorin
from Roth ECE250

12

Add a Read Port for RS1

RS1VAL

.

»
»
»
»
»
»
»
»

1RS1

e Qutput of each register into 4to1 mux (RS1VAL)
e RS1 is select input of RS1VAL mux

© 2013 Daniel J. Sorin
from Roth ECE250 13

Add Another Read Port for RS2

'RS2VAL

2 = > = :} RS1VAL

+RS21RS1

e Qutput of each register into another 4to1 mux (RS2VAL)
e RS2 is select input of RS2VAL mux

© 2013 Daniel J. Sorin
from Roth ECE250 14

Add a Write Port for RD

2-to-1 decoder

RDVAL a a a

'RS2VAL

RS1VAL

—

VVYVYYVY

WE!| -TRD ARS21RS1

e Input RDVAL into each register
e Enable only one register’ s WE: (Decoded RD) & (WE)

e What if we needed two write ports?

© 2013 Daniel J. Sorin
from Roth ECE250 15

Another Read Port Implementation

e A read port that uses muxes is fine for 4 registers
e Not so good for 32 registers (32-to-1 mux is very slow)

e Alternative implementation uses tri-state buffers
e Truth table (E = enable, D = input

, Q = output
ED—Q i?&_
1D—D £
OD—-2Z

e Z: “high impedance” state, no current flowing

e Mux: connect multiple tri-stated buses to one output bus

e Key: only one input “driving” at any time, all others must be in “Z”

e Else, all hell breaks loose (electrically)

© 2013 Daniel J. Sorin
from Roth ECE250

16

Register File With Tri-State Read Ports

y
Z N\
vV y 'R y
RDVAL g U U kg
' ~ D] | RSTVAL
> > > >
S 1| RS2VAL
ﬁv
WE | -'RD RS1-1~ RS2

© 2013 Daniel J. Sorin
from Roth ECE250 17

Another Useful Component: Memory

DATAIN 5 _, \DATAOUT
ADDRES § S Memory
f
WE

e Memory: where instructions and data reside
e One address bus
e One input data bus for writes
e One output data bus for reads

o Actually, a more traditional definition of memory is
e One input/output data bus
e No clock = asynchronous “strobe” instead

© 2013 Daniel J. Sorin
from Roth ECE250

Let’” s Build A MIPS-like Datapath

© 2013 Daniel J. Sorin
from Roth ECE250

19

Start With Fetch

3

e PC and instruction memory
e A +4 incrementer computes default next instruction PC
e Why +4 (and not +1)?

© 2013 Daniel J. Sorin
from Roth ECE250

First Instruction: add $rd, $rs, $rt

+
o 4

1 Insn
Mem

Vo

Register
File

s1s2 d

R-type | Op(6)

rs(5)

1(©)

e Add register file and ALU

© 2013 Daniel J. Sorin
from Roth

ECE250

rd(5) Func(6)

rs + rt

21

Second Instruction: addi $rt, $rs, imm

sign extension (sx) unit

+
o 4

P J Insn : Register
C Mem File
> > >T sls2 d
ﬁ—‘ Extended(imm)
I-type | Op(6) od(16

e Destination register can now be either rd or rt
e Add sign extension unit and mux into second ALU input

© 2013 Daniel J. Sorin
from Roth ECE250 22

Third Instruction: Iw $rt, imm($rs)

+
o 4

P J Insn : Register ? >
C Mem File) :
>| b >T s1s ¢ T
2 Y.
I-type | Op(6) od(16

o Add data memory, address is ALU output (rs+imm)
e Add register write data mux to select memory output or ALU output

© 2013 Daniel J. Sorin
from Roth ECE250 23

Fourth Instruction: sw $rt, imm($rs)

+
o 4

> :\ »a
P J Insn Register > Data
C Mem File ? L OIMem
> B >Ts‘1 s2 ¢ Lt _’I>T
Lzl 4@*3&
I-type | Op(6) ed(16

e Add path from second input register to data memory data input
e Disable RegFile’ s WE signal

© 2013 Daniel J. Sorin
from Roth ECE250

Fifth Instruction: beq $1,$2, target

[
»
o
»

+
o 4

[P L | Insn | Register -~ 7T Data
C Mem File qMem
> > > 5152 d B

BHES - |
I-type | Op(6) od(16

e Add left shift unit (why?) and adder to compute PC-relative branch target
e Add mux to do what?

© 2013 Daniel J. Sorin
from Roth ECE250 25

Sixth Instruction: j

4
//////

)
i
\

X 0

Jtype [Op(6) _w

e Add shifter to compute left shift of 26-bit immediate
e Add additional PC input mux for jump target

© 2013 Daniel J. Sorin
from Roth ECE250

> :\ »a
P Insn Register S B Data
C Mem File L qMem
P> P> > 5182] /(_’|>

26

Seventh, Eight, Ninth Instructions

e Are these the paths we would need for all instructions?
sll $1,$2,4 // shift left logical
e Like an arithmetic operation, but need a shifter too
slt $1,$2,$3 // set less than (slt)
o Like subtract, but need to write the condition bits, not the result
e Need zero extension unit for condition bits
e Need additional input to register write data mux
jal absolute target // jump and link
e Like a jump, but also need to write PC+4 into $ra ($31)
e Need path from PC+4 adder to register write data mux
e Need to be able to specify $31 as an implicit destination
jr $31 // jump register
e Like a jump, but need path from register read to PC write mux

© 2013 Daniel J. Sorin
from Roth ECE250 27

Clock Timing

e Must deliver clock(s) to avoid races

e Can’t write and read same value at same clock edge
e Particularly a problem for RegFile and Memory

e May create multiple clock edges (from single input clock)
by using buffers (to delay clock) and inverters

© 2013 Daniel J. Sorin
from Roth ECE250

28

This Unit: Processor Design

Application
OS
Compiler Firmware
CPU /0
Memory

Digital Circuits

Gates & Transistors

© 2013 Daniel J. Sorin
from Roth

e Datapath components and timing
e Registers and register files
e Memories (RAMs)
e (Clocking strategies

e Mapping an ISA to a datapath
e Control
e EXxceptions

ECE250

29

What Is Control?

+
o 4

Insn
Mem

Voo

<2< " JP
> . :_ »a >
Register > Data
File Mem | Rwd
e d
>T s1s2 ¢] /(_’|>T
Rwe (;_?4—‘ >)S'(» ALUop DMwe
Rdst ALUinB

e 9 signals control flow of data through this datapath
e MUX selectors, or register/memory write enable signals
e Datapath of current microprocessor has 100s of control signals

© 2013 Daniel J. Sorin
from Roth

ECE250

30

Example: Control for add

3

© 2013 Daniel J. Sorin
from Roth

Register
File

k)

Rdst=1 ALUInB=0

ECE250

Rwd=0

31

Example: Control for sw

3

o Difference between a sw and an add is 5 signals
e 3if you don’ t count the X (“don’ t care”) signals

© 2013 Daniel J. Sorin

from Roth

Register

Rdst=X ALUinB=1

ECE250

32

Example: Control for beq $1,$2, target

3

Register

Rdst=X ALUinB=0
e Difference between a store and a branch is only 4 signals

© 2013 Daniel J. Sorin
from Roth ECE250 33

How Is Control Implemented?

+
o 4

S:E]BR

Insn

Voo

Mem

© 2013 Daniel J. Sorin

from Roth

<2< JP
> . :_ »la
Register > Data ‘
File ‘ gMem | Rwd
> 5182 « /(B
Rwe | ~ (:'_')W /)S(ALUop | pMwe
Rds ALUInB
0 0

ECE250

34

Implementing Control

e Each instruction has a unique set of control signals
e Most signals are function of opcode
e Some may be encoded in the instruction itself
e E.g., the ALUop signal is some portion of the MIPS Func field
+ Simplifies controller implementation
— Requires careful ISA design

e Options for implementing control
1. Use instruction type to look up control signals in a table
2. Design FSM whose outputs are control signals
e Either way, goal is same: turn instruction into control signals

© 2013 Daniel J. Sorin
from Roth ECE250

35

Control Implementation: ROM

e ROM (read only memory): like a RAM but unwritable
e Bits in data words are control signals

e Lines indexed by opcode

e Example: ROM control for our simple datapath

opcode

/

N\

© 2013 Daniel J. Sorin

from Roth

Vb ov

add
addi

SW
beq

BR | JP | ALUInB | ALUop | DMwe | Rwe | Rdst | Rwd
0f O 0 0 0 1 1 0
0f O 1 0 0 1 1 0
0f O 1 0 0 1 0 1
0f O 1 0 1 0 0 0
11 O 0 1 0 0 0 0
0 1 0 0 0 0 0 0

ECE250

ROM vs. Combinational Logic

e A control ROM is fine for 6 insns and 9 control signals

e A real machine has 100+ insns and 300+ control signals

e Even “RISC”s have lots of instructions
e 30,000+ control bits (~4KB)
— Not huge, but hard to make fast
e Control must be faster than datapath

e Alternative: combinational logic
e Exploits observation: many signals have few 1s or few 0s

© 2013 Daniel J. Sorin
from Roth ECE250

37

Control Implementation: Combinational Logic

e Example: combinational logic control for our simple
datapath

opcode/ add

_ °
addi ® ®
Il = > o o ®
SW ®
beq o °

D BR A A S

BR JP DMwe Rwe Rwd Rdst ALUop ALUinB

© 2013 Daniel J. Sorin
from Roth ECE250 38

Datapath and Control Timing

8 Data ‘
>

Control (ROM or combinational logic)

SN
{1
[PL1 | Insn | Register
C Mem File
> > > s 32
BB R
A
d
Read IMem Read Registers

© 2013 Daniel J. Sorin
from Roth

(Read Control ROM)

ECE250

T

Read DMEM Write DMEM
Write Registers
Write PC

39

“Single-Cycle” Performance

o Useful metric: cycles per instruction (CPI)

+ Easy to calculate for single-cycle processor: CPI = 1
e Seconds/program = (insns/program) * 1 CPI * (N seconds/cycle)
e ICQ: How many cycles/second in 3.8 GHz processor?

— Slow!
e Clock period must be elongated to accommodate longest operation

e In our datapath: Iw

e Goes through five structures in series: insn mem, register file
(read), ALU, data mem, register file again (write)

e No one will buy a machine with a slow clock

e Later: faster processor cores

© 2013 Daniel J. Sorin
from Roth ECE250 40

This Unit: Processor Design

Application
OS
Compiler Firmware
CPU /0
Memory

Digital Circuits

Gates & Transistors

© 2013 Daniel J. Sorin
from Roth

e Datapath components and timing
e Registers and register files
e Memories (RAMs)
e (Clocking strategies

e Mapping an ISA to a datapath
e Control
e EXxceptions

ECE250

41

Program Execution

e Threads of Control
e Multiple threads, programs run within a system
e Each thread, program has its own program counter

e Program Execution
e Fetch instruction from memory with address in PC
e EXxecute instruction
e Increment PC

e Begin PC at known location after system start-up
e Load the operating system kernel

© 2013 Daniel J. Sorin
from Roth ECE250 42

Execution Context

e Program context defined by processor state
e General purpose registers (integer, floating-point)
o Status registers (e.g., condition codes)
e Program counter, stack pointer
e Memory hierarchy

© 2013 Daniel J. Sorin

from Roth ECE250

43

Context Switches

e (Context switches (Motivation)
e Allows programs to share machine, increases machine utilization
e OS schedules, switches between multiple programs
e Permits different execution modes (e.g., user versus OS kernel)

e Context switches (Mechanism)
e Save current context, restore next context

e Context switches (Triggers)
e User <-> User: Timeslice for multiple programs (e.g., 10-100ms)
e User <-> 0OS: Invoke OS to handle external events (e.g., I/O)

© 2013 Daniel J. Sorin
from Roth ECE250 44

Interrupts and Exceptions

e Exception is external event requiring response
e Clock interrupts for time-slicing, context switches
e [/O operations for network, disk, keyboard, etc.
e “Exception, "“trap” are used interchangeably

7 \\;

Interrupt,

e Exceptions are infrequent

e Input/Output, illegal instruction, divide-by-zero, page fault,
protection fault, ctrl-C, ctrl-Z, timer

e Exception handling requires OS
e OS kernel includes instructions for exception handling
e Exception handling is transparent to application code
e Handlers fix & restart (e.g., I/0), or terminate (e.g., illegal insn)

© 2013 Daniel J. Sorin
from Roth ECE250

Detecting Exceptions

e Undefined Instruction
e Detect unknown opcodes

e Arithmetic Exceptions
e Add logic in ALU to detect overflow
e Add logic in divider to detect divide-by-zero

e Unaligned Access
e Add circuit to check addresses
e Word-aligned addresses have {00} in the least significant bits

© 2013 Daniel J. Sorin
from Roth ECE250

46

Handling Exceptions

User Program

1d
add

st
div
beq

1d
sub
bne

/'

\

© 2013 Daniel J. Sorin

from Roth

Interrupt Handler

ECE250

Identify interrupt’s cause
Invoke OS routine

e | = ID for interrupt’s cause

e PC = interrupt_table[i]

o Kernel initializes table @ boot

Clear interrupt signal

Return from interrupt handler
e Return to user context

47

Handling System Calls

e Special instruction invokes OS
e Read or write I/O devices

User Program Kernel e Create new process
Id
add 7| Trap e Invoke OS routine

St 7 Handler

Svyscall 6 |+—_ e | =ID for syscall

bea - e PC = interrupt_table[i]
1d e Kernel initializes table @ boot
sub)
Service
bne

Routines/ o - Clear interrupt signal

e Return from interrupt handler
e Return to user context

© 2013 Daniel J. Sorin
from Roth ECE250 48

Exceptions as “Procedure Calls”

1. Processor saves address of user instruction
e Address of instruction stored in Exception Program Counter (EPC)

2. Processor transfers control to OS
o Set PC to address of exception handler within OS code

3. OS executes handler, which resolves exception

4. OS returns to user program (EPC), or terminates program

© 2013 Daniel J. Sorin
from Roth ECE250 49

Exceptions and Register Support

1. Exception Program Counter (EPC)
o 32-bit register holds address of affected instruction

2. Cause Register
e 32-bit register encodes exception cause

3. BadVAddr

e 32-bit register holds address that triggers memory access exception
e See memory hierarchy, virtual memory for detail

4. Status
e 32-bit register tracks interrupt handling, multiple interrupts, etc.

© 2013 Daniel J. Sorin
from Roth ECE250 50

Exception Handling

e What does exception handling look like to software?
e When exception happens...

Control transfers to OS at pre-specified exception handler address
OS has privileged access to registers user processes do not see

e These registers hold information about exception

o Cause of exception (e.g., page fault, arithmetic overflow)

e Other exception info (e.qg., address that caused page fault)

e PC of application insn to return to after exception is fixed
OS uses privileged (and non-privileged) registers to do its “thing”
OS returns control to user application

e Same mechanism available programmatically via SYSCALL

© 2013 Daniel J. Sorin
from Roth ECE250 51

MIPS Exception Handling

e MIPS uses registers for state during exception handling
e These registers live on “coprocessor 0”
e $14: EPC (holds PC of user program during exception handling)
o $13: exception type (SYSCALL, overflow, etc.)
e $8: virtual address (produced page/protection fault)
e $12: exception mask (which exceptions trigger OS)

e Access registers with privileged instructions m£c0, mtc0
e Privileged = user program cannot execute them
e mfcO: move (register) from coprocessor 0 (to user req)
e mtcO: move (register) to coprocessor 0 (from user reqg)

e Restore user mode with privileged instruction rfe
e Kernel executes this instruction to restore user program

© 2013 Daniel J. Sorin

from Roth ECE250 52

Implementing Exceptions

e Why do architects care about exceptions?
e Because we use datapath and control to implement them
e More precisely... to implement aspects of exception handling
e Recognition of exceptions
e Transfer of control to OS
e Privileged OS mode

e Later in semester, we’ Il talk more about exceptions (b/c
we need them for I/0)

© 2013 Daniel J. Sorin
from Roth ECE250

53

Datapath with Support for Exceptions

PSRs ~ —
S smd | Co- —>@—>p—> ! ¥ PcwC
SR
‘D— - 1~ 1~ '\ZJ
PSRr| CRwd |CRwe .
S WA R R R
> . R >\ »a > >
JPLLl Insn [11| | Register _',AILU_ A] Data
Cl| [Mem| [R File ‘ jn B em
> | b > || B sts2 g TR =
T 3 . ‘ ! T
-0~
o Co-processor register (CR) file needn’ t be implemented as
RF

e Independent registers connected directly to pertinent muxes
ce01 PRI (processor status r%gjﬁig(c)er): in privileged mode?

from Roth 54

This Unit: Processor Design

Application e Datapath components and timing
95 e Registers and register files
Compiler Firmware e Memories (RAMs)
CPU o Clocking strategies
Memory e Mapping an ISA to a datapath
Digital Circuits » Control
Gates & Transistors

Next up: Memory Systems

© 2013 Daniel J. Sorin
from Roth ECE250

Summary

e We now know how to build a fully functional processor

e But..
e We're still treating memory as a black box
e Our fully functional processor is slow. Really, really slow.

© 2013 Daniel J. Sorin
from Roth ECE250

56

