
ECE/CS 250: Computer Architecture

Basics of Logic Design:
Boolean Algebra, Logic Gates

Benjamin Lee

Slides based on those from Alvin Lebeck,
Daniel Sorin, Andrew Hilton, Amir Roth,

Gershon Kedem

2
© Alvin R. Lebeck
from Hilton and Sorin

Admin

•  Resource: Pragmatic Logic by William Eccles

−  In Sakai Resources and linked off web page.
− Skim for what you need, way too much in there

•  This material is covered in MUCH greater depth in ECE/CS 350 –
please take ECE/CS 350 if you want to learn enough digital
design to build your own processor

•  Download Logisim before Friday’s recitation

−  http://ozark.hendrix.edu/~burch/logisim/download.html

CS/ECE 250

3
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

What We’ve Done, Where We’re Going

I/O system CPU

Compiler

Operating
System

Application

Digital Design
Circuit Design

Instruction Set
Architecture,
Memory, I/O

Firmware

Memory

Software

Hardware

Interface Between
HW and SW

Top Down

(Almost) Bottom UP to CPU

4
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

Computer = Machine That Manipulates Bits

•  Everything is in binary (bunches of 0s and 1s)
− Instructions, numbers, memory locations, etc.

•  Computer is a machine that operates on bits

•  Computers physically made of transistors
− Electrically controlled switches

•  We can use transistors to build logic
− E.g., if this bit is a 0 and that bit is a 1, then set some other

bit to be a 1
− E.g., if the first 5 bits of the instruction are 10010 then set this

other bit to 1 (to tell the adder to subtract instead of add)

5
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

How Many Transistors Are We Talking About?

Pentium III
•  Processor Core 9.5 Million Transistors
•  Total: 28 Million Transistors
Pentium 4
•  Total: 42 Million Transistors
Core2 Duo (two processor cores)
•  Total: 290 Million Transistors
Core2 Duo Extreme (4 processor cores, 8MB cache)
•  Total: 590 Million Transistors
Core i7 with 6-cores
•  Total: 2.27 Billion Transistors

How do they design such a thing? Carefully!

6
© Alvin R. Lebeck
from Hilton and Sorin

Abstraction!

•  Use of abstraction (key to design of any large system)
− Put a few (2-8) transistors into a logic gate (or, and, xor, …)
− Combine gates into logical functions (add, select,….)
− Combine adders, shifters, etc., together into modules

Units with well-defined interfaces for large tasks: e.g., decode
− Combine a dozen of those into a core…
− Stick 4 cores on a chip…

CS/ECE 250

7
© Alvin R. Lebeck
from Hilton and Sorin

You are here:

•  Use of abstraction (key to design of any large system)
− Put a few (2-8) transistors into a logic gate
− Combine gates into logical functions (add, select,….)
− Combine adders, muxes, etc together into modules

Units with well-defined interfaces for large tasks: e.g., decode
− Combine a dozen of those into a core…
− Stick 4 cores on a chip…

CS/ECE 250

8
© Alvin R. Lebeck
from Hilton and Sorin

Boolean Algebra

•  First step to logic: Boolean Algebra
− Formal apporoach for manipulating of True / False (1/0)
− After all: everything is just 1s and 0s

•  Boolean Functions:
− Given inputs (variables): A, B, C, P, Q…
− Compute outputs using logic operators, such as:

•  NOT: !A (= ~A = A = A’)
•  AND: A&B (= A⋅B = A*B = AB = A∧B) = A&&B in C/Java
•  OR: A | B (= A+B = A ∨ B) = A || B in C/Java
•  XOR: A ^ B (= A ⊕ B)
•  NAND, NOR, XNOR, Etc.

CS/ECE 250

9
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

a NOT(a)
0 1
1 0

Truth Tables

•  Can represent as Truth Table: shows outputs for all inputs

10
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

a NOT(a)
0 1
1 0

a b AND(a,b)
0 0 0
0 1 0
1 0 0
1 1 1

Truth Tables

•  Can represent as truth table: shows outputs for all inputs

11
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

a NOT(a)
0 1
1 0

a b AND(a,b)
0 0 0
0 1 0
1 0 0
1 1 1

a b OR(a,b)
0 0 0
0 1 1
1 0 1
1 1 1

Truth Tables

•  Can represent as truth table: shows outputs for all inputs

12
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

a NOT(a)
0 1
1 0

a b AND(a,b)
0 0 0
0 1 0
1 0 0
1 1 1

a b OR(a,b)
0 0 0
0 1 1
1 0 1
1 1 1

a b XOR(a,b)
0 0 0
0 1 1
1 0 1
1 1 0

a b XNOR(a,b)
0 0 1
0 1 0
1 0 0
1 1 1

a b NOR(a,b)
0 0 1
0 1 0
1 0 0
1 1 0

Truth Tables

•  Can represent as truth table: shows outputs for all inputs

13
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

a
b

AND(a,b) a
b

OR(a,b)

XOR(a,b) a
b

NAND(a,b) a
b

a
b

NOR(a,b) XNOR(a,b) a
b

a NOT(a)

Boolean Gates (More Later)

•  Gates are electronic devices that implement simple
Boolean functions (building blocks of hardware)

Examples

14
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

a b c f1f2
0 0 0 0 1
0 0 1 1 1
0 1 0 1 0
0 1 1 0 0
1 0 0 1 0
1 1 0 0 1
1 1 1 1 1

Any Inputs, Any Outputs

•  Can have any # of inputs, any # of outputs
•  Can have arbitrary functions:

15
© Alvin R. Lebeck
from Hilton and Sorin

Let’s Write a Truth Table for a Function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

CS/ECE 250

A B C Output

16
© Alvin R. Lebeck
from Hilton and Sorin

Let’s write a Truth Table for a function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

Fill in Inputs
Counting in Binary

CS/ECE 250

A B C Output
0 0 0

17
© Alvin R. Lebeck
from Hilton and Sorin

Let’s write a Truth Table for a function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

Fill in Inputs
Counting in Binary

CS/ECE 250

A B C Output
0 0 0
0 0 1

18
© Alvin R. Lebeck
from Hilton and Sorin

Let’s write a Truth Table for a function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

Fill in Inputs
Row per set of input values
Counting in Binary

CS/ECE 250

A B C Output
0 0 0
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

19
© Alvin R. Lebeck
from Hilton and Sorin

Let’s write a Truth Table for a function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

Fill in Inputs
Row per set of input values
Counting in Binary

Compute Output for reach row
 (0 & 0) | !0 = 0 | 1 = 1

CS/ECE 250

A B C Output
0 0 0 1
0 0 1
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

20
© Alvin R. Lebeck
from Hilton and Sorin

Let’s write a Truth Table for a function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

Fill in Inputs
Row per set of input values
Counting in Binary

Compute Output for each row
 (0 & 0) | !1 = 0 | 0 = 0

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

21
© Alvin R. Lebeck
from Hilton and Sorin

Let’s write a Truth Table for a function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

Fill in Inputs
Row per set of input values
Counting in Binary

Compute Output for each row
 (0 & 1) | !0 = 0 | 1 = 1

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1
1 0 0
1 0 1
1 1 0
1 1 1

22
© Alvin R. Lebeck
from Hilton and Sorin

Let’s write a Truth Table for a function…

•  Example:
(A & B) | !C

Start with Empty TT
Column Per Input
Column Per Output

Fill in Inputs
Row per set of input values
Counting in Binary

Compute Output for each row

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

23
© Alvin R. Lebeck
from Hilton and Sorin

You try one…

•  Try one yourself:
(!A | B) & !C

CS/ECE 250

24
© Alvin R. Lebeck
from Hilton and Sorin

You try one…

•  Try one yourself:
(!A | B) & !C

Answer:

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 0

25
© Alvin R. Lebeck
from Hilton and Sorin

Suppose I turn it around…

•  Given a Truth Table, find the formula?

Hmmm..

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

26
© Alvin R. Lebeck
from Hilton and Sorin

Suppose I turn it around…

•  Given a Truth Table, find the formula?

Hmmm …
Could write down every “true” case
Then OR together:

(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A & B & !C) |
(A & B & C)

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

27
© Alvin R. Lebeck
from Hilton and Sorin

Suppose I turn it around…

•  Given a Truth Table, find the formula?

Hmmm..
Could write down every “true” case
Then OR together:

(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A & B &!C) |
(A & B &C)

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

28
© Alvin R. Lebeck
from Hilton and Sorin

Suppose I turn it around…

•  Given a Truth Table, find the formula?

Hmmm..
Could write down every “true” case
Then OR together:

(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A & B &!C) |
(A & B &C)

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

29
© Alvin R. Lebeck
from Hilton and Sorin

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A & B &!C) |
(A & B &C)

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

30
© Alvin R. Lebeck
from Hilton and Sorin

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A & B &!C) |
(A & B &C)

Could just be (A & B) here ?

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

31
© Alvin R. Lebeck
from Hilton and Sorin

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A&B)

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

32
© Alvin R. Lebeck
from Hilton and Sorin

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !B & !C) |
(!A & !B & C) |
(!A & B & !C) |
(A&B)
 Could just be (!A & !B) here

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

33
© Alvin R. Lebeck
from Hilton and Sorin

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !B) |
(!A & B & !C) |
(A&B)

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

34
© Alvin R. Lebeck
from Hilton and Sorin

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !B) |
(!A & B & !C) |
(A&B)

Looks nicer…
Can we do better?

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

35
© Alvin R. Lebeck
from Hilton and Sorin

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !B) |
(!A & B & !C) |
(A&B)

This has a lot in common:
 !A & (something)

 CS/ECE 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

36
© Alvin R. Lebeck
from Hilton and Sorin

Suppose I turn it around…

•  This approach: “sum of products”
− Works every time
− Result is right…
− But really ugly

(!A & !(B & C)) |
(A & B)

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

37
© Alvin R. Lebeck
from Hilton and Sorin

Just did some of these by intuition.. but

•  Somewhat intuitive approach to simplifying
•  This is math, so there are formal rules

− Just like “regular” algebra

CS/ECE 250

38
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

Boolean Function Simplification

•  Boolean expressions can be simplified by using the
following rules (bitwise logical):
− A & A = A A | A = A
− A & 0 = 0 A | 0 = A
− A & 1 = A A | 1 = 1
− A & !A = 0 A | !A = 1

− !!A = A

− & and | are both commutative and associative
− & and | can be distributed: A & (B | C) = (A & B) | (A & C)
− & and | can be subsumed: A | (A & B) = A

39
© Alvin R. Lebeck
from Hilton and Sorin

DeMorgan’s Laws

•  Two (less obvious) Laws of Boolean Algebra:
− Let’s push negations inside, flipping & and |

!(A & B) = (!A) | (!B)

!(A | B) = (!A) & (!B)

− You should try this at home – build truth tables for both the

left and right sides and see that they’re the same

CS/ECE 250

40
© Alvin R. Lebeck
from Hilton and Sorin

Suppose I turn it around…

•  One more simplification on early example:

(!A & !(B & C)) |
(A & B)

=
(!A & (!B | !C)) |
(A & B)

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

41
© Alvin R. Lebeck
from Hilton and Sorin

Another Simplification Example

! (!A | !(A & (B | C)))

CS/ECE 250

42
© Alvin R. Lebeck
from Hilton and Sorin

Simplification Example:

! (!A | !(A & (B | C)))
DeMorgan’s

!!A & !! (A & (B | C))

CS/ECE 250

43
© Alvin R. Lebeck
from Hilton and Sorin

Simplification Example:

! (!A | !(A & (B | C)))
DeMorgan’s

!!A & !! (A & (B | C))
Double Negation Elimination

A & (A & (B | C))

CS/ECE 250

44
© Alvin R. Lebeck
from Hilton and Sorin

Simplification Example:

! (!A | !(A & (B | C)))
DeMorgan’s

!!A & !! (A & (B | C))
Double Negation Elimination

A & (A & (B | C))
Associativity of &

(A & A) & (B | C)

CS/ECE 250

45
© Alvin R. Lebeck
from Hilton and Sorin

Simplification Example:

! (!A | !(A & (B | C)))
DeMorgan’s

!!A & !! (A & (B | C))
Double Negation Elimination

A & (A & (B | C))
Associativity of &

(A & A) & (B | C)
A & A = A

A & (B | C)

CS/ECE 250

46
© Alvin R. Lebeck
from Hilton and Sorin

You try this:

Come up with a formula for this Truth Table
Simplify as much as possible

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

47
© Alvin R. Lebeck
from Hilton and Sorin

You try this:

Come up with a formula for this Truth Table
Simplify as much as possible

Sum of Products:

(!A & !B & !C) |
(!A & B & !C) |
(A & !B & C) |
(A & B & C)

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

48
© Alvin R. Lebeck
from Hilton and Sorin

You try this:

Simplify first two terms:
 (!A & !B & !C) | (!A & B & !C)

CS/ECE 250

49
© Alvin R. Lebeck
from Hilton and Sorin

You try this:

Simplify:
 (!A & !B & !C) | (!A & B & !C)
Regroup (associative/commutative):
 ((!A & !C) & !B) | ((!A & !C) & B)

CS/ECE 250

50
© Alvin R. Lebeck
from Hilton and Sorin

You try this:

Simplify:
 (!A & !B & !C) | (!A & B & !C)
Regroup (associative/commutative):
 ((!A & !C) & !B) | ((!A & !C) & B)
Un-distribute (pull out common factor):
 (!A & !C) & (!B | B)

CS/ECE 250

51
© Alvin R. Lebeck
from Hilton and Sorin

You try this:

Simplify:
 (!A & !B & !C) | (!A & B & !C)
Regroup (associative/commutative):
 ((!A & !C) & !B) | ((!A & !C) & B)
Un-distribute:
 (!A & !C) & (!B | B)
OR identities:
 (!A & !C) & true = (!A & !C)

CS/ECE 250

52
© Alvin R. Lebeck
from Hilton and Sorin

You try this:

Come up with a formula for this Truth Table
Simplify as much as possible

Sum of Products:

(!A & !C) |
(A & !B & C) |
(A & B & C)

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

53
© Alvin R. Lebeck
from Hilton and Sorin

You try this:

Come up with a formula for this Truth Table
Simplify as much as possible

Sum of Products:

(!A & !C)|
(A & C)

CS/ECE 250

A B C Output
0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

54
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

Applying the Theory

•  Lots of good theory
•  Can reason about complex Boolean expressions

− Can design software to minimize
•  But why is this useful?

55
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

a
b

AND(a,b) a
b

OR(a,b)

XOR(a,b) a
b

NAND(a,b) a
b

a
b

NOR(a,b) XNOR(a,b) a
b

a NOT(a)

Boolean Gates

•  Gates are electronic devices that implement simple
Boolean functions (building blocks of hardware)

Examples

56
© Alvin R. Lebeck
from Hilton and Sorin

 Guide to Remembering your Gates

•  This one looks like it just points its input where to go
− It just produces its input as its output
− Called a buffer

CS/ECE 250

a a

57
© Alvin R. Lebeck
from Hilton and Sorin

 Guide to Remembering your Gates

•  This one looks like it just points its input where to go
− It just produces its input as its output
− Called a buffer

•  A circle always means negate

CS/ECE 250

a a

a NOT(a)

Circle = NOT

58
© Alvin R. Lebeck
from Hilton and Sorin

 Brief Interlude: Building An Inverter

CS/ECE 250

a NOT(a)

ground= 0

Vdd = power = 1

a NOT(a)

P-type: switch is
“on” if input is 0

N-type: switch is
“on” if input is 1

59
© Alvin R. Lebeck
from Hilton and Sorin

 Guide to Remembering Your Gates

•  AND Gates have a straight edge, like an A (in AND)

OR Gates have a curved edge, like an O (in OR)

CS/ECE 250

a
b

AND(a,b)

Straight like an A

a
b

OR(a,b)

Curved, like an O

60
© Alvin R. Lebeck
from Hilton and Sorin

 Guide to Remembering Your Gates

•  If we stick a circle on them…

•  We get NAND (NOT-AND) and NOR (NOT-OR)
− NAND(a,b) = NOT(AND(a,b))

CS/ECE 250

a
b

AND(a,b)

a
b

OR(a,b)

NAND(a,b) a
b

a
b

NOR(a,b)

Circle = NOT

61
© Alvin R. Lebeck
from Hilton and Sorin

 Guide to Remembering Your Gates

•  XOR looks like OR (curved line)
− But has two lines (like an X does)

•  Can put a dot for XNOR
− XNOR is 1-bit “equals” by the way

CS/ECE 250

XOR(a,b) a
b

XNOR(a,b) a
b

62
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

(!A & !C)|(A & C)

A

C Out

Boolean Functions, Gates and Circuits

•  Circuits are made from a network of gates.

63
© Alvin R. Lebeck
from Hilton and Sorin

A few more words about gates

•  Gates have inputs and outputs
− If you try to hook up two outputs, bad things happen
(your processor catches fire)

− If you don’t hook up an input, it behaves kind of randomly
(also not good, but not set-your-chip-on-fire bad)

CS/ECE 250

a
b

c
d

BAD!

64
© Alvin R. Lebeck
from Hilton and Sorin

Let’s Make a Useful Circuit

•  Pick between 2 inputs (called 2-to-1 MUX)
− Short for multiplexor

•  What might we do first?

CS/ECE 250

65
© Alvin R. Lebeck
from Hilton and Sorin

Let’s Make a Useful Circuit

•  Pick between 2 inputs (called 2-to-1 MUX)
− Short for multiplexor

•  What might we do first?
− Make a truth table?

•  S is selector:
•  S=0, pick A
•  S=1, pick B

CS/ECE 250

A B S Output
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

66
© Alvin R. Lebeck
from Hilton and Sorin

Let’s Make a Useful Circuit

•  Pick between 2 inputs (called 2-to-1 MUX)
− Short for multiplexor

•  What might we do first?
− Make a truth table?

•  S is selector:
•  S=0, pick A
•  S=1, pick B

•  Next: sum-of-products
(!A & B & S) |
(A & !B & !S) |
(A & B & !S) |
(A & B & S)

CS/ECE 250

A B S Output
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

67
© Alvin R. Lebeck
from Hilton and Sorin

Let’s Make a Useful Circuit

•  Pick between 2 inputs (called 2-to-1 MUX)
− Short for multiplexor

•  What might we do first?
− Make a truth table?

•  S is selector:
•  S=0, pick A
•  S=1, pick B

•  Next: sum-of-products
•  Simplify

(A & !S) |
(B & S)

CS/ECE 250

A B S Output
0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 1
1 0 1 0
1 1 0 1
1 1 1 1

68
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

s

a
b

output

Circuit Example: 2x1 MUX

MUX(A, B, S) = (A & !S) | (B & S)
Draw it in gates:

output

A

B

S

OR

AND

AND

So common, we give it
its own symbol:

69
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

Example 4x1 MUX

3

2

1

0 a

b

c

d

y

S

2

a
b

c
d

out

s0 s1

The / 2 on the wire means “2 bits”

70
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

Arithmetic and Logical Operations in ISA

•  What operations are there?
•  How do we implement them?

− Consider a 1-bit Adder

71
© Alvin R. Lebeck
from Hilton and Sorin CS/ECE 250

Summary

•  Boolean Algebra & functions
•  Logic gates (AND, OR, NOT, etc)
•  Multiplexors

•  Download Logisim for Recitation
− http://ozark.hendrix.edu/~burch/logisim/download.html

