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Administrivia 

•  Homework #3 
•  Due Mar 7, 11:55pm 

•  Readings 
− Pragmatic Logic by William Eccles 
− Linked on web page, skim for what you need.  
− Combinational Circuits Ch 4.1-4.2, Ch 5.3 
− Sequential Circuits Ch 6 

CS/ECE 250 
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Arithmetic and Logical Operations in ISA 

•  What operations are there? 
•  How do we implement them? 

− Consider a 1-bit Adder 
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A 1-bit Full Adder 

a  b  Cin  Sum  Cout 
0  0  0    0    0 
0  0  1    1    0 
0  1  0    1    0 
0  1  1    0    1 
1  0  0    1    0 
1  0  1    0    1 
1  1  0    0    1 
1  1  1    1    1 

01101100 
 

 01101101 
+00101100 
 10011001 

a 

b 

Cin 

Cout 

Sum 
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a0 a1 a2 a3 b0 b1 b2 b3 

Cout 

S0 S1 S2 S3 

Full AdderFull AdderFull AdderFull Adder

Example: 4-bit Ripple Carry Adder 
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Subtraction 

•  How do we perform integer subtraction? 
•  What is the HW? 

•  Remember: Subtraction is just addition 
X – Y =  
X + (-Y) = 
X + (~Y +1) 
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Full AdderFull AdderFull AdderFull Adder

a0 a1 a2 a3 b0 b1 b2 b3 

Cout 

S0 S1 S2 S3 

Add/Sub 

Example: Adder/Subtractor 
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Overflow 

•  How would we detect signed overflow? 
− See if CI != CO 
− 1-bit != is implemented with XOR 

•  If CI = 0 and CO=1 
− Sum must produce the carry 
− CO=1 only if A=1 and B=1  
− Adding two negative numbers to produce positive number 

•  If CI = 1 and CO=0 
− Sum must consume the carry 
− CO=0 only if A=0 and B=0 
− Adding two positive numbers to produce a negative number 
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Add/Subtract With Overflow Detection 

Full AdderFull AdderFull AdderFull Adder

S0 S1 Sn- 2 Sn- 1 

Overflow 

a0 a1 b0 b1 an- 2 bn- 2 an- 1 bn- 1 

Add/Sub 
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Add/sub 

C in 

C ou t 

Add/sub F 

2 

0 

1 

2 

3 

a 

b 

Q 

A   F         Q 
0   0        a + b 
1   0        a - b 
-    1      NOT b 
-    2      a OR b 
-    3      a AND b 

ALU Slice 
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The ALU 

ALU Slice ALU Slice ALU Slice ALU Slice 

ALU control 

a 0 b 0 a 1 b 1 a n-2 b n-2 a n-1 b n-1 

Q 0 Q 1 Q n-2 Q n-1 

Overflow = Zero 
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Abstraction: The ALU 

•  General structure 
•  Two operand inputs 
•  Control inputs 

•  We can build 
circuits for 
− Multiplication 
− Division 
− They are more 

complex 

Input A 

Input B 

ALU Operation 

Carry Out 

Result 
Overflow 

Zero 
ALU 
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Shifts 

•  Remember the << and >> operations? 
− Shift left/shift right? 
− How would we implement these? 

 
Suppose an 8-bit number 

b7b6b5b4b3b2b1b0 
 

Shifted left by a 3 bit number 
s2s1s0 
 

•  Option 1: Truth Table? 
− 2048 rows?  Not appealing 
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Let’s simplify 

•  Simpler problem: 8-bit number shifted by 1 bit 
number (shift amount selects each mux) 

CS/ECE 250 

b0 

b1 

b2 

b3 

b4 

b7 

b6 

b5 

0 
out0 

out1 

out2 

out3 

out4 

out5 

out6 

out7 
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Let’s simplify 

•  Simpler problem: 8-bit number shifted by 2 bit 
number (new muxes selected by 2nd bit) 

CS/ECE 250 

b0 

b1 

b2 

b3 

b4 

b7 

b6 

b5 

0 
out0 

out1 

out2 

out3 

out4 

out5 

out6 

out7 
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Now shifted by 3-bit number 

•  Full problem: 8-bit number shifted by 3 bit number 
(new muxes selected by 3rd bit) 

CS/ECE 250 

b0 

b1 

b2 

b3 

b4 

b7 

b6 

b5 

0 out0 

out1 

out2 

out3 

out4 

out5 

out6 

out7 
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Now shifted by 3-bit number 

•  Shifter in action: shift by 000 

CS/ECE 250 

b0 

b1 

b2 

b3 

b4 

b7 

b6 

b5 

0 out0 

out1 

out2 

out3 

out4 

out5 

out6 

out7 
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Now shifted by 3-bit number 

•  Shifter in action: shift by 010 

CS/ECE 250 

b0 

b1 

b2 

b3 

b4 

b7 

b6 

b5 

0 out0 

out1 

out2 

out3 

out4 

out5 

out6 

out7 
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Now shifted by 3-bit number 

•  Shifter in action: shift by 011 

CS/ECE 250 

b0 

b1 

b2 

b3 

b4 

b7 

b6 

b5 

0 out0 

out1 

out2 

out3 

out4 

out5 

out6 

out7 
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So far… 

•  We can make logic to compute “math” 
− Add, subtract,… (we’ll see multiply/divide later) 
− Bitwise: AND, OR, NOT,… 
− Shifts 
− Selection (MUX) 

•  But processors need state (hold value) 
− Registers 
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Memory Elements 

•  All the circuits we looked at so far are combinational 
circuits: the output is a Boolean function of the inputs. 

•  We need circuits that can remember values  (registers, 
memory) 

•  The output of the circuit is a function of the input and a 
stored value (state)    

•  Circuits with memory are called sequential circuits 

•  Key to storage: loops in circuit from outputs to inputs 
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NOR-based Set-Reset (SR) Latch 

R 

S 

Q 

Q 

0 
1 0 

1 
0 
0 

R 

S 

Q 

Q 

0 
0 1 

0 
1 
0 

R  S  Q 
0  0  Q 
0  1  1 
1  0  0 
1  1  - Don’t set both S & R to 1. 

Seriously, don’t do it. 
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R 

S 

Q 

Q 

0 
1 0 

1 
0 
0 

R 

S 

Q 

Q 

0 
0 1 

0 
1 
1 

Set-Reset Latch (Continued) 

Time 

S 0 
1 

R 
0 
1 

Q 
0 
1 
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R 

S 

Q 

Q 

0 
1 0 

1 
0 
0 

R 

S 

Q 

Q 

0 
0 1 

0 
1 
1 

Set-Reset Latch (Continued) 

Time 

S 0 
1 

R 
0 
1 

Q 
0 
1 

Set Signal Goes High 

Output Signal Goes High 
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R 

S 

Q 

Q 

0 
1 0 

1 
0 
0 

R 

S 

Q 

Q 

0 
0 1 

0 
1 
1 

Set-Reset Latch (Continued) 

Time 

S 0 
1 

R 
0 
1 

Q 
0 
1 

Set Signal Goes Low 

Output Signal Stays High 
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R 

S 

Q 

Q 

0 
1 0 

1 
0 
0 

R 

S 

Q 

Q 

0 
0 1 

0 
1 
1 

Set-Reset Latch (Continued) 

Time 

S 0 
1 

R 
0 
1 

Q 
0 
1 

Until Reset Signal  
Goes High 

Then Output Signal Goes Low 
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SR Latch 

•  Downside: S and R at once = chaos 

•  Downside: Bad interface 

•  What is a better solution? 
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Data Latch (D Latch) 

Q 

Q 

Starting with SR Latch 
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Data Latch (D Latch) 

Data 

Enable 
Q 

Q 

Starting with SR Latch 
 
Change interface to  
 Data + Enable (D + E) 
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Data Latch (D Latch) 

Data 

Enable 
Q 

Q 

D   E   Q 
0   1   0 
1   1   1 
-   0   Q 

Time 

D 0 
1 

E 
0 
1 

Q 
0 
1 

E goes high 

D “latched” 
Stays as output 
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Data Latch (D Latch) 

Data 

Enable 
Q 

Q 

D   E   Q 
0   1   0 
1   1   1 
-   0   Q 

Time 

D 0 
1 

E 
0 
1 

Q 
0 
1 

Does not 
 affect Output 

E goes low 

Output unchanged 
By changes to D 
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Data Latch (D Latch) 

Data 

Enable 
Q 

Q 

D   E   Q 
0   1   0 
1   1   1 
-   0   Q 

Time 

D 0 
1 

E 
0 
1 

Q 
0 
1 

E goes high 

D “latched” 
Becomes new output 
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Data Latch (D Latch) 

Data 

Enable 
Q 

Q 

D   E   Q 
0   1   0 
1   1   1 
-   0   Q 

Time 

D 0 
1 

E 
0 
1 

Q 
0 
1 

Slight Delay 

(Logic gates take time) 



34 
© Alvin Lebeck, from Hilton, 
Sorin CS/ECE 250 

Logic Takes Time 

•  Logic takes time: 
− Gate delays: delay to switch each gate 

− Wire delays: delay for signal to travel down wire 

− Other factors (not going into them here) 

•  Need to make sure that signals timing is right 
− Don’t want to have races 
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Clocks 

•  Processors have a clock: 
− Alternates 0 1 0 1 (low high low high) 
− Latch à logic à latch in one clock cycle 

− 3.4 GHz processor = 3.4 Billion clock cycles/sec  

CS/ECE 250 

One clock cycle 
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Level Triggered Clock 

•  First thoughts: Level Triggered 
− Latch enabled when clock is high 
− Hold value when clock is low 

CS/ECE 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 
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Level Triggered Clock 

•  How we’d like this to work 
− Clock is low, all values stable 

CS/ECE 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

010 111 100 001 

0 

Clk 
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Level Triggered Clock 

•  How we’d like this to work 
− Clock goes high, latches capture and transmit new value 

CS/ECE 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

010 010 100 100 

0 

Clk 
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Level Triggered Clock 

•  How we’d like this to work 
− Signals work their way through logic w/ high clk 

CS/ECE 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

010 010 100 100 

0 

Clk 
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Level Triggered Clock 

•  How we’d like this to work 
− Clock goes low before signals reach next latch 

CS/ECE 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

010 010 100 100 

0 

Clk 
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Level Triggered Clock 

•  How we’d like this to work 
− Clock goes low before signals reach next latch 

CS/ECE 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

111 010 000 100 

0 

Clk 



42 
© Alvin Lebeck, from Hilton, 
Sorin 

Level Triggered Clock 

•  How we’d like this to work 
− Everything stable before clk goes high 

CS/ECE 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

111 010 000 100 

0 

Clk 
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Level Triggered Clock 

•  How we’d like this to work 
− Clk goes high again, repeat 

CS/ECE 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

111 111 000 000 

0 

Clk 
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Level Triggered Clock 

•  Problem: What if signal reaches latch too early? 
− i.e., while clk is still high 

CS/ECE 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

111 111 101 000 

0 

Clk 
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Level Triggered Clock 

•  Problem: What if signal reaches latch too early? 
− Signal goes right through latch, into next stage.. 

CS/ECE 250 

D 
latch 

D Q 

E Q 

D 
latch 

D Q 

E Q 
Logic 

Clk 

3 3 

111 111 101 101 

0 

Clk 
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That would be bad… 

•  Getting into a stage too early is bad 
− Something else is going on there à corrupted 
− Also may be a loop with one latch 

•  Consider incrementing counter (or PC) 
− Too fast -- increment twice?  Not good. 

CS/ECE 250 

D 
latch 

D Q 

E Q 

+1 

3 

001 

010 
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Edge Triggered 

•  Instead of level triggered 
− Latch a new value at a clock level (high or low) 

•  We use edge triggered 
− Latch a value at an clock edge (rising or falling) 

CS/ECE 250 

Rising Edges 

Falling Edges 



48 
© Alvin Lebeck, from Hilton, 
Sorin 

D Flip-Flop 

•  Rising edge triggered D Flip-flop 
− Two D Latches w/ Opposite clking of enables 

CS/ECE 250 

D 
latch 

D Q 

E 

D 
latch 

D Q 

E Q Q 

Q D 

C 
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D Flip-Flop 

•  Rising edge triggered D Flip-flop 
− Two D Latches w/ opposite clking of enables 

− On Low Clk, first latch enabled (propagates value) 
•  Second not enabled, maintains value 

 

CS/ECE 250 

D 
latch 

D Q 

E 

D 
latch 

D Q 

E Q Q 

Q D 

C 
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D Flip-Flop 

•  Rising edge triggered D Flip-flop 
− Two D Latches w/ opposite clking of enables 

− On Low Clk, first latch enabled (propagates value) 
•  Second not enabled, maintains value 

− On High Clk, second latch enabled 
•  First latch not enabled, maintains value  

CS/ECE 250 

D 
latch 

D Q 

E 

D 
latch 

D Q 

E Q Q 

Q D 

C 
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D Flip-Flop 

•  No possibility of “races” 
−  Even if I put 2 DFFs back-to-back… 
−  By the time signal gets through 2nd latch of 1st DFF, 1st latch of 2nd DFF is disabled 

•  Still must ensure signals reach DFF before clk rises 
− Important concern in logic design is “making timing”  

CS/ECE 250 

D 
latch 

D Q 

E 

D 
latch 

D Q 

E Q 

D 

C 

D 
latch 

D Q 

E 

D 
latch 

D Q 

E Q 

C 
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D Flip-flops (continued…) 

•  Could also do falling edge triggered 
− Switch which latch has NOT on clk  

•  D Flip-flop is ubiquitous 
− Typically people just say “latch” and mean DFF 
− Which edge is used does not matter 

•  As long as same edge is used consistently 
•  We will use rising edge 

CS/ECE 250 
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D flip flops 

•  Generally do not draw clk input 
− Have one global clk, assume it goes there 
− Often see > as symbol meaning clk  

•  Maybe have explicit enable 
− Might not want to write every cycle 
− If no enable signal shown, implies always enabled 

•  Get output and NOT(output) for “free” 

CS/ECE 250 

DFF 
D Q 

E Q 

DFF 
D Q 

Q 

DFF 
D Q 

> Q 
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Register File 

•  Can store one value…what about manyvalues ? 
•  E.g., Register File (the physical storage for the regs) 

− MIPS, 32 32-bit integer registers 

•  How do we build a Register File using D Flip-Flops? 
•  What other components do we need? 
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•  Reading the registers 
− 32 input mux -- slow 
− Need 32 32-1 MUXes -- big 
− Other regs not pictured 

 

Register File 

CS/ECE 250 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

… … 
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Register File 

•  Reading the registers 
− 32 input mux -- slow 
− Need 32 32-1 MUXes -- big 
− Other regs not pictured 

•  Writing the registers 
− Need to pick which reg 
− Have reg num (e.g., 19) 
− Make En19=1 

•  En0, En1,… = 0 

CS/ECE 250 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

32 bit reg 
D Q 

E Q 

… … WrData 

En0 

En1 

En30 

En31 
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Decoders 

•  First task:  convert binary number to “one hot” 
− N bits in 
− 2N bits out 
− 2N-1 bits are 0, 1 bit (matching the input) is 1 

CS/ECE 250 

D
ec

od
er 

3 

101 
0 

0 
0 

0 
0 

1 
0 

0 
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Decoder Logic 

•  Decoder basically AND gates for each output: 
− Out0 only True (one) if input 000 

CS/ECE 250 

In0 

In1 

In2 

Out0 

3-input gates are fine. 
In theory, gates can have any # of inputs 
In practice >4 converted to multiple gates 
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Decoder Logic 

•  Decoder basically AND gates for each output: 
− Out1 only True (one) if input 001 

CS/ECE 250 

In0 

In1 

In2 

Out0 

Out1 

Repeat for all outputs 
 
AND together correct sets of bits 
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Register File 

•  Decoder supports register addressing: 
− Use decoder to convert register number into control signal 
− Send write data to all registers 
− Use one hot encoding to enable destination register 

•  Need to fix register read speed 
− 32 input mux is not realistic 
− For tractability, expand our world from {1,0} to {1, 0, Z} 

CS/ECE 250 
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Water Analogy 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− This wire is 0 (it has no water) 

CS/ECE 250 
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Water Analogy 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− This wire is 1 (its full of water) 

CS/ECE 250 
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Water Analogy 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− Suppose a gate drives a 0 onto this wire 
•  Drain the water 

CS/ECE 250 

0 



64 
© Alvin Lebeck, from Hilton, 
Sorin 

Water Analogy 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− Suppose a gate drives a 0 onto this wire 
•  Drain the water 

CS/ECE 250 

0 
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Water Analogy 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− Suppose a gate drives a 0 onto this wire 
•  Drain the water 

CS/ECE 250 

0 
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Water Analogy 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− Suppose a gate drives a 0 onto this wire 
•  Drain the water 

CS/ECE 250 

0 
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Water Analogy 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− Suppose the gate now drives a 1 
•  Pump the water 

CS/ECE 250 

1 
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Water Analogy 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− Suppose the gate now drives a 1 
•  Pump the water 

CS/ECE 250 

1 
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Water Analogy 

•  To understand Z, let’s make an analogy 
− Think of a wire as a pipe 

•  Has water = 1 
•  Has water = 0 

− Suppose the gate now drives a 1 
•  Pump the water 

CS/ECE 250 

1 
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Remember this rule? 

•  Do not connect two outputs to the same wire 

•  One gate drives 1. The other drives 0. 
− One pumps water in. The other drains water out 
− Except it’s not water, it’s electric charge 
− “Short circuit” à lots of current à lots of heat 

CS/ECE 250 

a 
b 

c 
d 

BAD! 
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A third option: Z 

•  There is a third possibility:  Z (“high impedance”) 
− Neither pumping or draining charge 
− Prevents charge from flowing through 

•  Gate that gives us Z : Tri-state 

CS/ECE 250 

D  E  Q 
0  1  0 
1  1  1 
-  0  Z 

D Q 

E 
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It’s ok to connect multiple outputs together under 
one circumstance -- all but one must be 
outputting Z at any time 
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Mux with Tri-State Buffers 

− Much more efficient for large #s of 
inputs (e.g., 32) 

− Decoder ensures only one output 
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Ports 

•  Read Ports 
− Ability to do one read per clock cycle 

− May want more -- read two source registers per instruction 
•  Maybe even more if we do many instrs at once (later…) 

− Could add more: need to replicate port 
•  Another decoder 
•  Another set of tri-states 
•  Another output bus (wire connecting the tri-states) 

•  Write Ports 
− Ability to do one write/cycle 
− Could add more: need to multiplex write values 
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Minor Detail 

•  This is not how a register file is implemented in 
today’s processors 
− (Though it is how other things are implemented) 
− Actually done with SRAM 
− We’ll see that later this semester… 
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