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Administrivia

 Homework #3
 Due Mar 7, 11:55pm

* Readings
— Pragmatic Logic by William Eccles
— Linked on web page, skim for what you need.
— Combinational Circuits Ch 4.1-4.2, Ch 5.3
— Sequential Circuits Ch 6
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Arithmetic and Logical Operations in ISA

 What operations are there?

« How do we implement them?
— Consider a 1-bit Adder
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A 1-bit Full Adder

L S
T e

10011001
a b C. | Sum C_ .
0 0 0 0 0
0o 0 1 1 0
0O 1 0 1 0
0o 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
Cout 1 1 1 1 1
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Example: 4-bit Ripple Carry Adder

S3 S2 S1 SO

o f f f

< Full Adder |«— Full Adder [«— Full Adder «— Full Adder —1

SN A A A

b3 a3 b2 a2
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Subtraction

 How do we perform integer subtraction?
 What is the HW?

« Remember: Subtraction is just addition
X-Y=
X+ (-Y) =
X + (~Y +1)
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Example: Adder/Subtractor

f ¥ ¥ 7

< Full Adder |« Full Adder [« Full Adder («— Full Adder

out

Add/Sub > > > >
D
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Overflow

« How would we detect signed overflow?
—See if CI 1= CO
— 1-bit 1= is implemented with XOR

e If Cl=0and CO=1

— Sum must produce the carry
— CO=1 only if A=1 and B=1
— Adding two negative numbers to produce positive number

« [fCl=1and CO=0
— Sum must consume the carry
— CO=0 only if A=0 and B=0
— Adding two positive numbers to produce a negative number
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Add/Subtract With Overflow Detection

Overflow

S, ., S, S, Sy

! } } !

<+ Full Adder (¢ Full Adder— @ ® ® < Full Adder [« Full Adder
Add/Sub \ \ \ \
D
) ) ) ) ) ® ) )
bn-1 an. 4 bn 2 Qn2 b1 a4 bo g
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ALU Slice

Cin
al) ’ D) \

-/

=7
i Add/sub /2
& =

Add/sub F

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

A F Q
00 a+b
10 a-b
- 1 NOT b
- 2| aORbDb
- 3 | aANDb

10



The ALU

Overflow = Zero

M A y ¥
: : ALU control
ALU Slicd[|[ALU Slicd~ ® ® ® ~|ALU Slicd |ALU Slicd

EYRYERTRY

h-1 @1 2 &2

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250 11



Abstraction: The ALU

General structure
Two operand inputs
Control inputs

ALU Operation

Input A —»\
—> Zero

>ALU—' Result

. — Overflow
We can build 'nputB—>( e

circuits for
—Multiplication
—Division
—They are more
complex

Carry Out

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250



Shifts

 Remember the << and >> operations?
— Shift left/shift right?
—How would we implement these?

Suppose an 8-bit number
b.bsb:b,b;b,b,b,

Shifted left by a 3 bit number
$251S¢

* Option 1: Truth Table?
— 2048 rows? Not appealing
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Let’s simplify

« Simpler problem: 8-bit number shifted by 1 bit
number (shift amount selects each mux)

bg __E out,
D out;

™
Z — ™ out,
E?’ | - D out,
b2 | ™ out,
1 | o N out,
by
0 | - D out,
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Let’s simplify

« Simpler problem: 8-bit number shifted by 2 bit
number (new muxes selected by 2"9 bit)

27 j_D > out,
o ;D *D out,

™ AN out;
by, ———1 N P = o,
b3 | / [\ /
AN out,
b, | \/ /
b, > N out,
| ™ - out,
§ DD

0 | D D out,

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

15



Now shifted by 3-bit number

* Full problem: 8-bit number shifted by 3 bit number
(new muxes selected by 3 bit)

27 jD > >out7

b5 I_[ B *D ~ )OUtGO t

by —— 2N -

b, P out,

b2 D N - > ﬂD}ut\g

? = DD
0 D - —D_1
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Now shifted by 3-bit number

 Shifter in action: shift by 000

~out,

-

DD

)out6

™ AN ut,
oo —r— | A D t
> )
b | D ) \ ->§Ut3
| — —
2 A - N -
b, | / _/ _D out,

o P

: —D

'out1

A4

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

g

17



Now shifted by 3-bit number

 Shifter in action: shift by 010

AN
Rl - ou
bs T—D *D ) .
D=

N/
N/

)
y D |
»

|
b
0 | N
0 | \/
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Now shifted by 3-bit number

 Shifter in action: shift by 011

s DD =

)

N/
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So far...

* We can make logic to compute “math”
— Add, subtract,... (we’ll see multiply/divide later)
— Bitwise: AND, OR, NOT,...
— Shifts
— Selection (MUX)

« But processors need state (hold value)
— Registers
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Memory Elements

All the circuits we looked at so far are combinational
circuits: the output is a Boolean function of the inputs.

We need circuits that can remember values (registers,
memory)

The output of the circuit is a function of the input and a
stored value (state)

Circuits with memory are called sequential circuits

Key to storage: loops in circuit from outputs to inputs

© Alvin Lebeck, from Hilton,
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NOR-based Set-Reset (SR) Latch

Q
R| s|o
O| 0] OQ
0| 1] 1
11 010
1 1 - Don’t set both S & R to 1.
Seriously, don’t do it.
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Set-Reset Latch (Continued)
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Set-Reset Latch (Continued)

Set Signal Goes High

Output Signal Goes High
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Set-Reset Latch (Continued)

Set Signal Goes Low

Output Signal Stays High
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Set-Reset Latch (Continued)

1 ......................................................................................................
S gt
Until Reset Signal — e
1 .................................................................................
Goes High R 0 i
q 1T
0 ..................................................... ‘ ..
Then Output Signal Goes Low
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SR Latch

* Downside: S and R at once = chaos

* Downside: Bad interface

 What is a better solution?
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© Alvin Lebeck, from Hilton,
Sorin

Data Latch (D Latch)

Q

Starting with SR Latch

CS/ECE 250
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nable
,_( )

ata
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Data Latch (D Latch)

Q

Starting with SR Latch

Change interface to
Data + Enable (D + E)

CS/ECE 250
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nable
,_( )

ata

E goes high —

Data Latch (D Latch)

R |O|D

O |~|H

|lOI—‘OIO

D “latched”

Stays as output

© Alvin Lebeck, from Hilton,
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Q
Time
1
0
1 >
0
4 >
0
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Data Latch (D Latch)

E able | e
Q D  E | Q
0 1 0
1 1 1
— 0 Q
Dt ¢ A

Time
Does not
1 2\ affect Output}
D

0

Output unchanged 1 —
By changestoD —0
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Data Latch (D Latch)

O |~|H

|lOI—‘OIO

nable
—O
Q D
0
1
Q
Data e
Time
1
Dy
E goes high
E’ —>
0
D “latched” Q1
Becomes new output o —>
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Data Latch (D Latch)

nable
© q D| E| 0
0 1 0
1 1 1
-1 0] Q|
Data ¢ Q
Time
1
Dy
Slight Delay
1
(Logic gates takeTme)E\a\A
Q
0
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Logic Takes Time

* Logic takes time:
— Gate delays: delay to switch each gate
— Wire delays: delay for signal to travel down wire

— Other factors (not going into them here)

* Need to make sure that signals timing is right

— Don’t want to have races

© Alvin Lebeck, from Hilton,
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Clocks

* Processors have a clock:
— Alternates 01 0 1 (low high low high)
— Latch - logic - latch in one clock cycle

One clock cycle

— 3.4 GHz processor = 3.4 Billion clock cycles/sec
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Level Triggered Clock

* First thoughts: Level Triggered
— Latch enabled when clock is high
—Hold value when clock is low

\\ D 5 Q _ \\ D 5 Q
3 latch__ Logic 3 latch__
E Q E Q

Clk
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Level Triggered Clock

« How we’d like this to work
— Clock is low, all values stable

Clk
010 111 \100
AN ,Q . <
3 latch LOQIC 3
Q
0
Clk

Iatch_

[®)

© Alvin Lebeck, from Hilton,
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« How we’d like this to work

— Clock goes high, latches capture and transmit new value

Clk [
\01 0
AN D Q
3 latch
Q
0
Clk

010

Logic

Level Triggered Clock

100

Iatch_

[®)
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Level Triggered Clock

 How we’d like this to work
— Signals work their way through logic w/ high clk

Clk
100
010
o AN
< D 5 Q N
3 latch 3
E Q
0
Clk
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Level Triggered Clock

« How we’d like this to work
— Clock goes low before signals reach next latch

Clk |
\01 0
AN D 5 Q
3 latch
E Q
0
Clk

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Iatch_
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Level Triggered Clock

« How we’d like this to work
— Clock goes low before signals reach next latch

Clk
111 000
—————|D @ ——
3 latch 3
E Q
0
Clk
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[®)
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Level Triggered Clock

 How we’d like this to work
— Everything stable before clk goes high

Clk
111 000
—————|D @ ——
3 latch 3
E Q
0
Clk

Iatch_

[®)
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Level Triggered Clock

 How we’d like this to work
— Clk goes high again, repeat

Clk [
111 111 800
~ ,Q . <
3 latch LOQIC 3
aQ
0
Clk

Iatch_

[®)

© Alvin Lebeck, from Hilton,
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Level Triggered Clock

 Problem: What if signal reaches latch too early?
—i.e., while clk is still high

Clk
\1 11 000
< D 5 Q
3 latch
E Q
0
Clk
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Level Triggered Clock

* Problem: What if signal reaches latch too early?
— Signal goes right through latch, into next stage..

Clk
\111 101
< D 5 Q
3 latch
E Q
0
Clk

© Alvin Lebeck, from Hilton,
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That would be bad...

« Getting into a stage too early is bad
— Something else is going on there - corrupted
— Also may be a loop with one latch

« Consider incrementing counter (or PC)
—Too fast -- increment twice? Not good.

© Alvin Lebeck, from Hilton,
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001
—{0 _Q + 1
latch
E Q
AN
AN
3

010
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Edge Triggered

 Instead of level triggered
—Latch a new value at a clock level (high or low)

 We use edge triggered

— Latch a value at an clock edge (rising or falling)

Rising Edges

v i v

Falling Edges

© Alvin Lebeck, from Hilton,
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D Flip-Flop

latch Iatch_

KE ——I| E

o
Ol

* Rising edge triggered D Flip-flop

—Two D Latches w/ Opposite clking of enables

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

48



D Flip-Flop

latch Iatch_

KE ——I| E

o
Ol

* Rising edge triggered D Flip-flop

— Two D Latches w/ opposite clking of enables

— On Low CIk, first latch enabled (propagates value)
« Second not enabled, maintains value

© Alvin Lebeck, from Hilton,
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D Flip-Flop

latch Iatch_

KE ——I| E

o
Ol

* Rising edge triggered D Flip-flop

— Two D Latches w/ opposite clking of enables

— On Low CIk, first latch enabled (propagates value)
« Second not enabled, maintains value

— On High CIk, second latch enabled
* First latch not enabled, maintains value

© Alvin Lebeck, from Hilton,
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D Flip-Flop

latch

Iatch_

latch

Iatch_

[3)

A

* No possibility of “races”
— Even if | put 2 DFFs back-to-back...
— By the time signal gets through 2"d latch of 15t DFF, 1st latch of 2"d DFF is disabled

 Still must ensure signals reach DFF before clk rises
— Important concern in logic design is “making timing”

© Alvin Lebeck, from Hilton,
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D Flip-flops (continued...)

« Could also do falling edge triggered
— Switch which latch has NOT on clk

* D Flip-flop is ubiquitous
— Typically people just say “latch” and mean DFF
— Which edge is used does not matter
* As long as same edge is used consistently
« We will use rising edge

© Alvin Lebeck, from Hilton,
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D flip flops

* Generally do not draw clk input
— Have one global clk, assume it goes there
— Often see > as symbol meaning clk

 Maybe have explicit enable
— Might not want to write every cycle
— If no enable signal shown, implies always enabled

DFF

(3]

D

DFF

Q

Q

D

DFF

Q

Q

« Get output and NOT(output) for “free”

© Alvin Lebeck, from Hilton,
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Register File

Can store one value...what about manyvalues ?

E.g., Register File (the physical storage for the regs)
—MIPS, 32 32-bit integer registers

How do we build a Register File using D Flip-Flops?
What other components do we need?

© Alvin Lebeck, from Hilton,
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Register File

 Reading the registers
— 32 input mux -- slow

—Need 32 32-1 MUXes -- big

— Other regs not pictured

© Alvin Lebeck, from Hilton,
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D Q
32 bit reg

E Q
D Q[—

32 bit reg
E Q
D Q
32 bit reg
E Q
D Q
32 bit reg
E Q
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Register File

 Reading the registers

— 32 input mux -- slow

—Need 32 32-1 MUXes -- big

— Other regs not pictured

* Writing the registers

— Need to pick which reg

—Have reg num (e.g.,
—Make En19=1
« ENO, ENn1,...=0

© Alvin Lebeck, from Hilton,
Sorin

E Q
D Q[—

—|D Q
32 bit reg
En0 | =
32 bit reg
En1 —
— E

WrData Q
—|D Q
32 bit reg
En30 —
E Q

19)
D Q
32 bit reg
En31 E 6

CS/ECE 250
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Decoders

* First task: convert binary number to “one hot”
— N bits in
— 2N bits out
— 2N-1 bits are 0, 1 bit (matching the input) is 1

101\
\

3

Decoder
o

© Alvin Lebeck, from Hilton,
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Decoder Logic

« Decoder basically AND gates for each output:
— Out, only True (one) if input 000

J_DC Out,
In,

3-input gates are fine.
In theory, gates can have any # of inputs
In practice >4 converted to multiple gates

© Alvin Lebeck, from Hilton,
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Decoder Logic

« Decoder basically AND gates for each output:
— Out, only True (one) if input 001

—[>o out,
J—DC >Out1
>

Repeat for all outputs

In,

In,

In,

AND together correct sets of bits

© Alvin Lebeck, from Hilton,
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Register File

 Decoder supports register addressing:
— Use decoder to convert register number into control signal
— Send write data to all registers
— Use one hot encoding to enable destination register

* Need to fix register read speed
— 32 input mux is not realistic
— For tractability, expand our world from {1,0} to {1, 0, Z}

© Alvin Lebeck, from Hilton,
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Water Analogy

 To understand Z, let’s make an analogy
— Think of a wire as a pipe
« Has water = 1
 Has water =0
— This wire is 0 (it has no water)

© Alvin Lebeck, from Hilton,
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Water Analogy

 To understand Z, let’s make an analogy
— Think of a wire as a pipe
« Has water =1
« Has water =0
— This wire is 1 (its full of water)

© Alvin Lebeck, from Hilton,
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Water Analogy

 To understand Z, let’s make an analogy
— Think of a wire as a pipe
« Has water =1
« Has water=0
— Suppose a gate drives a 0 onto this wire
* Drain the water

S

© Alvin Lebeck, from Hilton,
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Water Analogy

 To understand Z, let’s make an analogy
— Think of a wire as a pipe
« Has water =1
« Has water=0
— Suppose a gate drives a 0 onto this wire
* Drain the water

S
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Water Analogy

 To understand Z, let’s make an analogy
— Think of a wire as a pipe
* Has water =1
« Has water=0
— Suppose a gate drives a 0 onto this wire
* Drain the water

S

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

65



Water Analogy

 To understand Z, let’s make an analogy
— Think of a wire as a pipe
« Has water = 1
« Has water=0
— Suppose a gate drives a 0 onto this wire
e Drain the water

S
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Water Analogy

 To understand Z, let’s make an analogy
— Think of a wire as a pipe
* Has water =1
« Has water=0
— Suppose the gate now drives a 1
* Pump the water

S
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Water Analogy

 To understand Z, let’s make an analogy
— Think of a wire as a pipe
« Has water =1
« Has water=0
— Suppose the gate now drives a 1
* Pump the water

S
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Water Analogy

 To understand Z, let’s make an analogy
— Think of a wire as a pipe
« Has water =1
« Has water=0
— Suppose the gate now drives a 1
* Pump the water

S
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Remember this rule?

Do not connect two outputs to the same wire

B
P

 One gate drives 1. The other drives 0.
— One pumps water in. The other drains water out

— Except it's not water, it's electric charge
—“Short circuit” = lots of current - lots of heat

ae
be

© Alvin Lebeck, from Hilton,
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A third option: Z
* There is a third possibility: Z (“high impedance”)

— Neither pumping or draining charge
— Prevents charge from flowing through

« Gate that gives us Z : Tri-state

= O O
O R KL I
N R O

© Alvin Lebeck, from Hilton,
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Tri-State Buffers

It’s ok to connect multiple outputs together under
one circumstance -- all but one must be
outputting Z at any time

_/\ %lr\ o o o ;r ;r
an Dh-2 D, Do
En-1 En-2 E, Eo

© Alvin Lebeck, from Hilton,
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Mux with Tri-State Buffers

— Much more efficient for large #s of
inputs (e.qg., 32)

— Decoder ensures only one output

1110\
\

5

Decoder

D Q
32 bit reg

E Q

D Q
32 bit reg

E Q

D Q
32 bit reg

E Q

H EER H ENE 1

D Q
32 bit reg

E Q

© Alvin Lebeck, from Hilton,
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Ports

e Read Ports

— Ability to do one read per clock cycle

—May want more -- read two source registers per instruction
« Maybe even more if we do many instrs at once (later...)

— Could add more: need to replicate port
* Another decoder
* Another set of tri-states
» Another output bus (wire connecting the tri-states)

 Write Ports

— Ability to do one write/cycle
— Could add more: need to multiplex write values

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

74



Minor Detalil

* This is not how a register file is implemented in
today’s processors

— (Though it is how other things are implemented)
— Actually done with SRAM
— We’'ll see that later this semester...
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