
CS/ECE 250: Computer Architecture

Basics of Logic Design:
ALU, Storage, Tristate

Benjamin Lee

Slides based on those from Alvin Lebeck,
Daniel Sorin, Andrew Hilton, Amir Roth,

Gershon Kedem

2
© Alvin Lebeck, from Hilton,
Sorin

Administrivia

•  Homework #3
•  Due Mar 7, 11:55pm

•  Readings
− Pragmatic Logic by William Eccles
− Linked on web page, skim for what you need.
− Combinational Circuits Ch 4.1-4.2, Ch 5.3
− Sequential Circuits Ch 6

CS/ECE 250

3
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Arithmetic and Logical Operations in ISA

•  What operations are there?
•  How do we implement them?

− Consider a 1-bit Adder

4
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

A 1-bit Full Adder

a b Cin Sum Cout
0 0 0 0 0
0 0 1 1 0
0 1 0 1 0
0 1 1 0 1
1 0 0 1 0
1 0 1 0 1
1 1 0 0 1
1 1 1 1 1

01101100

 01101101
+00101100
 10011001

a

b

Cin

Cout

Sum

5
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

a0 a1 a2 a3 b0 b1 b2 b3

Cout

S0 S1 S2 S3

Full AdderFull AdderFull AdderFull Adder

Example: 4-bit Ripple Carry Adder

6
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Subtraction

•  How do we perform integer subtraction?
•  What is the HW?

•  Remember: Subtraction is just addition
X – Y =
X + (-Y) =
X + (~Y +1)

7
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Full AdderFull AdderFull AdderFull Adder

a0 a1 a2 a3 b0 b1 b2 b3

Cout

S0 S1 S2 S3

Add/Sub

Example: Adder/Subtractor

8
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Overflow

•  How would we detect signed overflow?
− See if CI != CO
− 1-bit != is implemented with XOR

•  If CI = 0 and CO=1
− Sum must produce the carry
− CO=1 only if A=1 and B=1
− Adding two negative numbers to produce positive number

•  If CI = 1 and CO=0
− Sum must consume the carry
− CO=0 only if A=0 and B=0
− Adding two positive numbers to produce a negative number

9
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Add/Subtract With Overflow Detection

Full AdderFull AdderFull AdderFull Adder

S0 S1 Sn- 2 Sn- 1

Overflow

a0 a1 b0 b1 an- 2 bn- 2 an- 1 bn- 1

Add/Sub

10
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Add/sub

C in

C ou t

Add/sub F

2

0

1

2

3

a

b

Q

A F Q
0 0 a + b
1 0 a - b
- 1 NOT b
- 2 a OR b
- 3 a AND b

ALU Slice

11
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

The ALU

ALU Slice ALU Slice ALU Slice ALU Slice

ALU control

a 0 b 0 a 1 b 1 a n-2 b n-2 a n-1 b n-1

Q 0 Q 1 Q n-2 Q n-1

Overflow = Zero

12
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Abstraction: The ALU

•  General structure
•  Two operand inputs
•  Control inputs

•  We can build
circuits for
− Multiplication
− Division
− They are more

complex

Input A

Input B

ALU Operation

Carry Out

Result
Overflow

Zero
ALU

13
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Shifts

•  Remember the << and >> operations?
− Shift left/shift right?
− How would we implement these?

Suppose an 8-bit number

b7b6b5b4b3b2b1b0

Shifted left by a 3 bit number
s2s1s0

•  Option 1: Truth Table?
− 2048 rows? Not appealing

14
© Alvin Lebeck, from Hilton,
Sorin

Let’s simplify

•  Simpler problem: 8-bit number shifted by 1 bit
number (shift amount selects each mux)

CS/ECE 250

b0

b1

b2

b3

b4

b7

b6

b5

0
out0

out1

out2

out3

out4

out5

out6

out7

15
© Alvin Lebeck, from Hilton,
Sorin

Let’s simplify

•  Simpler problem: 8-bit number shifted by 2 bit
number (new muxes selected by 2nd bit)

CS/ECE 250

b0

b1

b2

b3

b4

b7

b6

b5

0
out0

out1

out2

out3

out4

out5

out6

out7

16
© Alvin Lebeck, from Hilton,
Sorin

Now shifted by 3-bit number

•  Full problem: 8-bit number shifted by 3 bit number
(new muxes selected by 3rd bit)

CS/ECE 250

b0

b1

b2

b3

b4

b7

b6

b5

0 out0

out1

out2

out3

out4

out5

out6

out7

17
© Alvin Lebeck, from Hilton,
Sorin

Now shifted by 3-bit number

•  Shifter in action: shift by 000

CS/ECE 250

b0

b1

b2

b3

b4

b7

b6

b5

0 out0

out1

out2

out3

out4

out5

out6

out7

18
© Alvin Lebeck, from Hilton,
Sorin

Now shifted by 3-bit number

•  Shifter in action: shift by 010

CS/ECE 250

b0

b1

b2

b3

b4

b7

b6

b5

0 out0

out1

out2

out3

out4

out5

out6

out7

19
© Alvin Lebeck, from Hilton,
Sorin

Now shifted by 3-bit number

•  Shifter in action: shift by 011

CS/ECE 250

b0

b1

b2

b3

b4

b7

b6

b5

0 out0

out1

out2

out3

out4

out5

out6

out7

20
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

So far…

•  We can make logic to compute “math”
− Add, subtract,… (we’ll see multiply/divide later)
− Bitwise: AND, OR, NOT,…
− Shifts
− Selection (MUX)

•  But processors need state (hold value)
− Registers

21
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Memory Elements

•  All the circuits we looked at so far are combinational
circuits: the output is a Boolean function of the inputs.

•  We need circuits that can remember values (registers,
memory)

•  The output of the circuit is a function of the input and a
stored value (state)

•  Circuits with memory are called sequential circuits

•  Key to storage: loops in circuit from outputs to inputs

22
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

NOR-based Set-Reset (SR) Latch

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
0

R S Q
0 0 Q
0 1 1
1 0 0
1 1 - Don’t set both S & R to 1.

Seriously, don’t do it.

23
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Set-Reset Latch (Continued)

Time

S 0
1

R
0
1

Q
0
1

24
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Set-Reset Latch (Continued)

Time

S 0
1

R
0
1

Q
0
1

Set Signal Goes High

Output Signal Goes High

25
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Set-Reset Latch (Continued)

Time

S 0
1

R
0
1

Q
0
1

Set Signal Goes Low

Output Signal Stays High

26
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

R

S

Q

Q

0
1 0

1
0
0

R

S

Q

Q

0
0 1

0
1
1

Set-Reset Latch (Continued)

Time

S 0
1

R
0
1

Q
0
1

Until Reset Signal
Goes High

Then Output Signal Goes Low

27
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

SR Latch

•  Downside: S and R at once = chaos

•  Downside: Bad interface

•  What is a better solution?

28
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Data Latch (D Latch)

Q

Q

Starting with SR Latch

29
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Data Latch (D Latch)

Data

Enable
Q

Q

Starting with SR Latch

Change interface to
 Data + Enable (D + E)

30
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Data Latch (D Latch)

Data

Enable
Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

E goes high

D “latched”
Stays as output

31
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Data Latch (D Latch)

Data

Enable
Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

Does not
 affect Output

E goes low

Output unchanged
By changes to D

32
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Data Latch (D Latch)

Data

Enable
Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

E goes high

D “latched”
Becomes new output

33
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Data Latch (D Latch)

Data

Enable
Q

Q

D E Q
0 1 0
1 1 1
- 0 Q

Time

D 0
1

E
0
1

Q
0
1

Slight Delay

(Logic gates take time)

34
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Logic Takes Time

•  Logic takes time:
− Gate delays: delay to switch each gate

− Wire delays: delay for signal to travel down wire

− Other factors (not going into them here)

•  Need to make sure that signals timing is right
− Don’t want to have races

35
© Alvin Lebeck, from Hilton,
Sorin

Clocks

•  Processors have a clock:
− Alternates 0 1 0 1 (low high low high)
− Latch à logic à latch in one clock cycle

− 3.4 GHz processor = 3.4 Billion clock cycles/sec

CS/ECE 250

One clock cycle

36
© Alvin Lebeck, from Hilton,
Sorin

Level Triggered Clock

•  First thoughts: Level Triggered
− Latch enabled when clock is high
− Hold value when clock is low

CS/ECE 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

37
© Alvin Lebeck, from Hilton,
Sorin

Level Triggered Clock

•  How we’d like this to work
− Clock is low, all values stable

CS/ECE 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

010 111 100 001

0

Clk

38
© Alvin Lebeck, from Hilton,
Sorin

Level Triggered Clock

•  How we’d like this to work
− Clock goes high, latches capture and transmit new value

CS/ECE 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

010 010 100 100

0

Clk

39
© Alvin Lebeck, from Hilton,
Sorin

Level Triggered Clock

•  How we’d like this to work
− Signals work their way through logic w/ high clk

CS/ECE 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

010 010 100 100

0

Clk

40
© Alvin Lebeck, from Hilton,
Sorin

Level Triggered Clock

•  How we’d like this to work
− Clock goes low before signals reach next latch

CS/ECE 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

010 010 100 100

0

Clk

41
© Alvin Lebeck, from Hilton,
Sorin

Level Triggered Clock

•  How we’d like this to work
− Clock goes low before signals reach next latch

CS/ECE 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 010 000 100

0

Clk

42
© Alvin Lebeck, from Hilton,
Sorin

Level Triggered Clock

•  How we’d like this to work
− Everything stable before clk goes high

CS/ECE 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 010 000 100

0

Clk

43
© Alvin Lebeck, from Hilton,
Sorin

Level Triggered Clock

•  How we’d like this to work
− Clk goes high again, repeat

CS/ECE 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 111 000 000

0

Clk

44
© Alvin Lebeck, from Hilton,
Sorin

Level Triggered Clock

•  Problem: What if signal reaches latch too early?
− i.e., while clk is still high

CS/ECE 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 111 101 000

0

Clk

45
© Alvin Lebeck, from Hilton,
Sorin

Level Triggered Clock

•  Problem: What if signal reaches latch too early?
− Signal goes right through latch, into next stage..

CS/ECE 250

D
latch

D Q

E Q

D
latch

D Q

E Q
Logic

Clk

3 3

111 111 101 101

0

Clk

46
© Alvin Lebeck, from Hilton,
Sorin

That would be bad…

•  Getting into a stage too early is bad
− Something else is going on there à corrupted
− Also may be a loop with one latch

•  Consider incrementing counter (or PC)
− Too fast -- increment twice? Not good.

CS/ECE 250

D
latch

D Q

E Q

+1

3

001

010

47
© Alvin Lebeck, from Hilton,
Sorin

Edge Triggered

•  Instead of level triggered
− Latch a new value at a clock level (high or low)

•  We use edge triggered
− Latch a value at an clock edge (rising or falling)

CS/ECE 250

Rising Edges

Falling Edges

48
© Alvin Lebeck, from Hilton,
Sorin

D Flip-Flop

•  Rising edge triggered D Flip-flop
− Two D Latches w/ Opposite clking of enables

CS/ECE 250

D
latch

D Q

E

D
latch

D Q

E Q Q

Q D

C

49
© Alvin Lebeck, from Hilton,
Sorin

D Flip-Flop

•  Rising edge triggered D Flip-flop
− Two D Latches w/ opposite clking of enables

− On Low Clk, first latch enabled (propagates value)
•  Second not enabled, maintains value

CS/ECE 250

D
latch

D Q

E

D
latch

D Q

E Q Q

Q D

C

50
© Alvin Lebeck, from Hilton,
Sorin

D Flip-Flop

•  Rising edge triggered D Flip-flop
− Two D Latches w/ opposite clking of enables

− On Low Clk, first latch enabled (propagates value)
•  Second not enabled, maintains value

− On High Clk, second latch enabled
•  First latch not enabled, maintains value

CS/ECE 250

D
latch

D Q

E

D
latch

D Q

E Q Q

Q D

C

51
© Alvin Lebeck, from Hilton,
Sorin

D Flip-Flop

•  No possibility of “races”
−  Even if I put 2 DFFs back-to-back…
−  By the time signal gets through 2nd latch of 1st DFF, 1st latch of 2nd DFF is disabled

•  Still must ensure signals reach DFF before clk rises
− Important concern in logic design is “making timing”

CS/ECE 250

D
latch

D Q

E

D
latch

D Q

E Q

D

C

D
latch

D Q

E

D
latch

D Q

E Q

C

52
© Alvin Lebeck, from Hilton,
Sorin

D Flip-flops (continued…)

•  Could also do falling edge triggered
− Switch which latch has NOT on clk

•  D Flip-flop is ubiquitous
− Typically people just say “latch” and mean DFF
− Which edge is used does not matter

•  As long as same edge is used consistently
•  We will use rising edge

CS/ECE 250

53
© Alvin Lebeck, from Hilton,
Sorin

D flip flops

•  Generally do not draw clk input
− Have one global clk, assume it goes there
− Often see > as symbol meaning clk

•  Maybe have explicit enable
− Might not want to write every cycle
− If no enable signal shown, implies always enabled

•  Get output and NOT(output) for “free”

CS/ECE 250

DFF
D Q

E Q

DFF
D Q

Q

DFF
D Q

> Q

54
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Register File

•  Can store one value…what about manyvalues ?
•  E.g., Register File (the physical storage for the regs)

− MIPS, 32 32-bit integer registers

•  How do we build a Register File using D Flip-Flops?
•  What other components do we need?

55
© Alvin Lebeck, from Hilton,
Sorin

•  Reading the registers
− 32 input mux -- slow
− Need 32 32-1 MUXes -- big
− Other regs not pictured

Register File

CS/ECE 250

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

… …

56
© Alvin Lebeck, from Hilton,
Sorin

Register File

•  Reading the registers
− 32 input mux -- slow
− Need 32 32-1 MUXes -- big
− Other regs not pictured

•  Writing the registers
− Need to pick which reg
− Have reg num (e.g., 19)
− Make En19=1

•  En0, En1,… = 0

CS/ECE 250

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

… … WrData

En0

En1

En30

En31

57
© Alvin Lebeck, from Hilton,
Sorin

Decoders

•  First task: convert binary number to “one hot”
− N bits in
− 2N bits out
− 2N-1 bits are 0, 1 bit (matching the input) is 1

CS/ECE 250

D
ec

od
er

3

101
0

0
0

0
0

1
0

0

58
© Alvin Lebeck, from Hilton,
Sorin

Decoder Logic

•  Decoder basically AND gates for each output:
− Out0 only True (one) if input 000

CS/ECE 250

In0

In1

In2

Out0

3-input gates are fine.
In theory, gates can have any # of inputs
In practice >4 converted to multiple gates

59
© Alvin Lebeck, from Hilton,
Sorin

Decoder Logic

•  Decoder basically AND gates for each output:
− Out1 only True (one) if input 001

CS/ECE 250

In0

In1

In2

Out0

Out1

Repeat for all outputs

AND together correct sets of bits

60
© Alvin Lebeck, from Hilton,
Sorin

Register File

•  Decoder supports register addressing:
− Use decoder to convert register number into control signal
− Send write data to all registers
− Use one hot encoding to enable destination register

•  Need to fix register read speed
− 32 input mux is not realistic
− For tractability, expand our world from {1,0} to {1, 0, Z}

CS/ECE 250

61
© Alvin Lebeck, from Hilton,
Sorin

Water Analogy

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− This wire is 0 (it has no water)

CS/ECE 250

62
© Alvin Lebeck, from Hilton,
Sorin

Water Analogy

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− This wire is 1 (its full of water)

CS/ECE 250

63
© Alvin Lebeck, from Hilton,
Sorin

Water Analogy

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− Suppose a gate drives a 0 onto this wire
•  Drain the water

CS/ECE 250

0

64
© Alvin Lebeck, from Hilton,
Sorin

Water Analogy

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− Suppose a gate drives a 0 onto this wire
•  Drain the water

CS/ECE 250

0

65
© Alvin Lebeck, from Hilton,
Sorin

Water Analogy

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− Suppose a gate drives a 0 onto this wire
•  Drain the water

CS/ECE 250

0

66
© Alvin Lebeck, from Hilton,
Sorin

Water Analogy

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− Suppose a gate drives a 0 onto this wire
•  Drain the water

CS/ECE 250

0

67
© Alvin Lebeck, from Hilton,
Sorin

Water Analogy

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− Suppose the gate now drives a 1
•  Pump the water

CS/ECE 250

1

68
© Alvin Lebeck, from Hilton,
Sorin

Water Analogy

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− Suppose the gate now drives a 1
•  Pump the water

CS/ECE 250

1

69
© Alvin Lebeck, from Hilton,
Sorin

Water Analogy

•  To understand Z, let’s make an analogy
− Think of a wire as a pipe

•  Has water = 1
•  Has water = 0

− Suppose the gate now drives a 1
•  Pump the water

CS/ECE 250

1

70
© Alvin Lebeck, from Hilton,
Sorin

Remember this rule?

•  Do not connect two outputs to the same wire

•  One gate drives 1. The other drives 0.
− One pumps water in. The other drains water out
− Except it’s not water, it’s electric charge
− “Short circuit” à lots of current à lots of heat

CS/ECE 250

a
b

c
d

BAD!

71
© Alvin Lebeck, from Hilton,
Sorin

A third option: Z

•  There is a third possibility: Z (“high impedance”)
− Neither pumping or draining charge
− Prevents charge from flowing through

•  Gate that gives us Z : Tri-state

CS/ECE 250

D E Q
0 1 0
1 1 1
- 0 Z

D Q

E

72
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

It’s ok to connect multiple outputs together under
one circumstance -- all but one must be
outputting Z at any time

D0

E0

D1

E1

Dn-2

En-2

Dn-1

En-1

Tri-State Buffers

73
© Alvin Lebeck, from Hilton,
Sorin

Mux with Tri-State Buffers

− Much more efficient for large #s of
inputs (e.g., 32)

− Decoder ensures only one output

CS/ECE 250

D
ec

od
er

5

11110
0

0

1
0

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

32 bit reg
D Q

E Q

… …

… …

74
© Alvin Lebeck, from Hilton,
Sorin

Ports

•  Read Ports
− Ability to do one read per clock cycle

− May want more -- read two source registers per instruction
•  Maybe even more if we do many instrs at once (later…)

− Could add more: need to replicate port
•  Another decoder
•  Another set of tri-states
•  Another output bus (wire connecting the tri-states)

•  Write Ports
− Ability to do one write/cycle
− Could add more: need to multiplex write values

CS/ECE 250

75
© Alvin Lebeck, from Hilton,
Sorin

Minor Detail

•  This is not how a register file is implemented in
today’s processors
− (Though it is how other things are implemented)
− Actually done with SRAM
− We’ll see that later this semester…

CS/ECE 250

