CS/ECE 250: Computer Architecture
Logic Design:
Tristate Buffers, Finite State Machines
Benjamin Lee
Slides are derived from work by

Alvin Lebeck, Drew Hilton, Amir Roth,
Dan Sorin

Admin

« Homework #3 assigned

 Readings
—Pragmatic Logic
— Combinational Circuits Ch 4.1-4.2, Ch 5.3
— Sequential Circuits Ch 6
— Also if you want appendix C of H&P

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Finite State Machine

« S={s, S, ..-S,4}Iis a finite set of states.
* I={iy iy, .. .0 ¢} Is afinite set of input values.
« O={0, 04, ...0,.4} IS afinite set output values.

Definition: A finite state machine is a function
F:(S x1)->(S x0) that gets a sequence of input
values L, el, k=0,1,2,+++ and it produces a
sequence of output values O,€0, k=1,2,-++ such
that:

F(Sk’ Ik) = (Sk+1a Ok+1) K=0,1,2, -

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Finite State Machine

* Finite State Machine is:
— A machine with a finite number of possible states.
— A machine with a finite number of possible Inputs.

— A machine with a finite number of possible different
outputs.

— At each period (clock cycle) the machine receives an
input and it produces an output.

— The output is a function of the input and current state.
— After each period the machine changes state.
— The new state is a function of the input and current state.

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Example: Traffic Light Controller

m
R R R R R R R R R W

Traffic light controller
at an intersection.

R R R R R R R

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Finite State Machine (cont.)

- Example: Traffic lights controller:

— There are four states:
* NG: Green light in the north-south direction.
* NY: Yellow light in the north-south direction.
 EG: Green light at the East-West direction.
« EY: Yellow light at the East-West direction.

— There are four outputs:
* (G;R): North-South green light, East-West red light
* (Y;R): North-South , East West red light
* (R;Y): North-South red light, East-West
* (R;G): North-South red light, East-West green light

— There are four input values:
* (c, c): Car at the North-South, Car at East-West
* (c, nc) Car at North-South, No-car at East-West
* (nc, c): No-car at North-South, Car at East-West
* (nc, nc): No-car at North-South, No-car at East-West

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

FSM Example: Traffic Light

State Transitions:

State | Input Next-State| Output
NG (=, NC) NG (G; R)
NG (=;C) NY (G;R)
NY - EG (Y;R)
EG (NC; -) EG (R; G)
EG (C;—) EY (R; G)
P NG (R;Y)

=

— means don’t care

© Alvin Lebeck, from Hilton,

Sorin

Format

(North/South; East/West)

CS/ECE 250

Finite State Machine (cont.)

Finite State Machines can be represented by a graph.
The graph is called a state diagram.
The states are the nodes in the graph.

The directed edges In the graph represent state
transitions.

Each directed edge is labeled with the inputs that
cause the transition

Nodes are labeled with the outputs.

© Alvin Lebeck, from Hilton,

Sorin

CS/ECE 250

FSM State Diagram
Example: Traffic light Controller

I=(— ; NC)

I =(=;C)

@ O = (Y;R)

I =(NC;--)

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

State Coding

State Code Loput Codef o it for each
NG 00 (C;C) 11 Input o
NY 01 (C;NC) 1O | Inputis either
o 0 (NC: C) 01 true or false
5y 11 (NC;NC) 00
Enumerate States

OQutput Code One bit per color for each

(R;G) V011001 jight GYRGYR

(G;R) 100001

(Y;R) 010001 (North; East)

(R;Y) 001010

© Alvin Lebeck, from Hilton,

Sorin

CS/ECE 250

10

Coded State Diagram

(-;0)
I=(— ; NC)
(-;1) @
I =(—;C) O = (G;R)

(100:001)

O = (R;Y)
(001;010)

(010;001)
O = (Y;R)

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

11

Example: Traffic Light Controller

S = State, bits are S0 and S1
NS = Next State, bits are NSO and NS1

01

NS
01

OouT
012345

00

00

100001

00

01

100001

01

10

010001

10

10

001100

10

11

001100

11

00

001010

© Alvin Lebeck, from Hilton,

Sorin

NS1

NSO

OUTO
OUT1
OUT2
OUT3
ouT4
OUT>5

SO’ *S1"*I0+S0*S1” *I1

S17* (S0’ I0+S0*I1)

SO0’ *S1+S0*S1/*T1"+S0*S1” *I1
SO’ *S1+S0*S1”

SO’ *sl’

SO0’ *S1

SO0*S17+S0*S1= SO

SO0*S1’

SO0*S1

SO0’ *S1"+S0"*S1= SO’

CS/ECE 250 12

FSM Implementation

« State is stored in D-Flip Flop

* Next State and Output are computed using
combinational logic

Inputs

L

> Outputs

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250 13

Traffic Controller FSM imglementation

Reset

Inl In0
111 110 IS} I
YA RY, ?ﬂ o

F ¢

F

L

RVARV/

ik

S0S1

»
| 50151 Qous
>
—@ous
=
sors1 } & @ous
1>
& Qo
£
15051 } —@ou
l / Oouto
A
5051
t -/

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

General Method for FSM design

 Determine the problem:
1. Draw the state diagram,
2. Write the truth table,
3. Write sum-of-products equations
4. Implement in Logic

© Alvin Lebeck, from Hilton,

Sorin CS/ECE 250

15

A Simple Arrow FSM

« Consider those flashing arrow signs

* No light, one arrow, two arrows, three arrows
> >> >>>

* Let’s design the FSM to control this sign

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

16

Pattern Recognizer

« A pattern recognizer examines a sequence of inputs
to detect when it sees the pattern 101. When it sees

this pattern its output is 1 forever.

* Let’s design the FSM

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

17

Summary

Can layout logic to compute things
Add, subtract,...

Now can store things
D flip-flops
Registers
Also understand clocks

Can build a finite state machine to control things.

Just about ready to make a processor datapath!

© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

18

