
CS/ECE 250: Computer Architecture

Logic Design:
Tristate Buffers, Finite State Machines

Benjamin Lee

Slides are derived from work by
 Alvin Lebeck, Drew Hilton, Amir Roth,

Dan Sorin

2
© Alvin Lebeck, from Hilton,
Sorin

Admin

•  Homework #3 assigned

•  Readings
− Pragmatic Logic
− Combinational Circuits Ch 4.1-4.2, Ch 5.3
− Sequential Circuits Ch 6
− Also if you want appendix C of H&P

CS/ECE 250

3
© Alvin Lebeck, from Hilton,
Sorin

Finite State Machine

•  S ={ s0, s1, . . . sn-1} is a finite set of states.
•  I = { i0, i1, . . . ik-, 1} is a finite set of input values.
•  O= { o0, o1, . . . om-1} is a finite set output values.

Definition: A finite state machine is a function

F:(S x I) -> (S x O) that gets a sequence of input
values Ik∈ I, k = 0,1,2 , • • • and it produces a
sequence of output values Ok∈O, k= 1,2, • • • such
that:

 F(sk, ik) = (sk+1, ok+1) K=0, 1, 2, • • •

CS/ECE 250

4
© Alvin Lebeck, from Hilton,
Sorin

Finite State Machine

•  Finite State Machine is:
− A machine with a finite number of possible states.
− A machine with a finite number of possible Inputs.
− A machine with a finite number of possible different

outputs.

−  At each period (clock cycle) the machine receives an
input and it produces an output.

− The output is a function of the input and current state.
− After each period the machine changes state.
− The new state is a function of the input and current state.

CS/ECE 250

5
© Alvin Lebeck, from Hilton,
Sorin

Example: Traffic Light Controller

C

C

C
C

N

S

W E

Traffic light controller
at an intersection.

CS/ECE 250

6
© Alvin Lebeck, from Hilton,
Sorin

Finite State Machine (cont.)
•  Example: Traffic lights controller:

− There are four states:
•  NG: Green light in the north-south direction.
•  NY: Yellow light in the north-south direction.
•  EG: Green light at the East-West direction.
•  EY: Yellow light at the East-West direction.

− There are four outputs:
•  (G;R): North-South green light, East-West red light
•  (Y;R): North-South yellow light, East West red light
•  (R;Y): North-South red light, East-West yellow light
•  (R;G): North-South red light, East-West green light

− There are four input values:
•  (c, c): Car at the North-South, Car at East-West
•  (c, nc) Car at North-South, No-car at East-West
•  (nc, c): No-car at North-South, Car at East-West
•  (nc, nc): No-car at North-South, No-car at East-West

CS/ECE 250

7
© Alvin Lebeck, from Hilton,
Sorin

FSM Example: Traffic Light

State Transitions:

State Input Next-State Output
NG (-;NC) NG (G;R)
NG (-;C) NY (G;R)
NY - EG (Y;R)
EG (NC;-) EG (R;G)
EG (C;-) EY (R;G)
EY - NG (R;Y)

Format
(North/South; East/West)

 - means don’t care

CS/ECE 250

8
© Alvin Lebeck, from Hilton,
Sorin

Finite State Machine (cont.)

•  Finite State Machines can be represented by a graph.
•  The graph is called a state diagram.
•  The states are the nodes in the graph.

•  The directed edges in the graph represent state
transitions.

•  Each directed edge is labeled with the inputs that
cause the transition

•  Nodes are labeled with the outputs.

CS/ECE 250

9
© Alvin Lebeck, from Hilton,
Sorin

FSM State Diagram
Example: Traffic light Controller

NG

NY

EG

EY

O = (R;G)

O = (G;R)

O = (Y;R)

I= (-- ; NC)

O = (R;Y)

I = (--;C)

I = (NC; --)

I = (C; --)

CS/ECE 250

10
© Alvin Lebeck, from Hilton,
Sorin

State Coding

State Code
NG 00
NY 01
EG 10
EY 11

Input Code
(C;C) 11
(C;NC) 10
(NC;C) 01
(NC;NC) 00

Output Code
(R;G) 001100
(G;R) 100001
(Y;R) 010001
(R;Y) 001010

Enumerate States

One bit for each
 Input
Input is either
 true or false

One bit per color for each
 light GYRGYR

(North; East)

CS/ECE 250

11
© Alvin Lebeck, from Hilton,
Sorin

Coded State Diagram

NG

NY

EG

EY

O = (R;G)

O = (G;R)

O = (Y;R)

I= (-- ; NC)

O = (R;Y)

I = (--;C)

I = (NC; --)

I = (C; --)

00

01

10

11

(100;001)

(001;100)

(001;010)(010;001)

(--;1)

(--;0)

(0;--)

(1;--)

CS/ECE 250

12
© Alvin Lebeck, from Hilton,
Sorin

Example: Traffic Light Controller

IN S NS OUT
01 01 01 012345
0- 00 00 100001
1- 00 01 100001
-- 01 10 010001
-0 10 10 001100
-1 10 11 001100
-- 11 00 001010

NS1 = S0’*S1’*I0+S0*S1’*I1
 = S1’*(S0’I0+S0*I1)
NS0 = S0’*S1+S0*S1’*I1’+S0*S1’*I1
 = S0’*S1+S0*S1’
OUT0 = S0’*S1’
OUT1 = S0’*S1
OUT2 = S0*S1’+S0*S1= S0
OUT3 = S0*S1’
OUT4 = S0*S1
OUT5 = S0’*S1’+S0’*S1= S0’

S = State, bits are S0 and S1
NS = Next State, bits are NS0 and NS1

CS/ECE 250

13
© Alvin Lebeck, from Hilton,
Sorin

FSM Implementation

•  State is stored in D-Flip Flop
•  Next State and Output are computed using

combinational logic

CS/ECE 250

S0

Sn

Logic

Outputs

Inputs
NS0

NSn

…

14
© Alvin Lebeck, from Hilton,
Sorin

Traffic Controller FSM implementation

CS/ECE 250

15
© Alvin Lebeck, from Hilton,
Sorin

General Method for FSM design

•  Determine the problem:
1.  Draw the state diagram,
2.  Write the truth table,
3.  Write sum-of-products equations
4.  Implement in Logic

CS/ECE 250

16
© Alvin Lebeck, from Hilton,
Sorin

A Simple Arrow FSM

•  Consider those flashing arrow signs
•  No light, one arrow, two arrows, three arrows

> >> >>>
•  Let’s design the FSM to control this sign

CS/ECE 250

17
© Alvin Lebeck, from Hilton,
Sorin

Pattern Recognizer

•  A pattern recognizer examines a sequence of inputs
to detect when it sees the pattern 101. When it sees
this pattern its output is 1 forever.

•  Let’s design the FSM

CS/ECE 250

18
© Alvin Lebeck, from Hilton,
Sorin CS/ECE 250

Summary

Can layout logic to compute things
Add, subtract,…

Now can store things
D flip-flops
Registers

Also understand clocks
Can build a finite state machine to control things.

Just about ready to make a processor datapath!

