
1

CS/ECE 250
Computer Architecture

Caches and Memory Hierarchies
Benjamin Lee

Duke University

Some slides derived from work by
Amir Roth (Penn), Alvin Lebeck (Duke), Dan Sorin (Duke)

© 2013 Alvin R. Lebeck from Roth and Sorin

CS/ECE 250

Administrivia

•  HW #4
•  Sunday, March 30 at 11:55pm

•  Midterm #2
•  Tuesday, Apr 1 in class
•  Covers logic design, datapath and control (HW #3 & #4)
•  Does not include memory hierarchy. No assembly programming

•  Two more homeworks
•  HW #5 Friday, Apr 11 – Memory hierarchy
•  HW #6 Wednesday, Apr 23 – Exceptions, I/O, Pipelining

•  Reading: Chapter 5 in Patterson and Hennessy

© 2013 Alvin R. Lebeck from Roth and Sorin 2

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 3

Full-Associativity (1024 Entries)

•  How to implement full (or at least high) associativity?
•  Doing it this way is terribly inefficient
•  1K matches are unavoidable, but 1K data reads + 1K-to-1 mux?

1 1023

1:0 [31:2] <<

CPU

==

0 1022

== == ==

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 4

Full-Associativity with CAMs

•  CAM: content addressable memory
•  Array of words with built-in comparators
•  Matchlines instead of bitlines
•  Output is “one-hot” (unary) encoding of

match

•  Fully-associative cache?
•  Tags as CAM
•  Data as RAM

0
1

1022
1023

1:0 [31:2] <<

==
==

==
==

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 5

Analyzing Cache Misses: 3C Model

•  Divide cache misses into three categories

•  Compulsory: miss because cache has not previously seen address
•  Easy to identify

•  Capacity: miss caused because cache is too small
•  N is the number of blocks in the cache
•  Consecutive accesses to a block are separated by at least N

other distinct blocks

•  Conflict: miss caused because cache associativity is too low
•  All other misses

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 6

ABCs of Caches

•  Associativity (increase)
+  Decreases conflict misses
–  Increases thit

•  Block size (increase)
–  Increases conflict misses
+  Decreases compulsory misses
±  Increases or decreases capacity misses
•  Negligible effect on thit

•  Capacity (increase)
+  Decreases capacity misses
–  Increases thit

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 7

Two Possible Optimizations

•  Victim buffer: for conflict misses
•  Prefetching: for capacity/compulsory misses

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 8

Victim Buffer

•  Conflict misses: insufficient associativity
•  High-associativity is expensive, but also rarely needed

•  E.g., 3 blocks mapped to 2-way set and accessed sequentially

•  Victim buffer (VB): small FA cache (e.g., 4 entries)
•  Sits on I$/D$ fill path
•  VB is small à very fast
•  Blocks kicked out of I$/D$ placed in VB
•  On miss, check VB. If VB hits, return block to I$/D$
•  4 extra ways, shared among all sets

+ Only a few sets will need it at any given time
+ Very effective in practice

I$/D$

L2

VB

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 9

Prefetching

•  Prefetching: put blocks in cache proactively/speculatively
•  Anticipate upcoming miss addresses accurately

•  Prediction in software or hardware

•  Simple example: next block prefetching
•  Miss on address X → anticipate miss on X+blocksize
•  Works for instructions: sequential execution
•  Works for data: arrays

•  Timeliness: initiate prefetches sufficiently in advance
•  Accuracy: prefetch useful data, do not evict useful data

I$/D$

L2

prefetch logic

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 10

Cache Writes

•  So far we have looked at reading from cache (loads)
•  What about writing into cache (stores)?

•  Several new issues arise during cache writes
•  Tag/data access
•  Write-through vs. write-back
•  Write-allocate vs. write-not-allocate

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 11

Tag/Data Access

•  Reads: read tag and data in parallel
•  Tag mis-match → data is garbage (OK)

•  Writes: read tag, write data in parallel?
•  Tag mis-match → data is lost
•  For SA cache, which way is written?

•  Writes are pipelined 2-cycle process
•  Cycle 1: match tag
•  Cycle 2: write to matching way

1022
1023

1:0 [31:11]

data

[10:2]

<<

address

==

hit/miss

0
1
2

1:0 [10:2] data

data

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 12

Tag/Data Access

•  Cycle 1: check tag
•  Hit? Write data next cycle
•  Miss? We’ll get to this in a few slides …

1022
1023

1:0 [31:11]

data

[10:2]

<<

address

==

hit/miss

0
1
2

1:0 [10:2] data

data

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 13

Tag/Data Access

•  Cycle 2: write data

1022
1023

1:0 [31:11]

data

[10:2]

<<

address

==

hit/miss

0
1
2

1:0 [10:2] data

data

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 14

Write-Through vs. Write-Back

•  When to propagate new value to (lower level) memory?
•  Write-through: immediately

+ Conceptually simpler
+ Uniform read miss latency
–  Requires additional bus bandwidth

•  Write-back: when block is evicted and replaced
•  Requires additional “dirty” bit per block
+ Minimal bus bandwidth

•  Only write back dirty blocks
–  Non-uniform read miss latency

•  Clean miss: one transaction (fill)
•  Dirty miss: two transactions (writeback & fill)

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 15

Write-allocate vs. Write-non-allocate

•  What to do on a write miss?

•  Write-allocate: read block from lower level, write value into it
+ Decreases read misses
–  Requires additional bandwidth
•  Use with write-back

•  Write-non-allocate: just write to next level
–  Potentially more read misses
+ Uses less bandwidth
•  Use with write-through

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 16

Write Buffer

•  Write buffer: between cache and memory

•  Write-through cache? Helps with store misses
+  Write to buffer to avoid waiting for memory

•  Store misses become store hits

•  Write-back cache? Helps with dirty misses
+  Allows you to do read first

1.  Write dirty block to buffer
2.  Read new block from memory to cache
3.  Write buffer contents to memory

$

Next Level

1

2 3

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 17

Typical Processor Cache Hierarchy

•  First level caches: optimized for thit and parallel access
•  Insns and data in separate caches (I$, D$)
•  Capacity: 8–64KB, block size: 16–64B, associativity: 1–4
•  Other: write-through or write-back
•  thit: 1–4 cycles

•  Second level cache (L2): optimized for %miss
•  Insns and data in one cache for better utilization
•  Capacity: 128KB–1MB, block size: 64–256B, associativity: 4–16
•  Other: write-back
•  thit: 10–20 cycles

•  Third level caches (L3): also optimized for %miss
•  Capacity: 1–8MB
•  thit: 30 cycles

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 18

Performance Calculation Example

•  Parameters
•  Reference (address) stream: 20% stores, 80% loads
•  L1 D$: thit = 1ns, %miss = 5%, write-through + write-buffer
•  L2: thit = 10ns, %miss = 20%, write-back, 50% dirty blocks
•  Main memory: thit = 50ns, %miss = 0%

•  What is tavgL1D$ without an L2?
•  Write-through and write-buffer means all stores hit
•  tmissL1D$ = thitM

•  tavgL1D$ = thitL1D$ + %loads*%missL1D$*thitM = 1ns+(0.8*0.05*50ns) = 3ns

•  What is tavgD$ with an L2?
•  Write-back means dirty misses incur double cost (writeback, fill)
•  tmissL1D$ = tavgL2
•  tavgL2 = thitL2+(1+%dirty)*%missL2*thitM = 10ns+(1.5*0.2*50ns) =25ns
•  tavgL1D$ = thitL1D$ + %loads*%missL1D$*tavgL2 = 1ns+(0.8*0.05*25ns) =2ns

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 19

Cache Organization Summary

•  Average access time of a memory component
•  tavg = thit + %miss * tmiss
•  Hard to get low thit and %miss in one structure → hierarchy

•  Memory hierarchy
•  Cache (SRAM) → memory (DRAM) → swap (Disk)
•  Smaller, faster, more expensive → bigger, slower, cheaper

•  SRAM
•  Analog technology for implementing big storage arrays
•  Cross-coupled inverters + bitlines + wordlines
•  Delay ~ √#bits * #ports

CS/ECE 250 © 2013 Alvin R. Lebeck from Roth and Sorin 20

Summary, cont’d

•  Cache ABCs
•  Capacity, associativity, block size
•  3C miss model: compulsory, capacity, conflict

•  Some optimizations
•  Victim buffer for conflict misses
•  Prefetching for capacity, compulsory misses

•  Write issues
•  Pipelined tag/data access
•  Write-back vs. write-through/write-allocate vs. write-no-allocate
•  Write buffer

Next Your Programs and Caches

CS/ECE 250 CPS 104

Cache Performance

Tave = number of cycles we stall waiting for memory operation
Execution time = (Core execution clock cycles + Memory stall clock

cycles) x Clock cycle time
Memory stall clock cycles = Memory accesses x Miss rate x Miss penalty

Example
•  Assume every instruction takes 1 cycle
•  Miss penalty = 20 cycles
•  Miss rate = 10%
•  1000 total instructions, 300 memory accesses
•  Memory stall cycles? CPU clocks?

CS/ECE 250

Cache Performance

•  Memory Stall Cycles = 300 * 0.10 * 20 = 600
•  Core Cycles = 1000 + 600 = 1600

•  60% slower because of cache misses!

•  Change miss penalty to 100 cycles
•  Core Cycles = 1000 + 3000 = 4000 cycles

CS/ECE 250 CPS 104

Improving Cache Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

CS/ECE 250

Reducing Misses (The 3 Cs)
•  Compulsory—The first access to a block is not in the cache, so the

block must be brought into the cache. These are also called cold start
misses or first reference misses.

•  Capacity—If the cache cannot contain all the blocks needed during
execution of a program, capacity misses will occur due to blocks being
discarded and later retrieved.

•  Conflict—If the block-placement strategy is set-associative or direct
mapped, conflict misses (in addition to compulsory, capacity misses)
will occur because a block can be discarded and later retrieved if too
many blocks map to its set. These are also called collision misses or
interference misses.

CPS 104

CS/ECE 250 CPS 104

Cache Performance

•  Your program and caches
•  Can you affect performance?
•  Think about 3Cs

CS/ECE 250

0 1 2 3
5 6 7 8
10 11 12 13
15 16 17 18

4
9
14
19

20 21 22 23 24

Part of the Row maps into cache

Mapping Arrays to Memory
0 5 10 15
1 6 11 16
2 7 12 17
3 8 13 18

20
21
22
23

4 9 14 19 24

Row-major Column major

CS/ECE 250

Array Mapping and Cache Behavior

• Elements spread out in memory
because of column-major
mapping
• Fixed mapping into cache
• Self-interference in cache

Memory

Cache

Cache Mapping

CS/ECE 250

Data Cache Performance

•  Instruction Sequencing
•  Loop Interchange: change nesting of loops to access data in

order stored in memory
•  Loop Fusion: Combine 2 independent loops that have same

looping and some variables overlap
•  Blocking: Improve temporal locality by accessing “blocks” of data

repeatedly vs. going down entire columns or rows

•  Data Layout
•  Merging Arrays: Improve spatial locality by single array of

compound elements vs. 2 separate arrays
•  Nonlinear Array Layout: Mapping 2 dimensional arrays to the

linear address space
•  Pointer-based Data Structures: Node-allocation

CS/ECE 250 CPS 104

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)

 for (j = 0; j < 100; j = j+1)

 for (i = 0; i < 5000; i = i+1)

 x[i][j] = 2 * x[i][j];

/* After */
for (k = 0; k < 100; k = k+1)

 for (i = 0; i < 5000; i = i+1)

 for (j = 0; j < 100; j = j+1)
 x[i][j] = 2 * x[i][j];

Matrix x stored in row-major format (i.e., row layout

is sequential in memory).
Interchange produces sequential accesses instead of

100-word strides through memory

CS/ECE 250 CPS 104

Loop Fusion Example
/* Before */
for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 a[i][j] = 1/b[i][j] * c[i][j];

for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 d[i][j] = a[i][j] + c[i][j];

/* After */
for (i = 0; i < N; i = i+1)

 for (j = 0; j < N; j = j+1)

 { a[i][j] = 1/b[i][j] * c[i][j];

 d[i][j] = a[i][j] + c[i][j];}

Baseline incurs two misses when accessing matrices a and c.
Fusion incurs only one miss when accessing matrices a and c.

CS/ECE 250 CPS 104

Naïve Matrix Multiply
/* Before */
 for(i = 0; i < n; i++)

 for (j = 0; j < n; j++)

 for (k = 0; k < n; k++)

 C[i][j] = C[i][j] + A[i][k]*B[k][j];

•  Misses depend on N and cache size

CS/ECE 250

{implements C = C + A*B}
for i = 1 to n
 {read row i of A into fast memory}
 for j = 1 to n
 {read C(i,j) into fast memory}
 {read column j of B into fast memory}
 for k = 1 to n
 C(i,j) = C(i,j) + A(i,k) * B(k,j)
 {write C(i,j) back to slow memory}

= + *
C(i,j) A(i,:)

B(:,j)
C(i,j)

Naïve Matrix Multiply

CS/ECE 250

Number of slow memory references on unblocked matrix multiply

 m = n3 read each column of B n times
 + n2 read each row of A once
 + 2n2 read and write each element of C once
 = n3 + 3n2

= + *
C(i,j) C(i,j) A(i,:)

B(:,j)

Naïve Matrix Multiply

CS/ECE 250 CPS 104

Blocking (Tiling) Example
/* Before */
 for(i = 0; i < N; i++)

 for (j = 0; j < N; j++)

 for (k = 0; k < N; k++)

 c[i][j] = c[i][j] + a[i][k]*b[k][j];

•  Two inner loops
•  Read all NxN elements of c[][]
•  Read N elements of rows in a[][], b[][] repeatedly
•  Write all NxN elements of c[][]

•  Capacity misses depend on N and cache size
•  3 NxN => no capacity misses; otherwise ...

•  Idea is to compute on BxB submatrix that fits

CS/ECE 250 CPS 104

Blocked (Tiled) Matrix Multiply
/* After */
 for(ii = 0; ii < n; ii += B)
 for (jj = 0; jj < n; jj += B)
 for (kk = 0; kk < n; kk +=B)

 for(i = ii; i < MIN(ii+B-1,n); i++)

 for (j = jj; j < MIN(jj+B-1,n); j++)
 for (k = kk; k < MIN(kk+B-1,n); k++)

 c[i][j] = c[i][j] + a[i][k]*b[k][j];

•  B is called the blocking factor or tile size

CS/ECE 250

Consider A,B,C to be N by N matrices of b by b sub-blocks
Where b =n / N is called the block size

 for i = 1 to N
 for j = 1 to N
 {read block C(i,j) into fast memory}
 for k = 1 to N
 {read block A(i,k) into fast memory}
 {read block B(k,j) into fast memory}
 C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
 {write block C(i,j) back to slow memory}

= + *
C(i,j) C(i,j) A(i,k)

B(k,j)

Blocked (Tiled) Matrix Multiply

CS/ECE 250

= + * C(1,1) C(1,1)
A(1,1) B(1,1)

Blocked (Tiled) Matrix Multiply

CS/ECE 250

= + * C(1,1) C(1,1)
A(1,2) B(2,1)

Blocked (Tiled) Matrix Multiply

CS/ECE 250

= + * C(1,1) C(1,1)
A(1,3) B(3,1)

Blocked (Tiled) Matrix Multiply

CS/ECE 250

= + * C(1,2) C(1,2)

A(1,1)
B(1,2)

Blocked (Tiled) Matrix Multiply

CS/ECE 250

= + * C(1,2) C(1,2)

A(1,2) B(2,2)

Blocked (Tiled) Matrix Multiply

CS/ECE 250

= + * C(1,2) C(1,2)

A(1,3) B(3,2)

Blocked (Tiled) Matrix Multiply

CS/ECE 250

m is amount memory traffic between slow and fast memory"
matrix has nxn elements, and NxN blocks each of size bxb"
"b = n / N"

"m = N*n2 " "read each block of B N3 times (N3 * n/N * n/N)"
 + N*n2 " "read each block of A N3 times"
 + 2n2 " "read and write each block of C once"
 = (2N + 2) * n2 "
 = 2(n/b + 1) * n2 "
 = 2n3 / b + 2n2 "compare to naïve matrix multiply n3 + 3n2"

" "
So we can improve performance by increasing the blocksize b"

Blocked (Tiled) Matrix Multiply

CS/ECE 250 CPS 104

•  Conflict misses in caches not FA vs. Blocking size
•  Lam et al [1991] a blocking factor of 24 had a fifth the misses vs. 48

despite both fit in cache

Blocking Factor

Mi
ss

 R
at

e

0

0.05

0.1

0 50 100 150

Fully Associative Cache

Direct Mapped Cache

Reducing Conflict Misses by Blocking

CS/ECE 250

Data Layout Optimizations

•  Changes in program control affect the order in which
memory is accessed

•  Changes in data layout affect how data structures map to
memory locations

CS/ECE 250 CPS 104

Merging Arrays Example

/* Before */
int val[SIZE];

int key[SIZE];

/* After */
struct merge {

 int val;

 int key;

};
struct merge merged_array[SIZE];

Reducing conflicts between val & key

CS/ECE 250

Layout and Cache Behavior

• Tile elements spread out in
memory because of column-
major mapping
• Fixed mapping into cache
• Self-interference in cache
• Each block holds two elements

Memory

Cache

Cache Mapping

CS/ECE 250

Making Tiles Contiguous

•  Elements of a quadrant
are contiguous

•  Recursive layout
•  Elements of a tile are

contiguous
•  No self-interference in

cache

Memory Cache Mapping

CS/ECE 250

Pointer-based Data Structures

•  Linked List, Binary Tree
•  Group linked elements close together in memory
•  Need relatively static traversal pattern
•  Or could do it during garbage collection/compaction

CS/ECE 250 CPS 104

Performance Improvement

1 1.5 2 2.5 3

compress

cholesky
(nasa7)

spice
mxm (nasa7)
btrix (nasa7)

tomcatv
gmty (nasa7)

vpenta (nasa7)

merged
arrays

loop
interchange

loop fusion blocking

Summary of Program Optimizations to Reduce
Cache Misses

CS/ECE 250

Reducing I-Cache Misses by Compiler
Optimizations

•  Instructions
•  Reorder procedures in memory to reduce misses
•  Profiling to look at conflicts
•  McFarling [1989] reduced caches misses by 75% on 8KB direct

mapped cache with 4 byte blocks

CPS 104

CS/ECE 250

Summary

•  Cost-effective memory hierarchy
•  Works by exploiting temporal and spatial locality
•  Associativity, Blocksize, Capacity (ABCs of caches)
•  Know how a cache works

•  Break address into tag,index, block offset

•  Know how to draw a block diagram of a cache

•  Know CPU cycles/time, Memory Stall Cycles
•  Know programs and cache performance

CPS 104

