CS/ECE 250
Computer Architecture

Caches and Memory Hierarchies
Benjamin Lee
Duke University

Some slides derived from work by
Amir Roth (Penn), Alvin Lebeck (Duke), Dan Sorin (Duke)

© 2013 Alvin R. Lebeck from Roth and Sorin 1

Administrivia

e HW #4
e Sunday, March 30 at 11:55pm

e Midterm #2

e Tuesday, Apr 1 in class
e Covers logic design, datapath and control (HW #3 & #4)
e Does not include memory hierarchy. No assembly programming

e Two more homeworks
e HW #5 Friday, Apr 11 — Memory hierarchy
e HW #6 Wednesday, Apr 23 — Exceptions, I/O, Pipelining

e Reading: Chapter 5 in Patterson and Hennessy

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250

Full-Associativity (1024 Entries)

0 11 e 1022 1023
& | & =)
! ! Vg
< D]
! \)
31:2] 1.0—/<</
T

e How to implement full (or at least high) associativity?
e Doing it this way is terribly inefficient

e 1K matches are unavoidable, but 1K data reads + 1K-to-1 mux?

© 2013 Alvin R. Lebeck from Roth and Sorin

CS/ECE 250

Full-Associativity with CAMs

e CAM: content addressable memory :: 0
e Array of words with built-in comparators -
e Matchlines instead of bitlines

e QOutput is “one-hot” (unary) encoding of
match

o Fully-associative cache?
e Tags as CAM
e Data as RAM

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250 4

Analyzing Cache Misses: 3C Model

e Divide cache misses into three categories

e Compulsory: miss because cache has not previously seen address
o Easy to identify

e Capacity: miss caused because cache is too small
e N is the number of blocks in the cache

e Consecutive accesses to a block are separated by at least N
other distinct blocks

e Conflict: miss caused because cache associativity is too low
o All other misses

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250 >

ABCs of Caches

o Associativity (increase)
+ Decreases conflict misses
— Increases t;;

e Block size (increase)
— Increases conflict misses
+ Decreases compulsory misses
+ Increases or decreases capacity misses
e Negligible effect on t;

e Capacity (increase)
+ Decreases capacity misses
— Increases t;;

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250

Two Possible Optimizations

o Victim buffer: for conflict misses
o Prefetching: for capacity/compulsory misses

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250

Victim Buffer

e Conflict misses: insufficient associativity
e High-associativity is expensive, but also rarely needed

e E.g., 3 blocks mapped to 2-way set and accessed sequentially

e Victim buffer (VB): small FA cache (e.g., 4 entries)
Sits on 1$/D$ fill path

VB is small = very fast

Blocks kicked out of 1$/D$ placed in VB 1$/D$

On miss, check VB. If VB hits, return block to I$/D$ Vi

4 extra ways, shared among all sets

+Only a few sets will need it at any given time VB

Y

+ Very effective in practice

L2

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250

Prefetching

o Prefetching: put blocks in cache proactively/speculatively
e Anticipate upcoming miss addresses accurately
e Prediction in software or hardware

e Simple example: next block prefetching
e Miss on address X — anticipate miss on X+blocksize
e Works for instructions: sequential execution

o Works for data: arrays
1$/D$
e Timeliness: initiate prefetches sufficiently in advance 1
e Accuracy: prefetch useful data, do not evict useful data {
prefetch logic{, |,
L2

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250 9

Cache Writes

e So far we have looked at reading from cache (loads)
e What about writing into cache (stores)?

e Several new issues arise during cache writes
e Tag/data access
e Write-through vs. write-back
e Write-allocate vs. write-not-allocate

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250

10

Tag/Data Access

e Reads: read tag and data in parallel 0
e Tag mis-match — data is garbage (OK) ;
e Writes: read tag, write data in parallel? P
e Tag mis-match — data is lost
e For SA cache, which way is written? 1022
/ 1023
e Writes are pipelined 2-cycle process E
e Cycle 1: match tag — |
e Cycle 2: write to matching way Lr) |—[<y
® [10:2] 1:0| data
4 r 1
o— [31:11] [10:2] 1:0| data
hit/miss addrels djta

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250

Tag/Data Access

e Cycle 1: check tag 0
e Hit? Write data next cycle ;
e Miss? We’ll get to this in a few slides ... : L :
1022
/ 1023
O || a7
o [10:2] 1:0 data
4 P 1
o~ EtHl] 02 Jiddate
hit/miss addrels 1czla‘ta

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250

Tag/Data Access

e Cycle 2: write data

[10:2]

i\

o— [31:11]

[10:2]

" " "
hit/miss
© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250

|

address

Write-Through vs. Write-Back

e When to propagate new value to (lower level) memory?
e Write-through: immediately
+ Conceptually simpler
+ Uniform read miss latency
— Requires additional bus bandwidth

e Write-back: when block is evicted and replaced
e Requires additional “dirty” bit per block
+ Minimal bus bandwidth
e Only write back dirty blocks
— Non-uniform read miss latency
e Clean miss: one transaction (fill)
e Dirty miss: two transactions (writeback & fill)

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250 14

Write-allocate vs. Write-non-allocate

e \What to do on a write miss?

o Write-allocate: read block from lower level, write value into it
+ Decreases read misses
— Requires additional bandwidth
e Use with write-back

e Write-non-allocate: just write to next level
— Potentially more read misses
+ Uses less bandwidth
e Use with write-through

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250 15

Write Buffer

l + o Write buffer: between cache and memory

. e Write-through cache? Helps with store misses
$ + Write to buffer to avoid waiting for memory
1 I:L 1 e Store misses become store hits

e

3 2 e \Write-back cache? Helps with dirty misses

+ Allows you to do read first

vy v 1. Write dirty block to buffer

2. Read new block from memory to cache
3. Write buffer contents to memory

Next Level

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250 16

Typical Processor Cache Hierarchy

e First level caches: optimized for t,, and parallel access
e Insns and data in separate caches (I$, D$)
e (Capacity: 8-64KB, block size: 16—64B, associativity: 1-4
e QOther: write-through or write-back
e t..: 1-4 cycles

e Second level cache (L2): optimized for %,
e Insns and data in one cache for better utilization
e (Capacity: 128KB—1MB, block size: 64—256B, associativity: 4-16
e Other: write-back
e t..: 10-20 cycles

e Third level caches (L3): also optimized for %,;..
e (Capacity: 1-8MB
e t,:: 30 cycles

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250

17

Performance Calculation Example

e Parameters
e Reference (address) stream: 20% stores, 80% loads
e L1D$: t,; = 1ns, %, = 5%, write-through + write-buffer
e L2:t, = 10ns, %, = 20%, write-back, 50% dirty blocks
e Main memory: t,; = 50ns, %, .. = 0%

e Whatis t, 1ps Without an L27?
e Write-through and write-buffer means all stores hit

* Thisstips = Lhitm
* Cgrips = thitLipg T Yor0ads* Yomisst1ps iy = 1ns+(0.8*0.05*50ns) = 3ns

e Whatis t, g With an L2?
e Write-back means dirty misses incur double cost (writeback, fill)

¢ tmissL1D$ = tang2
o togr = thito T (1+ %4ty) * Yormiss 2 *thin = 10Nns+(1.5%0.2*50ns) =25ns
* CygLips = thitLipg T 0/0Ioads*o/omissL1D$*tang2 = 1ns+(0.8*0.05*25ns) =2ns

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250 18

Cache Organization Summary

e Average access time of a memory component
* tavg = thit + 0/omiss * tmiss
e Hard to get low t,; and %, in one structure — hierarchy

e Memory hierarchy
e Cache (SRAM) — memory (DRAM) — swap (Disk)
e Smaller, faster, more expensive — bigger, slower, cheaper

e SRAM

e Analog technology for implementing big storage arrays
e Cross-coupled inverters + bitlines + wordlines
e Delay ~ V#bits * #ports

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250

19

Summary, cont’ d

e Cache ABCs

e (Capacity, associativity, block size
e 3C miss model: compulsory, capacity, conflict

e Some optimizations
e Victim buffer for conflict misses
o Prefetching for capacity, compulsory misses

e Write issues

e Pipelined tag/data access
e Write-back vs. write-through/write-allocate vs. write-no-allocate
e Write buffer

Next Your Programs and Caches

© 2013 Alvin R. Lebeck from Roth and Sorin CS/ECE 250 20

Cache Performance

Tave = number of cycles we stall waiting for memory operation

Execution time = (Core execution clock cycles + Memory stall clock
cycles) x Clock cycle time

Memory stall clock cycles = Memory accesses x Miss rate x Miss penalty

Example

e Assume every instruction takes 1 cycle

e Miss penalty = 20 cycles

e Miss rate = 10%

e 1000 total instructions, 300 memory accesses
e Memory stall cycles? CPU clocks?

CPS 104 CS/ECE 250

Cache Performance

Memory Stall Cycles = 300 * 0.10 * 20 = 600
Core Cycles = 1000 + 600 = 1600

60% slower because of cache misses!

Change miss penalty to 100 cycles
Core Cycles = 1000 + 3000 = 4000 cycles

CS/ECE 250

Improving Cache Performance

1. Reduce the miss rate,
2. Reduce the miss penalty, or
3. Reduce the time to hit in the cache.

CPS 104 CS/ECE 250

Reducing Misses (The 3 Cs)

Compulsory—The first access to a block is not in the cache, so the
block must be brought into the cache. These are also called cold start
misses or first reference misses.

Capacity—If the cache cannot contain all the blocks needed during
execution of a program, capacity misses will occur due to blocks being
discarded and later retrieved.

Conflict—If the block-placement strategy is set-associative or direct
mapped, conflict misses (in addition to compulsory, capacity misses)
will occur because a block can be discarded and later retrieved if too
many blocks map to its set. These are also called collision misses or
interference misses.

CPS 104 CS/ECE 250

Cache Performance

e Your program and caches
e (Can you affect performance?
e Think about 3Cs

CPS 104 CS/ECE 250

Mapping Arrays to Memory

Row-major Column major

Part of the Row maps into cache

CS/ECE 250

Array Map

ning and Cache Behavior

Memory

*Elements spread out in memory
because of column-major

mapping
*Fixed mapping into cache
Self-interference in cache

Cache E

Cache Mapping

CS/ECE 250

Data Cache Performance

e Instruction Sequencing
o Loop Interchange: change nesting of loops to access data in

order stored in memory

e Loop Fusion: Combine 2 independent loops that have same

looping and some variables overlap

e Blocking: Improve temporal locality by accessing “blocks” of data

repeatedly vs. going down entire columns or rows

e Data Layout

Merging Arrays: Improve spatial locality by single array of
compound elements vs. 2 separate arrays

Nonlinear Array Layout: Mapping 2 dimensional arrays to the
linear address space

Pointer-based Data Structures: Node-allocation

CS/ECE 250

Loop Interchange Example

/* Before */
for (k = 0; k < 100; k = k+1)
for (3 = 0; 73 < 100; 73 = 3+1)
i =0; i < 5000, i = 1i+1)
x[1]1[3] = 2 * x[1]1[31]7

for (

/* After */
for (k = 0; k < 100; k = k+1)
tor-{i=0p-1 <-BOOO¢1=-141)
7 =0, 73 < 100; 73 = 3+1)
x[1][3] = 2 * x[1][31;

for (

Matrix x stored in row-major format (i.e., row layout
Is sequential in memory).

Interchange produces sequential accesses instead of
100-word strides through memory

CPS 104 CS/ECE 250

Loop Fusion Example

/* Before */
for (1 = 0; 1 < N; 1 = 1+1)
for (j = 0; J < N; j = j+1)

for (1 = 0; 1 < N; 1 = 1+1)

for (3 = 0;
J

/* After */
for (1 = 0; 1 < N; 1 = 1+1)

for (3 =

Baseline incurs two misses when accessing matrices a and c.
Fusion incurs only one miss when accessing matrices a and c.

CPS 104 CS/ECE 250

Naive Matrix Multiply

/* Before */

for(i = 0; 1 < n; 1i++)
for (3 = 0; J < n; Jj++)
for (k = 0; k < n; k++)
C[1]1[3] = Cl1][3] + A[1][k]*Blk][]];

e Misses depend on N and cache size

CPS 104 CS/ECE 250

Naive Matrix Multiply

{implements C = C + A*B}
fori=1ton
{read row i of A into fast memory}
forj=1ton
{read C(i,j) into fast memory}
{read column j of B into fast memory}
fork =1ton
C(i,j) = C(i,3) + A(i,k) * B(k;j)
{write C(i,j) back to slow memory}

C(i,j) C(i,) Ali,1)

]
+

B(.))

CS/ECE 250

Naive Matrix Multiply

Number of slow memory references on unblocked matrix multiply

m = n3 read each column of B n times
+ n? read each row of A once
+ 2n? read and write each element of C once
= n3 + 3n2
Ci) C(i) Al
]] B(:,j)

I
+
*

CS/ECE 250

Blocking (Tiling) Example

CPS 104

/* Before */
for(i = 0; 1 < N; i++)
for (3 = 0; j < N; Jj++)
for (k = 0; k < N; k++)
cl[i][J] = cli][J] + ali]llk]l*blk][J];

e Two inner loops
e Read all NxN elements of c[][]
e Read N elements of rows in a[][], b[][] repeatedly
e Write all NxN elements of c[][]

e (Capacity misses depend on N and cache size
e 3 NxN => no capacity misses; otherwise ...

e Idea is to compute on BxB submatrix that fits
CS/ECE 250

Blocked (Tiled) Matrix Multiply

/* After */
for(ii = 0; 1i < n; 1ii += B)
for (33 = 0; 3jJ < n; jj += B)
for (kk = 0; kk < n; kk +=B)
for(i = 1i; i < MIN(1i+B-1,n); i++)
for (jJ = Jj; jJ < MIN(3j+B-1,n); j++)
for (k = kk; k < MIN (kk+B-1,n); k++)

cl1][3] = cl1][3] + al1]llk]l*b[k][3];

e B is called the blocking factor or tile size

CPS 104 CS/ECE 250

Blocked (Tiled) Matrix Multiply

Consider A,B,C to be N by N matrices of b by b sub-blocks
Where b =n / N is called the block size
fori=1toN
forj=1to N
{read block C(i,j) into fast memory}
fork =1to N
{read block A(i,k) into fast memory}
{read block B(k,j) into fast memory}
C(i,j) = C(i,j) + A(i,k) * B(k,j) {do a matrix multiply on blocks}
{write block C(i,j) back to slow memory}

C(i,j) C(i,) Ali.K)

+ " | gsk

CS/ECE 250

Blocked (Tiled) Matrix Multiply

C(1,1)

c(1,1)

B(1,1)

CS/ECE 250

Blocked (Tiled) Matrix Multiply

C(1,1 c(.1)
a1 + At | T - B(21)

CS/ECE 250

Blocked (Tiled) Matrix Multiply

c(1,1)

c(,1)

CS/ECE 250

B(3,1)

Blocked (Tiled) Matrix Multiply

c(1,2
c(1,2) a2 . r B(1,2)

CS/ECE 250

Blocked (Tiled) Matrix Multiply

c(1,2)

c(1,2)

CS/ECE 250

Blocked (Tiled) Matrix Multiply

C(1,2)

c(1,2)

CS/ECE 250

Blocked (Tiled) Matrix Multiply

m is amount memory traffic between slow and fast memory
matrix has nxn elements, and NxN blocks each of size bxb
b=n/N

m = N*n? read each block of B N3 times (N3 * n/N * n/N)
+ N*n2 read each block of A N3 times
+ 2n? read and write each block of C once
= (2N +2) * n?
=2(n/b +1) * n?
=2n3/b +2n? compare to naive matrix multiply n3 + 3n?

So we can improve performance by increasing the blocksize b

CS/ECE 250

Reducing Conflict Misses by Blocking

0.1
0.05 ¢ Direct Mapped Cache
Fully Associative Cache
0) : : :
0 50 100 150

Blocking Factor

e Conflict misses in caches not FA vs. Blocking size

e Lam et al [1991] a blocking factor of 24 had a fifth the misses vs. 48
despite both fit In cache

CPS 104 CS/ECE 250

Data Layout Optimizations

e Changes in program control affect the order in which
memory is accessed

e Changes in data layout affect how data structures map to
memory locations

CS/ECE 250

Merging Arrays Example

/* Before */
int val[SIZE];
int key[SIZE];

/* After */
struct merge {
int wval;
int key;

I

struct merge merged array[SIZE];

Reducing conflicts between val & key

CPS 104 CS/ECE 250

Layout and Cache Behavior

Memory

*Tile elements spread out in
memory because of column-
major mapping

*Fixed mapping into cache
Self-interference in cache
*Each block holds two elements

Cache E

Cache Mapping

CS/ECE 250

Making Tiles Contiguous

Memory

e Elements of a quadrant
are contiguous

e Recursive layout

e Elements of a tile are
contiguous

e No self-interference in
cache

Cache Mapping

CS/ECE 250

Pointer-based Data Structures

Linked List, Binary Tree
Group linked elements close together in memory

Need relatively static traversal pattern
Or could do it during garbage collection/compaction

CS/ECE 250

Summary of Program Optimizations to Reduce
Cache Misses

vpenta (nasa7)
gmty (nasa7)

tomcatv
btrix (nasa?7)]
mxm (nasa?7) |
spice
cholesky
(nasa?7)
compress
1 1.5 2 2.5
Performance Improvement
B merged M loop B loop fusion [] blocking
arrays interchange

CPS 104 CS/ECE 250

Reducing I-Cache Misses by Compiler
Optimizations

e Instructions
e Reorder procedures in memory to reduce misses
e Profiling to look at conflicts

e McFarling [1989] reduced caches misses by 75% on 8KB direct
mapped cache with 4 byte blocks

CPS 104 CS/ECE 250

Summary

o Cost-effective memory hierarchy
e Works by exploiting temporal and spatial locality
e Associativity, Blocksize, Capacity (ABCs of caches)

e Know how a cache works
e Break address into tag,index, block offset

e Know how to draw a block diagram of a cache
e Know CPU cycles/time, Memory Stall Cycles
e Know programs and cache performance

CPS 104 CS/ECE 250

