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Administrivia 

•  Homework #5 – Due Apr 11 @ 11:55pm 



ECE 152 © 2012 Daniel J. Sorin from Roth 
3 

Physical Main Memory? 

•  On a 32-bit architecture, there are 232 byte addresses 
•  Requires 4 GB of memory 
•  But not everyone buys machines with 4 GB of memory 
•  And what about 64-bit architectures?  

•  Let’s take a step back… 
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This Unit: Main Memory 

•  Memory hierarchy review 
•  DRAM technology 

•  A few more transistors 
•  Organization: two level addressing 

•  Building a memory system 
•  Bandwidth matching 
•  Error correction 

•  Organizing a memory system 
•  Virtual memory 

•  Address translation and page tables 
•  A virtual memory hierarchy 

Application 

OS 

Firmware Compiler 

I/O 

Memory 

Digital Circuits 

Gates & Transistors 

CPU 



ECE 152 © 2012 Daniel J. Sorin from Roth 
5 

Virtual Memory 

•  Idea of treating memory like a cache 
•  Contents are a dynamic subset of program’s address space 
•  Dynamic content management is transparent to program 

•  Actually predates “caches” (by a little) 

•  Original motivation: compatibility 
•  IBM System 370: a family of computers with one software suite 
+  Same program could run on machines with different memory sizes 

•  Caching mechanism made it appear as if memory was 2N bytes 
•  Regardless of how much memory there actually was 

–  Prior, programmers explicitly accounted for memory size 

•  Virtual memory 
•  Virtual: “in effect, but not in actuality” (i.e., appears to be, but isn’t) 
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Virtual Memory 

•  Programs use virtual addresses (VA) 
•  0…2N–1 
•  VA size also referred to as machine size 
•  E.g., Pentium4 is 32-bit, Itanium is 64-bit 

•  Memory uses physical addresses (PA) 
•  0…2M–1 (M<N, especially if N=64) 
•  2M is most physical memory machine supports 

•  VA→PA at page granularity (VP→PP) 
•  By “system” 
•  Mapping need not preserve contiguity 
•  VP need not be mapped to any PP 
•  Unmapped VPs live on disk (swap) 

… 

… 

Disk(swap) 

Program 

Main Memory 

code heap stack 
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Other Uses of Virtual Memory 

•  Virtual memory is quite useful 
•  Automatic, transparent memory management just one use 
•  “Functionality problems are solved by adding levels of indirection” 

•  Example: multiprogramming 
•  Each process thinks it has 2N bytes of address space 
•  Each thinks its stack starts at address 0xFFFFFFFF 
•  “System” maps VPs from different processes to different PPs 

+ Prevents processes from reading/writing each other’s memory 

… 

… 

Program1 … Program2 
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Still More Uses of Virtual Memory 

•  Inter-process communication 
•  Map VPs in different processes to same PPs 

•  Direct memory access I/O 
•  Think of I/O device as another process 
•  Will talk more about I/O in a few lectures 

•  Protection 
•  Piggy-back mechanism to implement page-level protection 
•  Map VP to PP … and RWX protection bits 
•  Attempt to execute data, or attempt to write insn/read-only data? 

•  Exception → OS terminates program 
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Address Translation 

•  VA→PA mapping called address translation 
•  Split VA into virtual page number (VPN) and page offset (POFS) 
•  Translate VPN into physical page number (PPN) 
•  POFS is not translated – why not? 
•  VA→PA = [VPN, POFS] → [PPN, POFS] 

•  Example above 
•  64KB pages → 16-bit POFS 
•  32-bit machine → 32-bit VA → 16-bit VPN (16 = 32 – 16)  
•  Maximum 256MB memory → 28-bit PA → 12-bit PPN 

POFS[15:0] virtual address[31:0] VPN[31:16] 

POFS[15:0] physical address[27:0] PPN[27:16] 
translate don’t touch 
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Mechanics of Address Translation 

•  How are addresses translated? 
•  In software (now) but with hardware acceleration (a little later) 

•  Each process is allocated a page table (PT) 
•  Maps VPs to PPs or to disk (swap) addresses 

•  VP entries empty if page never referenced 
•  Translation is table lookup 

struct { 
   union { int ppn, disk_block; }  
   int is_valid, is_dirty; 
} PTE; 
struct PTE pt[NUM_VIRTUAL_PAGES]; 
 
int translate(int vpn) { 
  if (pt[vpn].is_valid) 
     return pt[vpn].ppn;  
} 

PT 

vp
n 

Disk(swap) 
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Page Table Size 

•  How big is a page table on the following machine? 
•  4B page table entries (PTEs) 
•  32-bit machine 
•  4KB pages 

•  Solution 
•  32-bit machine → 32-bit VA → 4GB virtual memory 
•  4GB virtual memory / 4KB page size → 1M VPs 
•  1M VPs * 4B PTE → 4MB page table 

•  How big would the page table be with 64KB pages? 
•  How big would it be for a 64-bit machine? 

•  Page tables can get enormous 
•  There are ways of making them smaller 
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Multi-Level Page Table 

•  One way: multi-level page tables 
•  Tree of page tables 
•  Lowest-level tables hold PTEs 
•  Upper-level tables hold pointers to lower-level tables 
•  Different parts of VPN used to index different levels 

•  Example: two-level page table for machine on last slide 
•  Compute number of pages needed for lowest-level (PTEs) 

•  4KB pages / 4B PTEs → 1K PTEs fit on a single page 
•  1M PTEs / (1K PTEs/page) → 1K pages to hold PTEs 

•  Compute number of pages needed for upper-level (pointers) 
•  1K lowest-level pages → 1K pointers 
•  1K pointers * 32-bit VA → 4KB → 1 upper level page 
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Multi-Level Page Table 

•  20-bit VPN 
•  Upper 10 bits index 1st-level table 
•  Lower 10 bits index 2nd-level table 

1st-level 
“pointers” 

2nd-level 
PTEs 

VPN[9:0] VPN[19:10] 

struct { 
   union { int ppn, disk_block; }  
   int is_valid, is_dirty; 
} PTE; 
struct { 
   struct PTE ptes[1024]; 
} L2PT; 
struct L2PT *pt[1024]; 
 
int translate(int vpn) { 
  struct L2PT *l2pt = pt[vpn>>10]; 
  if (l2pt && l2pt->ptes[vpn&1023].is_valid) 
     return l2pt->ptes[vpn&1023].ppn;  
} 

pt “root” 
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Multi-Level Page Table 

•  Have we saved any space? 
•  Isn’t total size of L2 PTE pages same as single-

level table (i.e., 4MB)? 
•  Yes, but… 

•  Large virtual address regions unused 
•  Corresponding L2 pages need not exist 
•  Corresponding L1 pointers are null 

•  Ex: 2MB code, 64KB stack, 16MB heap 
•  Each L2 page maps 4MB of virtual addresses 
•  1 page for code, 1 for stack, 4 for heap, (+1 L1) 
•  7 total pages for PT = 28KB (<< 4MB) 
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Address Translation Mechanics 

•  The six questions 
•  What? address translation 
•  Why? compatibility, multi-programming, protection 
•  How? page table 
•  What performs translation? 
•  When is translation performed? 
•  Where does page table reside? 

•  Option I: process (program) translates its own addresses 
•  Page table resides in process visible virtual address space 
–  Bad idea: implies that program (and programmer)… 

•  Must know about physical addresses 
•  Isn’t that what virtual memory is designed to avoid? 

•  Can forge physical addresses and mess with other programs 
•  Translation on L2 miss or always? How would program know? 
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Who? Where? When? Take II 

•  Option II: operating system (OS) translates for process 
•  Page table resides in OS virtual address space 
+  User-level processes cannot view/modify their own tables 
+  User-level processes need not know about physical addresses 
•  Translation on L2 miss (requires OS syscall) 

•  L2 miss: interrupt transfers control to OS handler 
•  Handler translates VA by accessing process’s page table 
•  Accesses memory using PA 
•  Returns to user process when L2 fill completes 
–  Still slow: added interrupt handler and PT lookup to memory access 
–  What if PT lookup itself requires memory access? Head spinning… 
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Translation Buffer 

•  Functionality problem? Add indirection! 
•  Performance problem? Add cache! 

•  Address translation too slow? 
•  Cache translations in translation buffer (TB) 

•  Small cache: 16–64 entries, often fully assoc 
+  Exploits temporal locality in PT accesses 
+  OS handler only on TB miss 

CPU 

D$ 

L2 

Main 
Memory 

I$ 

TB 

VPN PPN 
VPN PPN 
VPN PPN 

“tag” “data” PA 

VA 

VA 

VA VA 
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TB Misses 

•  TB miss: requested PTE not in TB, but in PT 
•  Two ways of handling 

•  1) OS routine: reads PT, loads entry into TB 
•  Privileged instructions in ISA for accessing TB directly 
•  Latency: one or two memory accesses + OS call 

•  2) Hardware FSM: does same thing  
•  Store PT root pointer in hardware register 
•  Store physical addresses PT root and L1 table pointers 

•  FSM doesn’t have to translate them 
+  Latency: saves cost of OS call 
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Nested TB Misses 

•  Nested TB miss: when OS handler itself has a TB miss 
•  TB miss on handler instructions 
•  TB miss on page table VAs 
•  Not a problem for hardware FSM: no instructions, PAs in page table 

•  Software handler implementation is tricky 
•  First, save current TB miss info before accessing page table 

•  So that nested TB miss info doesn’t overwrite it 
•  Second, lock nested miss entries into TB 

•  Prevent TB conflicts that result in infinite loop 
•  Another good reason to have a highly-associative TB 
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Page Faults 

•  Page fault: PTE not in TB or in PT 
•  Page is simply not in memory 
•  Starts out as a TB miss, detected by OS handler/hardware FSM 

•  OS routine 
•  OS software chooses a physical page to replace 

•  “Working set”: more refined software version of LRU 
•  Tries to see which pages are actively being used 
•  Balances needs of all current running applications 

•  If dirty, write to disk (like dirty cache block with writeback $) 
•  Read missing page from disk (done by OS) 

•  Takes so long (10ms), OS schedules another task 
•  Treat like a normal TB miss from here 
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Virtual Caches 

•  Memory hierarchy so far: virtual caches 
•  Indexed and tagged by VAs 
•  Translate to PAs only to access memory 
+  Fast: avoids translation latency in common case 

•  What to do on process switches? 
•  Flush caches? Slow 
•  Add process IDs to cache tags 

•  Does inter-process communication work? 
•  Aliasing: multiple VAs map to same PA 

•  How are multiple cache copies kept in sync? 
•  Also a problem for I/O (later in course) 

•  Disallow caching of shared memory? Slow 

CPU 

D$ 

L2 

Main 
Memory 

I$ 

TB 

PA 

VA 

VA 

VA VA 
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Physical Caches 

•  Alternatively: physical caches 
•  Indexed and tagged by PAs 
•  Translate to PA at the outset 
+  No need to flush caches on process switches 

•  Processes do not share PAs 
+  Cached inter-process communication works 

•  Single copy indexed by PA 
–  Slow: adds 1 cycle to thit 

CPU 

D$ 

L2 

Main 
Memory 

I$ 

TB 

PA 

PA 

VA VA 

PA PA 
TB 
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Virtual Physical Caches 

•  Compromise: virtual-physical caches 
•  Indexed by VAs 
•  Tagged by PAs 
•  Cache access and address translation in parallel 
+  No context-switching/aliasing problems  
+  Fast: no additional thit cycles 

•  A TB that acts in parallel with a cache is a TLB 
•  Translation Lookaside Buffer 

•  Common organization in processors today 

CPU 

D$ 

L2 

Main 
Memory 

I$ TLB 

PA 

PA 

VA VA 

TLB 
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Cache/TLB Access 

•  Two ways to look at VA 
•  Cache: TAG+IDX+OFS 
•  TLB: VPN+POFS 

•  Parallel cache & TLB … 
•  Possible if address 

translation doesn’t 
change IDX 

•  VPN, IDX don’t overlap 

1:0 [31:12] 

data 

[11:2] << 

address 

== 

TLB hit/miss 

0 
1 

1022 
1023 

2 

== 

== 
== 

VPN [31:16] POFS[15:0] 

cache 

TLB 

cache hit/miss 
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Cache Size And Page Size 

•  Relationship between page size and L1 I$(D$) size 
•  Forced by non-overlap between VPN and IDX portions of VA 
•  Which is required for parallel TLB and cache access 

•  I$(D$) size / associativity ≤ page size 
•  Big caches must be set associative 

•  Big cache à more index bits (fewer tag bits) 
•  More set associative à fewer index bits (more tag bits) 

•  Systems are moving towards bigger (64KB) pages 
•  To amortize disk latency 
•  To accommodate bigger caches 

1:0 [31:12] IDX[11:2] 
VPN [31:16] [15:0] 
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TLB Organization 

•  Like caches: TLBs also have ABCs 
•  What does it mean for a TLB to have a block size of two? 

•  Two consecutive VPs share a single tag 

•  Rule of thumb: TLB should “cover” L2 contents 
•  In other words: #PTEs * page size ≥ L2 size 
•  Why? Think about this … 
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Flavors of Virtual Memory 

•  Virtual memory almost ubiquitous today 
•  Certainly in general-purpose (in a computer) processors 
•  But even some embedded (in non-computer) processors support it 

•  Several forms of virtual memory 
•  Paging (aka flat memory): equal sized translation blocks 

•  Most systems do this 
•  Segmentation: variable sized (overlapping?) translation blocks 

•  IA32 uses this 
•  Makes life very difficult 

•  Paged segments: don’t ask 
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Summary 

•  DRAM 
•  Two-level addressing 
•  Refresh, access time, cycle time 

•  Building a memory system 
•  DRAM/bus bandwidth matching 

•  Memory organization 
•  Virtual memory   

•  Page tables and address translation 
•  Page faults and handling 
•  Virtual, physical, and virtual-physical caches and TLBs 

Next part of course: Exceptions, Interrupts, and I/O 


