
1

ECE 250 / CS 250
Introduction to Computer Architecture

Virtual Memory
Benjamin C. Lee
Duke University

Slides from Daniel Sorin (Duke)
and are derived from work by

Amir Roth (Penn) and Alvy Lebeck (Duke)

ECE 152 © 2012 Daniel J. Sorin from Roth
2

Administrivia

•  Homework #5 – Due Apr 11 @ 11:55pm

ECE 152 © 2012 Daniel J. Sorin from Roth
3

Physical Main Memory?

•  On a 32-bit architecture, there are 232 byte addresses
•  Requires 4 GB of memory
•  But not everyone buys machines with 4 GB of memory
•  And what about 64-bit architectures?

•  Let’s take a step back…

ECE 152 © 2012 Daniel J. Sorin from Roth
4

This Unit: Main Memory

•  Memory hierarchy review
•  DRAM technology

•  A few more transistors
•  Organization: two level addressing

•  Building a memory system
•  Bandwidth matching
•  Error correction

•  Organizing a memory system
•  Virtual memory

•  Address translation and page tables
•  A virtual memory hierarchy

Application

OS

Firmware Compiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

ECE 152 © 2012 Daniel J. Sorin from Roth
5

Virtual Memory

•  Idea of treating memory like a cache
•  Contents are a dynamic subset of program’s address space
•  Dynamic content management is transparent to program

•  Actually predates “caches” (by a little)

•  Original motivation: compatibility
•  IBM System 370: a family of computers with one software suite
+  Same program could run on machines with different memory sizes

•  Caching mechanism made it appear as if memory was 2N bytes
•  Regardless of how much memory there actually was

–  Prior, programmers explicitly accounted for memory size

•  Virtual memory
•  Virtual: “in effect, but not in actuality” (i.e., appears to be, but isn’t)

ECE 152 © 2012 Daniel J. Sorin from Roth
6

Virtual Memory

•  Programs use virtual addresses (VA)
•  0…2N–1
•  VA size also referred to as machine size
•  E.g., Pentium4 is 32-bit, Itanium is 64-bit

•  Memory uses physical addresses (PA)
•  0…2M–1 (M<N, especially if N=64)
•  2M is most physical memory machine supports

•  VA→PA at page granularity (VP→PP)
•  By “system”
•  Mapping need not preserve contiguity
•  VP need not be mapped to any PP
•  Unmapped VPs live on disk (swap)

…

…

Disk(swap)

Program

Main Memory

code heap stack

ECE 152 © 2012 Daniel J. Sorin from Roth
7

Other Uses of Virtual Memory

•  Virtual memory is quite useful
•  Automatic, transparent memory management just one use
•  “Functionality problems are solved by adding levels of indirection”

•  Example: multiprogramming
•  Each process thinks it has 2N bytes of address space
•  Each thinks its stack starts at address 0xFFFFFFFF
•  “System” maps VPs from different processes to different PPs

+ Prevents processes from reading/writing each other’s memory

…

…

Program1 … Program2

ECE 152 © 2012 Daniel J. Sorin from Roth
8

Still More Uses of Virtual Memory

•  Inter-process communication
•  Map VPs in different processes to same PPs

•  Direct memory access I/O
•  Think of I/O device as another process
•  Will talk more about I/O in a few lectures

•  Protection
•  Piggy-back mechanism to implement page-level protection
•  Map VP to PP … and RWX protection bits
•  Attempt to execute data, or attempt to write insn/read-only data?

•  Exception → OS terminates program

ECE 152 © 2012 Daniel J. Sorin from Roth
9

Address Translation

•  VA→PA mapping called address translation
•  Split VA into virtual page number (VPN) and page offset (POFS)
•  Translate VPN into physical page number (PPN)
•  POFS is not translated – why not?
•  VA→PA = [VPN, POFS] → [PPN, POFS]

•  Example above
•  64KB pages → 16-bit POFS
•  32-bit machine → 32-bit VA → 16-bit VPN (16 = 32 – 16)
•  Maximum 256MB memory → 28-bit PA → 12-bit PPN

POFS[15:0] virtual address[31:0] VPN[31:16]

POFS[15:0] physical address[27:0] PPN[27:16]
translate don’t touch

ECE 152 © 2012 Daniel J. Sorin from Roth
10

Mechanics of Address Translation

•  How are addresses translated?
•  In software (now) but with hardware acceleration (a little later)

•  Each process is allocated a page table (PT)
•  Maps VPs to PPs or to disk (swap) addresses

•  VP entries empty if page never referenced
•  Translation is table lookup

struct {
 union { int ppn, disk_block; }
 int is_valid, is_dirty;
} PTE;
struct PTE pt[NUM_VIRTUAL_PAGES];

int translate(int vpn) {
 if (pt[vpn].is_valid)
 return pt[vpn].ppn;
}

PT

vp
n

Disk(swap)

ECE 152 © 2012 Daniel J. Sorin from Roth
11

Page Table Size

•  How big is a page table on the following machine?
•  4B page table entries (PTEs)
•  32-bit machine
•  4KB pages

•  Solution
•  32-bit machine → 32-bit VA → 4GB virtual memory
•  4GB virtual memory / 4KB page size → 1M VPs
•  1M VPs * 4B PTE → 4MB page table

•  How big would the page table be with 64KB pages?
•  How big would it be for a 64-bit machine?

•  Page tables can get enormous
•  There are ways of making them smaller

ECE 152 © 2012 Daniel J. Sorin from Roth
12

Multi-Level Page Table

•  One way: multi-level page tables
•  Tree of page tables
•  Lowest-level tables hold PTEs
•  Upper-level tables hold pointers to lower-level tables
•  Different parts of VPN used to index different levels

•  Example: two-level page table for machine on last slide
•  Compute number of pages needed for lowest-level (PTEs)

•  4KB pages / 4B PTEs → 1K PTEs fit on a single page
•  1M PTEs / (1K PTEs/page) → 1K pages to hold PTEs

•  Compute number of pages needed for upper-level (pointers)
•  1K lowest-level pages → 1K pointers
•  1K pointers * 32-bit VA → 4KB → 1 upper level page

ECE 152 © 2012 Daniel J. Sorin from Roth
13

Multi-Level Page Table

•  20-bit VPN
•  Upper 10 bits index 1st-level table
•  Lower 10 bits index 2nd-level table

1st-level
“pointers”

2nd-level
PTEs

VPN[9:0] VPN[19:10]

struct {
 union { int ppn, disk_block; }
 int is_valid, is_dirty;
} PTE;
struct {
 struct PTE ptes[1024];
} L2PT;
struct L2PT *pt[1024];

int translate(int vpn) {
 struct L2PT *l2pt = pt[vpn>>10];
 if (l2pt && l2pt->ptes[vpn&1023].is_valid)
 return l2pt->ptes[vpn&1023].ppn;
}

pt “root”

ECE 152 © 2012 Daniel J. Sorin from Roth
14

Multi-Level Page Table

•  Have we saved any space?
•  Isn’t total size of L2 PTE pages same as single-

level table (i.e., 4MB)?
•  Yes, but…

•  Large virtual address regions unused
•  Corresponding L2 pages need not exist
•  Corresponding L1 pointers are null

•  Ex: 2MB code, 64KB stack, 16MB heap
•  Each L2 page maps 4MB of virtual addresses
•  1 page for code, 1 for stack, 4 for heap, (+1 L1)
•  7 total pages for PT = 28KB (<< 4MB)

ECE 152 © 2012 Daniel J. Sorin from Roth
15

Address Translation Mechanics

•  The six questions
•  What? address translation
•  Why? compatibility, multi-programming, protection
•  How? page table
•  What performs translation?
•  When is translation performed?
•  Where does page table reside?

•  Option I: process (program) translates its own addresses
•  Page table resides in process visible virtual address space
–  Bad idea: implies that program (and programmer)…

•  Must know about physical addresses
•  Isn’t that what virtual memory is designed to avoid?

•  Can forge physical addresses and mess with other programs
•  Translation on L2 miss or always? How would program know?

ECE 152 © 2012 Daniel J. Sorin from Roth
16

Who? Where? When? Take II

•  Option II: operating system (OS) translates for process
•  Page table resides in OS virtual address space
+  User-level processes cannot view/modify their own tables
+  User-level processes need not know about physical addresses
•  Translation on L2 miss (requires OS syscall)

•  L2 miss: interrupt transfers control to OS handler
•  Handler translates VA by accessing process’s page table
•  Accesses memory using PA
•  Returns to user process when L2 fill completes
–  Still slow: added interrupt handler and PT lookup to memory access
–  What if PT lookup itself requires memory access? Head spinning…

ECE 152 © 2012 Daniel J. Sorin from Roth
17

Translation Buffer

•  Functionality problem? Add indirection!
•  Performance problem? Add cache!

•  Address translation too slow?
•  Cache translations in translation buffer (TB)

•  Small cache: 16–64 entries, often fully assoc
+  Exploits temporal locality in PT accesses
+  OS handler only on TB miss

CPU

D$

L2

Main
Memory

I$

TB

VPN PPN
VPN PPN
VPN PPN

“tag” “data” PA

VA

VA

VA VA

ECE 152 © 2012 Daniel J. Sorin from Roth
18

TB Misses

•  TB miss: requested PTE not in TB, but in PT
•  Two ways of handling

•  1) OS routine: reads PT, loads entry into TB
•  Privileged instructions in ISA for accessing TB directly
•  Latency: one or two memory accesses + OS call

•  2) Hardware FSM: does same thing
•  Store PT root pointer in hardware register
•  Store physical addresses PT root and L1 table pointers

•  FSM doesn’t have to translate them
+  Latency: saves cost of OS call

ECE 152 © 2012 Daniel J. Sorin from Roth
19

Nested TB Misses

•  Nested TB miss: when OS handler itself has a TB miss
•  TB miss on handler instructions
•  TB miss on page table VAs
•  Not a problem for hardware FSM: no instructions, PAs in page table

•  Software handler implementation is tricky
•  First, save current TB miss info before accessing page table

•  So that nested TB miss info doesn’t overwrite it
•  Second, lock nested miss entries into TB

•  Prevent TB conflicts that result in infinite loop
•  Another good reason to have a highly-associative TB

ECE 152 © 2012 Daniel J. Sorin from Roth
20

Page Faults

•  Page fault: PTE not in TB or in PT
•  Page is simply not in memory
•  Starts out as a TB miss, detected by OS handler/hardware FSM

•  OS routine
•  OS software chooses a physical page to replace

•  “Working set”: more refined software version of LRU
•  Tries to see which pages are actively being used
•  Balances needs of all current running applications

•  If dirty, write to disk (like dirty cache block with writeback $)
•  Read missing page from disk (done by OS)

•  Takes so long (10ms), OS schedules another task
•  Treat like a normal TB miss from here

ECE 152 © 2012 Daniel J. Sorin from Roth
21

Virtual Caches

•  Memory hierarchy so far: virtual caches
•  Indexed and tagged by VAs
•  Translate to PAs only to access memory
+  Fast: avoids translation latency in common case

•  What to do on process switches?
•  Flush caches? Slow
•  Add process IDs to cache tags

•  Does inter-process communication work?
•  Aliasing: multiple VAs map to same PA

•  How are multiple cache copies kept in sync?
•  Also a problem for I/O (later in course)

•  Disallow caching of shared memory? Slow

CPU

D$

L2

Main
Memory

I$

TB

PA

VA

VA

VA VA

ECE 152 © 2012 Daniel J. Sorin from Roth
22

Physical Caches

•  Alternatively: physical caches
•  Indexed and tagged by PAs
•  Translate to PA at the outset
+  No need to flush caches on process switches

•  Processes do not share PAs
+  Cached inter-process communication works

•  Single copy indexed by PA
–  Slow: adds 1 cycle to thit

CPU

D$

L2

Main
Memory

I$

TB

PA

PA

VA VA

PA PA
TB

ECE 152 © 2012 Daniel J. Sorin from Roth
23

Virtual Physical Caches

•  Compromise: virtual-physical caches
•  Indexed by VAs
•  Tagged by PAs
•  Cache access and address translation in parallel
+  No context-switching/aliasing problems
+  Fast: no additional thit cycles

•  A TB that acts in parallel with a cache is a TLB
•  Translation Lookaside Buffer

•  Common organization in processors today

CPU

D$

L2

Main
Memory

I$ TLB

PA

PA

VA VA

TLB

ECE 152 © 2012 Daniel J. Sorin from Roth
24

Cache/TLB Access

•  Two ways to look at VA
•  Cache: TAG+IDX+OFS
•  TLB: VPN+POFS

•  Parallel cache & TLB …
•  Possible if address

translation doesn’t
change IDX

•  VPN, IDX don’t overlap

1:0 [31:12]

data

[11:2] <<

address

==

TLB hit/miss

0
1

1022
1023

2

==

==
==

VPN [31:16] POFS[15:0]

cache

TLB

cache hit/miss

ECE 152 © 2012 Daniel J. Sorin from Roth
25

Cache Size And Page Size

•  Relationship between page size and L1 I$(D$) size
•  Forced by non-overlap between VPN and IDX portions of VA
•  Which is required for parallel TLB and cache access

•  I$(D$) size / associativity ≤ page size
•  Big caches must be set associative

•  Big cache à more index bits (fewer tag bits)
•  More set associative à fewer index bits (more tag bits)

•  Systems are moving towards bigger (64KB) pages
•  To amortize disk latency
•  To accommodate bigger caches

1:0 [31:12] IDX[11:2]
VPN [31:16] [15:0]

ECE 152 © 2012 Daniel J. Sorin from Roth
26

TLB Organization

•  Like caches: TLBs also have ABCs
•  What does it mean for a TLB to have a block size of two?

•  Two consecutive VPs share a single tag

•  Rule of thumb: TLB should “cover” L2 contents
•  In other words: #PTEs * page size ≥ L2 size
•  Why? Think about this …

ECE 152 © 2012 Daniel J. Sorin from Roth
27

Flavors of Virtual Memory

•  Virtual memory almost ubiquitous today
•  Certainly in general-purpose (in a computer) processors
•  But even some embedded (in non-computer) processors support it

•  Several forms of virtual memory
•  Paging (aka flat memory): equal sized translation blocks

•  Most systems do this
•  Segmentation: variable sized (overlapping?) translation blocks

•  IA32 uses this
•  Makes life very difficult

•  Paged segments: don’t ask

ECE 152 © 2012 Daniel J. Sorin from Roth
28

Summary

•  DRAM
•  Two-level addressing
•  Refresh, access time, cycle time

•  Building a memory system
•  DRAM/bus bandwidth matching

•  Memory organization
•  Virtual memory

•  Page tables and address translation
•  Page faults and handling
•  Virtual, physical, and virtual-physical caches and TLBs

Next part of course: Exceptions, Interrupts, and I/O

