
ECE 250 / CS 250
Introduction to Computer Architecture

Exceptions/Interrupts

Benjamin C. Lee
Duke University

Slides from Alvin Lebeck (Duke)

2 © Alvin R. Lebeck

•  Homework #5 – Due Apr 11 @ 11:55pm

Administrivia

CS/ECE 250

3 © Alvin R. Lebeck

I/O Bus

Memory Bus

Processor

Cache

Disk
Controller

Disk

Memory

Disk

Graphics
Controller

Network
Interface

Graphics Network

interrupts

System Organization

I/O Bridge

Core Chip Set

The
memory
hierarchy

exceptions

CS/ECE 250

4 © Alvin R. Lebeck

 What Does an Operating System Do?

•  Service Provider
§  exports commonly needed facilities with standard interfaces
§  simplifies programs
§  portability

•  Executive
§  resource manager for greatest good

•  Custodian of the Machine
§  monitors hardware, intervenes to resolve exceptional conditions

•  Cop
§  protects you from others

CS/ECE 250

5 © Alvin R. Lebeck

Executing a Program

•  Thread of control (program counter)
§  multiple threads/programs running

•  Basic steps for program execution
§  fetch instruction from Memory[PC],
§  execute the instruction,
§  increment PC

•  At boot-time, begin with PC at well-known location
§  loads the operating system kernel

CS/ECE 250

6 © Alvin R. Lebeck

An Execution Context

•  CPU state associated with program context
§  general purpose registers (integer and floating point)
§  status registers (e.g., condition codes, HI/LO)
§  program counter, stack pointer
§  cache and memory hierarchy

•  Switch between contexts
§  Increases machine utilization
§  Allows programs to share machine (e.g., timeslicing)
§  Permits different execution modes (e.g., user versus OS kernel)

•  Operating system maintains contexts

CS/ECE 250

7 © Alvin R. Lebeck

 Context Switches

•  Save current execution context
§  Save registers and program counter

•  Restore other context

•  Why switch contexts?
§  Switch between programs that share hardware
§  Switch to handle I/O that begins or ends
§  How do we know these events occur? Interrupts

CS/ECE 250

8 © Alvin R. Lebeck

Interrupts and Exceptions

•  Exception is an external event
§  These events require responses
§  Clock interrupts for timeslicing and context switches
§  I/O operations for disk, network, keyboard, etc.
§  “Exception”, “interrupt”, “trap” are used interchangeably

•  Exception is an infrequent event
§  Examples: I/O, divide-by-zero, illegal instruction, page fault, protection

fault, ctrl-C, ctrl-Z, timer

•  Exception handling requires OS intervention
§  Handling is transparent to application code
§  End program: divide-by-0, protection fault, illegal instruction
§  Fix and restart program: I/O

CS/ECE 250

9 © Alvin R. Lebeck

ld
add
st
div
beq
ld

sub
bne

User Program

Interrupt Handler

Handling an Exception/Interrupt

•  Determine interrupt’s cause

•  Invoke specific kernel routine

based on type of interrupt
§  interrupt/exception handler
§  kernel initializes table at boot
§  PC = interrupt_table[i]

•  Clear interrupt signal

•  Return from interrupt handler
§  Return to original context
§  Return to different context

CS/ECE 250

10 © Alvin R. Lebeck

Execution Mode

•  What if interrupt occurs while in interrupt handler?
§  Interrupt #2 could interfere with handling interrupt #1
§  Solution disables interrupts within handler
§  Disabling interrupts is a protected operation

•  Protected Operations
§  Only the operating system kernel can perform these operations
§  Mode bit in CPU status register (user versus kernel)
§  Example: disabling interrupts, installing interrupt handlers, manipulating

processor state (saving/restoring status registers)

•  Changing Modes
§  Use interrupts or system calls (syscall instruction)

CS/ECE 250

11 © Alvin R. Lebeck

System Call (syscall)

Trap
Handler

User Program

•  Special instruction changes
modes and invokes service
§  read/write I/O device
§  create new process

•  Invokes specific kernel routine
based on argument

Service
Routines

Kernel
ld

add
St

Syscall 6
beq
ld

sub
bne

CS/ECE 250

12 © Alvin R. Lebeck

Handing Exceptions and Interrupts

Exceptions are like an “asynchronous procedure call”

1.  Processor saves address of offending instruction in the

EPC (Exception Program Counter)

2.  Processor transfers control to OS at specified
instruction address

3.  OS executes instructions, responding to interrupt

4.  OS terminates program or returns using EPC

CS/ECE 250

13 © Alvin R. Lebeck

Handling Exceptions and Interrupts

•  For example, consider 3 types of exceptions
§  undefined instruction
§  arithmetic overflow
§  unaligned access

•  Which event caused exception?
§  Option 1 (used by MIPS): Cause register contains reason
§  Option 2: Vectored interrupts where cause is encoded in address.

»  Addresses separated by 32 instructions
»  Example:

 Exception Type Exception Vector Address
Undefined instruction C0 00 00 00
Arithmetic overflow C0 00 00 20
Unaligned Access C0 00 00 40

»  Jump to appropriate address

CS/ECE 250

14 © Alvin R. Lebeck

•  EPC
§  32-bit register used to hold the address of the affected instruction

•  Cause:
§  a register used to record the cause of the exception.
§  In MIPS, this register is 32 bits; some bits are currently unused.

•  BadVAddr
§  register contains memory address at which reference occurred
§  used when memory access exception occurs

•  Status:
§  interrupt mask and enable bits

Additions to MIPS ISA

CS/ECE 250

15 © Alvin R. Lebeck

•  Pending Interrupt
§  5 hardware levels: bit set if interrupt occurs but not yet serviced
§  handles cases when more than one interrupt occurs at same time, or records

interrupt requests when interrupts disabled

•  Exception Code
§  encodes reasons for interrupt
§  0 (INT) => external interrupt
§  4 (ADDRL) => address error exception (load or instr fetch)
§  5 (ADDRS) => address error exception (store)
§  6 (IBUS) => bus error on instruction fetch
§  7 (DBUS) => bus error on data fetch
§  8 (Syscall) => Syscall exception
§  9 (BKPT) => Breakpoint exception
§  10 (RI) => Reserved Instruction exception
§  12 (OVF) => Arithmetic overflow exception

Cause
15 10

Pending
5 2

Code

Details of Cause Register

CS/ECE 250

16 © Alvin R. Lebeck

•  Mask = 1 bit for each of 5 hardware and 3 software interrupt levels
§  1 enables interrupts, 0 disables interrupts

•  k = specifies kernel/user mode
§  0 => was in the kernel when interrupt occurred
§  1 => was running user mode

•  e = interrupt enable
§  0 means disabled, 1 means enabled

•  Interrupt handler runs in kernel mode with interrupts disabled
§  When interrupt occurs, 6 LSB shifted left 2 bits, setting 2 LSB to 0

Status
15 8 5

k
4
e

3
k

2
e

1
k

0
e Mask

old prev current

Details of MIPS Status Register

CS/ECE 250

17 © Alvin R. Lebeck

•  Undefined Instruction
§  Detect unknown opcode

•  Arithmetic overflow
§  Add logic in the ALU to detect overflow
§  Provide overflow signal as ALU output

•  Unaligned access
§  Add circuit to check addresses
§  E.g., lw address must have 2 least significant bits == 0

Detecting Exceptions

CS/ECE 250

18 © Alvin R. Lebeck

•  Control is hard part of computer design
•  Exceptions are the hard part of control

•  Need to find convenient place to detect exceptions PC
and invoke the operating system

Exception Summary

CS/ECE 250

