
ECE 250 / CS 250
Computer Architecture

“C Programming”

Benjamin Lee

Some slides based on those from Alvin Lebeck, Daniel
Sorin, Andrew Hilton, Amir Roth, Gershon Kedem

2
© Alvin R. Lebeck
From Sorin, Hilton, Roth CS/ECE 250

Outline

•  Previously:
§  Computer is a machine that does what we tell it to do

•  Next:
§  How do we tell computers what to do?

»  First a quick intro/review of C programming
»  Goal: to learn C, not teach you to be an expert in C

§  How do we represent data?
§  What is memory?

3
© Alvin R. Lebeck
From Sorin, Hilton, Roth CS/ECE 250

High Level Language
Program

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

 We Use High Level Languages

•  There are many high level languages (HLLs)
§  Java, C, C++, C#, Fortran, Basic, Pascal, Lisp, Ada, Matlab, etc.

•  HLLs tend to be English-like languages that are “easy” for
programmers to understand

•  In this class, we’ll focus on C as our running example for
HLL code. Why?
§  C has pointers
§  C has explicit memory allocation/deallocation
§  Java hides these issues (don’t get me started on Matlab)

4
© Alvin R. Lebeck
From Sorin, Hilton, Roth CS/ECE 250

High Level Language
Program

Assembly Language
Program

Compiler

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

 HLL à Assembly Language

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

•  Every computer architecture has its own assembly
language

•  Assembly languages tend to be pretty low-level, yet some
actual humans still write code in assembly

•  But most code is written in HLLs and compiled
•  Compiler is a program that automatically converts HLL to assembly

5
© Alvin R. Lebeck
From Sorin, Hilton, Roth CS/ECE 250

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Compiler

Assembler

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

 Assembly Language à Machine Language

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

•  Assembler program automatically converts assembly code
into the binary machine language (zeros and ones) that
the computer actually executes

6
© Alvin R. Lebeck
From Sorin, Hilton, Roth CS/ECE 250

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signals for
Finite State Machine

Compiler

Assembler

Machine Interpretation

temp = v[k];

v[k] = v[k+1];

v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

 Machine Language à Inputs to Digital System

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

Transistors (switches) turning on and off

7
© Alvin R. Lebeck
From Sorin, Hilton, Roth

What you know today

CS/ECE 250

JAVA
...
System.out.println("Please Enter In Your First Name: ");
String firstName = bufRead.readLine();
System.out.println("Please Enter In The Year You Were Born: ");
String bornYear = bufRead.readLine();
System.out.println("Please Enter In The Current Year: ");
String thisYear = bufRead.readLine();
int bYear = Integer.parseInt(bornYear);
int tYear = Integer.parseInt(thisYear);
int age = tYear – bYear ;
System.out.println("Hello " + firstName + ". You are " + age + " years
old");

8
© Alvin R. Lebeck
From Sorin, Hilton, Roth

How does a Java program execute?

•  Compile Java Source to Java Byte codes
•  Java Virtual Machine (JVM) interprets/translates Byte

codes
•  JVM is a program executing on the hardware

•  Java has lots of things that make it easier to program
without making mistakes

•  JVM handles memory for you
§  What do you do when you remove an entry from a hash table,

binary tree, etc.?

CS/ECE 250

9
© Alvin R. Lebeck
From Sorin, Hilton, Roth

The C Programming Language

•  No virtual machine
§  No dynamic type checking, array bounds, garbage collection, etc.
§  Compile source file directly to machine

•  Closer to hardware
§  Easier to make mistakes
§  Can often result in faster code

•  Generally used for ‘systems programming’
§  operating systems, embedded systems, database implementation
§  There is object oriented C++ (C is a strict subset of C++)

CS/ECE 250

10
© Alvin R. Lebeck
From Sorin, Hilton, Roth

The C Programming Language (Continued)

•  No objects
•  Procedural, not object oriented

§  No objects with methods

•  Structures, unions like objects
§  Member variables (no methods)

•  Pointers – memory, arrays
•  External standard library – I/O, other facilities
•  Macro preprocessor (#<directive>)
•  Resources

§  Kernighan & Richie book The C Programming Language
§  MIT open course Practical Programming in C in ‘docs’ of website
§  Drew Hilton Video Snippets

CS/ECE 250

11
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Creating a C source file
•  We are not using a development environment (IDE)
•  You will create programs starting with an empty file!
•  Use .c file extension (e.g., hello.c)
•  On a linux machine you can use nedit

CS/ECE 250

12
© Alvin R. Lebeck
From Sorin, Hilton, Roth

The nedit window

•  nedit is a simple point & click editor
§  with ctrl-c, ctrl-x, ctrl-v, etc. short cuts

•  Feel free to use any text editor (gvim, emacs, etc.)

CS/ECE 250

13
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Hello World

•  Canonical beginner program
§  Prints out “Hello …”

•  nedit provides syntax highlighting

CS/ECE 250

14
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Compiling the Program

•  Use the gcc program to create an executable file
•  gcc –o <outputname> <source file name>
•  gcc –o hello hello.c (must be in same directory as hello.c)
•  If no –o option, then default output name is a.out (e.g., gcc hello.c)

CS/ECE 250

15
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Running the Program

•  Type the program name on the command line
§  ./ before “hello” means look in current directory for hello program

CS/ECE 250

16
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Debugging

•  Print debugging…
§  Just output information at different points in the program
§  Not the most efficient, but often works.

•  gdb <executable filename>
•  Good for stopping at set points in program and inspecting

variable values.
§  If you get good at using a debugger it is easier/better than printf

debugging…

•  Recitation for more on debugging

CS/ECE 250

17
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Variables, operators, expressions

•  C variables are similar to Java
§  Data types: int, float, double, char, void
§  Signed and unsigned int
§  char, short, int, long, long long can all be integer types

»  These specify how many bits to represent an integer

•  Constants
§  Use #define C preprocessor
§  E.g.,: #define MAX_SCORE 100

•  Operators:
§  Mathematical +, -, *, /, %,
§  Logical !, &&, ||, ==, !=, <, >, <=, >=
§  Bitwise &, |, ~, ^ , <<, >> (we’ll get to what these do later)

•  Expressions: var1 = var2 + var3;

CS/ECE 250

18
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Variables Continued

•  Must be declared before use
•  Remember to initialize

•  Can initialize at declaration
§  int n = 23;
§  int a, b c, d = 0;
§  float foo = 3.141;

•  What value does an uninitialized variable have?

CS/ECE 250

19
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Type Conversion

•  Use type casting to convert between types
§  variable1 = (new type) variable2;
§  Note order of operations – cast often takes precedence

(double) a (int) (x+y) (int) x+y

main() {
 float x;
 int i;
 x = 3.6;
 i = (int) x;
 printf(“x=%f, i=%d”, x, i)
}
result: x=3.600000, i=3

 CS/ECE 250

20
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Control Flow

•  Conditionals
If (a < b) { … } else {…}
switch (a) {

 case 0: s0; break
 case 1: s1;
 case 2: s2; break
 default: break;

}

•  Loops
for (i = 0; i < max; i++) { ... }
while (i < max) {…}

CS/ECE 250

21
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Functions

•  Encapsulate computation
§  Reuse or clarity of code
§  Cannot define functions within functions

•  Must be declared before use!
int div2(int x,int y); /* declaration here */
main() {

 int a;
 a = div2(10,2);

}
int div2(int x, int y) { /* implementation here */

 return (x/y);
}

•  Or put functions at top of file (doesn’t always work)

CS/ECE 250

22
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Back to our first program

•  #include <stdio.h> defines input/output functions in C
standard library

•  printf(…) writes output to terminal

CS/ECE 250

23
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Input Output

•  Read/Write to/from the terminal
§  Standard input, standard output (defaults are terminal)

•  Character I/O
§  putchar(), getchar()

•  Formatted I/O
§  printf(), scanf()

CS/ECE 250

24
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Character I/O

#include <stdio.h> /* include the standard IO library function defs */
int main()
{
 char c;
 while ((c = getchar()) != EOF) { /* read characters until end of file */
 if (c == ‘e’)
 c = ‘-’;

 putchar(c);
 }
 return 0;
}

•  EOF is End Of File (type ^d)
•  What does the following command line do?

§  ./a.out < in.txt > out.txt

CS/ECE 250

25
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Formatted I/O
#include <stdio.h>
int main()
{
 int a = 23;
 float f =0.31234;
 char str1[] = “satisfied?”;
 /* some code here… */
 printf(“The values are %d, %f , %s\n”, a, f, str1);
 scanf(“%d %f”, &a, &f); /* will come back to the & later */
 scanf(“%s”, str1);
 printf(“The values are %d, %f , %s\n”,a,f,str1);
}
•  printf(“format string”, v1,v2,…);

§  \n is newline character

•  scanf(“format string”,…);
§  Returns number of matching items or EOF if at end-of-file

CS/ECE 250

26
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Reading Input in a Loop

#include <stdio.h>
int main()
{
 int an_int = 0;
 while(scanf("%d",&an_int) != EOF) {
 printf("The value is %d\n",an_int);
 }
}
•  This reads integers from the terminal until the user types ^d (ctrl-d)

§  Can use a.out < file.in

•  WARNING THIS IS NOT CLEAN CODE!!!
§  If the user makes a typo and enters a non-integer it will loop indefinitely!!!

•  How to stop a program that is in an infinite loop on Linux?
•  Type ^c (ctrl-c) It kills the currently executing program.
•  Type “man scanf” on a linux machine and you can read a lot about scanf
•  See MIT open courseware notes or web on input/output

CS/ECE 250

27
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Global Variables

•  Global variables are accessible from any function
#include <stdio.h>
int a = 0;
float f = 0;
void seta() { a = 78; }
int main()
{
 a = 23;
 f =0.31234;
 seta();
 printf(“The values are %d, %f \n”,a,f);
}

•  What is the output?
§  what if in main we had “int a = 23;” ?

CS/ECE 250

28
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Header Files, Separate Compilation, Libraries

•  C preprocessor
§  #include filename just inserts that file (like #include <stdio.h>)
§  #define MYFOO 8, replaces MYFOO with 8 in entire program

»  Good for constants
»  #define MAX_STUDENTS 100

•  Separate Compilation
§  Many source files (e.g., main.c, students.c, instructors.c, deans.c)
§  gcc –o prog main.c students.c instructors.c deans.c
§  Produces one executable program from multiple source files
§  A bit more later, lots of good uses, but beyond this class

•  Libraries: Collection of common functions (some provided, you can build
your own)

»  libc has io, strings, etc.
»  libm has math functions (pow, exp, etc.)
»  gcc –o prog file.c –lm (says use math library)
»  You can read more about this elsewhere

CS/ECE 250

29
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Arrays

•  Mostly the same as other languages
•  char buf[256];
•  int ar[256][512]; /* two dimensional array */
•  float scores[4196];
•  double speed[100];
for (i = 0; i< 256; i++)

 buf[i] = ‘A’+i;

•  Strings
§  char str1[256] = “hi”;
§  str1[0] = ‘h’, str1[1] = ‘i’,str1[2] = 0;
§  0 is value of NULL character ‘\0’, identifies end of string

•  What is C code to compute string length?

CS/ECE 250

30
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Compute String Length

int len=0;
while (str1[len] != 0)
 len++;

•  Length does not include the NULL character
•  C has built-in string operations

§  #include <string.h>
§  strlen(str1);

CS/ECE 250

31
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Structures

•  Loosely like objects
§  Have member variables
§  Do not have methods!

•  Structure definition with struct keyword
struct student_record {

 int id;
 float grade;

} rec1, rec2;

•  Declare a variable of the structure type with struct keyword
struct student_record onerec;

•  Access the structure member fields with ‘.’ structvar.member
onerec.id = 12;
onerec.grade = 79.3;

CS/ECE 250

32
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Array of Structures

#include <stdio.h>
struct student_record {

 int id;
 float grade;

};
struct student_record myroster[100]; /* declare array of structs */
int main()
{

 myroster[23].id = 99;
 myroster[23].grade = 88.5;
 printf("ID %d, grade %f\n",myroster[23].id,myroster[23].grade);

}

CS/ECE 250

33
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Reference vs. Pointer

Java
§  “The value of a reference type variable, in contrast to that of a

primitive type, is a reference to (an address of) the value or set of
values represented by the variable”

 http://java.sun.com/docs/books/tutorial/java/nutsandbolts/datatypes.html

§  Cannot manipulate value of reference

C
§  Pointer is variable that contains location of another variable
§  Pointer is memory location that contains address of another

memory location
§  Can manipulate value of pointer

CS/ECE 250

34
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Pointers

•  Declaration of pointer variables
§  int * x_ptr; char * c_ptr; void * ptr;

•  How do we get the location (address) of a variable?
Use one of the following:
1.  Use the & ‘address of’ operator

§  x_ptr = &intvar;
2.  From another pointer (yes we can do arithmetic on them)

§  x_ptr = y_ptr + 18;
3.  Return from memory allocator

§  x_ptr = (int *) malloc(sizeof(int));

•  More about addresses and pointers in a couple lectures…
§  char str1[256] is similar to str2 = (char *) malloc(256);

CS/ECE 250

35
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Pointers

•  De-reference using *ptr to get what is pointed at

CS/ECE 250

statement x x_ptr
int x; ?? ??
int *x_ptr; ?? ??
x = 2 2 ??
x_ptr = &x; 2 &x
*x_ptr = 68;
x_ptr = 200;

36
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Pointers

•  De-reference using *ptr to get what is pointed at

CS/ECE 250

statement x x_ptr
int x; ?? ??
int *x_ptr; ?? ??
x = 2 2 ??
x_ptr = &x; 2 &x
*x_ptr = 68; 68 &x
x_ptr = 200; 68 200
*x_ptr = 42 68 200

•  Be careful with assignment to a pointer variable
§  You can make it point anywhere…can be very bad
§  You will this semester likely experience a “segmentation fault”
§  What is 200?

37
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Pass by Value vs. Pass by Reference

void swap (int x, int y){!
 int temp = x;!
 x = y;!
 y = temp;!
}!
main() {!
 int a = 3;!
 int b = 4;!
 swap(a, b);!
 printf(“a = %d, b= %d
\n”, a, b);!
}!

void swap (int *x, int
*y){!
 int temp = *x;!
 *x = *y;!
 *y = temp;!
}!
main() {!
 int a = 3;!
 int b = 4;!
 swap(&a, &b);!
 printf(“a = %d, b= %d
\n”, a, b);!
}!

CS/ECE 250

38
© Alvin R. Lebeck
From Sorin, Hilton, Roth

C Memory Allocation

•  How do you allocate an object in Java?
•  What do you do when you are finished with an object?
•  Garbage collection

§  Counts references to objects, when == 0 can reuse
•  C does not have garbage collection

§  Must explicitly manage memory

•  void * malloc(nbytes)
§  Obtain storage for your data (like new in Java)
§  Often use sizeof(type) built-in returns bytes needed for type
§  Cast return value into appropriate type (int) malloc(sizeof(int));

•  free(ptr)
§  Return the storage when you are finished (no Java equivalent)
§  ptr must be a value previously returned from malloc

CS/ECE 250

39
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Linked List

#include <stdio.h>
#include <stdlib.h>
struct list_ent {

 int id;
 struct list_ent *next;

};
main()
{
 struct list_ent *head, *ptr;
 head = (struct list_ent *)

 malloc(sizeof(struct list_ent));
 head->id = 66;
 head->next = NULL;

 ptr = (struct list_ent *)

 malloc(sizeof(struct list_ent));
 ptr->id = 23;
 ptr->next = NULL;

 head->next = ptr;

 printf("head id: %d, next id: %d\n",

 head->id, head->next->id);

 ptr = head;
 head = ptr->next;

 printf("head id: %d, next id: %d\n",

 head->id, ptr->id);
 free(head);
 free(ptr);
}

CS/ECE 250

40
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Command Line Arguments

•  Parameters to main (int argc, char *argv[])
§  argc = number of arguments (0 to argc-1)
§  argv is array of strings
§  argv[0] = program name

!
main(int argc, char *argv[]) {!
 int i;!
 printf("%d arguments\n", argc);!
 for (i=0; i< argc; i++)!
 printf("argument %d: %s\n", i, argv[i]);
}!

CS/ECE 250

41
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Summary

•  C Language is lower level than Java
•  Many things are similar

§  Data types
§  Control flow

•  Some important differences
§  No objects!
§  Explicit memory allocation/deallocation

•  Create and compile a program
•  Up Next:

§  So what are those chars, ints, floats?
§  And what exactly is an address?

CS/ECE 250

42
© Alvin R. Lebeck
From Sorin, Hilton, Roth

Resources

•  See Course Web page Docs/Resources
§  (Note: Not the Sakai web page…)

•  MIT Open Course
•  Video snippets by Prof Drew Hilton in ECE

§  Doesn’t work with Firefox (use Safari or Chrome)

CS/ECE 250

43
© Alvin R. Lebeck
From Sorin, Hilton, Roth CS/ECE 250

Outline

•  Previously:
§  Computer is machine that does what we tell it to do

•  Next:
§  How do we tell computers what to do?

»  First a quick intro to C programming

§  How do we represent data?
§  What is memory, and what are these so-called adresses?

