
1

ECE / CS 250
Introduction to Computer Architecture

Pipelining

Benjamin C. Lee
Duke University

Slides from Daniel Sorin (Duke)
and are derived from work by

Amir Roth (Penn) and Alvy Lebeck (Duke)

ECE 152 © 2012 Daniel J. Sorin from Roth 2

This Unit: Pipelining

•  Basic Pipelining
•  Pipeline control

•  Data Hazards
•  Software interlocks and scheduling
•  Hardware interlocks and stalling
•  Bypassing

•  Control Hazards
•  Fast and delayed branches
•  Branch prediction

•  Multi-cycle operations
•  Exceptions

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

ECE 152 © 2012 Daniel J. Sorin from Roth 3

Readings

•  P+H
•  Chapter 4: Section 4.5-end of Chapter 4

ECE 152 © 2012 Daniel J. Sorin from Roth 4

Pipelining

•  Important performance technique
•  Improves insn throughput (rather than insn latency)

•  Laundry / SubWay analogy
•  Basic idea: divide instruction’s “work” into stages

•  When insn advances from stage 1 to 2
•  Allow next insn to enter stage 1
•  Etc.

•  Key idea: each instruction does same amount of work as
before
+  But insns enter and leave at a much faster rate

ECE 152 © 2012 Daniel J. Sorin from Roth 5

5 Stage Pipelined Datapath

•  Temporary values (PC,IR,A,B,O,D) re-latched every stage
•  Why? 5 insns may be in pipeline at once, they share a single PC?
•  Notice, PC not re-latched after ALU stage (why not?)

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

ECE 152 © 2012 Daniel J. Sorin from Roth 6

Pipeline Terminology

•  Five stage: Fetch, Decode, eXecute, Memory, Writeback
•  Latches (pipeline registers) named by stages they separate

•  PC, F/D, D/X, X/M, M/W

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

ECE 152 © 2012 Daniel J. Sorin from Roth 7

Aside: Not All Pipelines Have 5 Stages

•  H&P textbook uses well-known 5-stage pipe != all pipes
have 5 stages

•  Some examples
•  OpenRISC 1200: 4 stages
•  Sun UltraSPARC T1/T2 (Niagara/Niagara2): 6/8 stages
•  AMD Athlon: 10 stages
•  Pentium 4: 20 stages (later 32 stages!)

•  ICQ: why does Pentium 4 have so many stages?
•  ICQ: how can you possibly break “work” to do single insn

into that many stages?
•  Moral of the story: in ECE 152, we focus on H&P 5-stage

pipe, but don’t forget that this is just one example

ECE 152 © 2012 Daniel J. Sorin from Roth 8

Pipeline Example: Cycle 1

•  3 instructions

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

add $3,$2,$1

ECE 152 © 2012 Daniel J. Sorin from Roth 9

Pipeline Example: Cycle 2

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

lw $4,0($5) add $3,$2,$1

ECE 152 © 2012 Daniel J. Sorin from Roth 10

Pipeline Example: Cycle 3

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw $6,4($7) lw $4,0($5) add $3,$2,$1

ECE 152 © 2012 Daniel J. Sorin from Roth 11

Pipeline Example: Cycle 4

•  3 instructions

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw $6,4($7) lw $4,0($5) add $3,$2,$1

ECE 152 © 2012 Daniel J. Sorin from Roth 12

Pipeline Example: Cycle 5

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw $6,4($7) lw $4,0($5) add

ECE 152 © 2012 Daniel J. Sorin from Roth 13

Pipeline Example: Cycle 6

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw $6,4(7) lw

ECE 152 © 2012 Daniel J. Sorin from Roth 14

Pipeline Example: Cycle 7

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

sw

ECE 152 © 2012 Daniel J. Sorin from Roth 15

Pipeline Diagram

•  Pipeline diagram: shorthand for what we just saw
•  Across: cycles
•  Down: insns
•  Convention: X means lw $4,0($5) finishes execute stage and

writes into X/M latch at end of cycle 4

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W
lw $4,0($5) F D X M W
sw $6,4($7) F D X M W

ECE 152 © 2012 Daniel J. Sorin from Roth 16

What About Pipelined Control?

•  Should it be like single-cycle control?
•  But individual insn signals must be staged

•  How many different control units do we need?
•  One for each insn in pipeline?

•  Solution: use simple single-cycle control, but pipeline it
•  Single controller
•  Key idea: pass control signals with instruction through pipeline

ECE 152 © 2012 Daniel J. Sorin from Roth 17

Pipelined Control

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

CTRL

xC

mC

wC

mC

wC

wC

ECE 152 © 2012 Daniel J. Sorin from Roth 18

Pipeline Performance Calculation

•  Single-cycle
•  Clock period = 50ns, CPI = 1
•  Performance = 50ns/insn

•  Pipelined
•  Clock period = 12ns (why not 10ns?)
•  CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle)
•  Performance = 12ns/insn

ECE 152 © 2012 Daniel J. Sorin from Roth 19

Why Does Every Insn Take 5 Cycles?

•  Why not let add skip M and go straight to W?
•  It wouldn’t help: peak fetch still only 1 insn per cycle
•  Structural hazards: not enough resources per stage for 2 insns

PC Insn
Mem

Register
File

S
X

s1 s2 d
Data
Mem

a

d

+
4

<<
2

PC

IR

PC

A

B

IR

O

B

IR

O

D

IR

PC

F/D D/X X/M M/W

add $3,$2,$1 lw $4,0($5)

ECE 152 © 2012 Daniel J. Sorin from Roth 20

Pipeline Hazards

•  Hazard: condition leads to incorrect execution if not fixed
•  “Fixing” typically increases CPI
•  Three kinds of hazards

•  Structural hazards
•  Two insns trying to use same circuit at same time

•  E.g., structural hazard on RegFile write port
•  Fix by proper ISA/pipeline design: 3 rules to follow

•  Each insn uses every structure exactly once
•  For at most one cycle
•  Always at same stage relative to F

•  Data hazards (next)
•  Control hazards (a little later)

ECE 152 © 2012 Daniel J. Sorin from Roth 21

Data Hazards

•  Let’s forget about branches and control for a while
•  The sequence of 3 insns we saw earlier executed fine…

•  But it wasn’t a real program
•  Real programs have data dependences

•  They pass values via registers and memory

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1 lw $4,0($5) sw $6,0($7)

Data
Mem

a

d

O

D

IR

M/W

ECE 152 © 2012 Daniel J. Sorin from Roth 22

Data Hazards

•  Would this “program” execute correctly on this pipeline?
•  Which insns would execute with correct inputs?
•  add is writing its result into $3 in current cycle
–  lw read $3 2 cycles ago → got wrong value
–  addi read $3 1 cycle ago → got wrong value
•  sw is reading $3 this cycle → OK (regfile timing: write first half)

add $3,$2,$1 lw $4,0($3) sw $3,0($7) addi $6,1,$3

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data
Mem

a

d

O

D

IR

M/W

ECE 152 © 2012 Daniel J. Sorin from Roth 23

Memory Data Hazards

•  What about data hazards through memory? No
•  lw following sw to same address in next cycle, gets right value
•  Why? DMem read/write take place in same stage

•  Data hazards through registers? Yes (previous slide)
•  Occur because register write is 3 stages after register read
•  Can only read a register value 3 cycles after writing it

sw $5,0($1) lw $4,0($1)

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data
Mem

a

d

O

D

IR

M/W

ECE 152 © 2012 Daniel J. Sorin from Roth 24

Fixing Register Data Hazards

•  Can only read register value 3 cycles after writing it

•  One way to enforce this: make sure programs can’t do it
•  Compiler puts two independent insns between write/read insn

pair
•  If they aren’t there already

•  Independent means: “do not interfere with register in question”
•  Do not write it: otherwise meaning of program changes
•  Do not read it: otherwise create new data hazard

•  Code scheduling: compiler moves around existing insns to do this
•  If none can be found, must use NOPs

•  This is called software interlocks
•  MIPS: Microprocessor w/out Interlocking Pipeline Stages

ECE 152 © 2012 Daniel J. Sorin from Roth 25

Software Interlock Example
add $3,$2,$1
lw $4,0($3)
sw $7,0($3)
add $6,$2,$8
addi $3,$5,4

•  Can any of last 3 insns be scheduled between first two?
•  sw $7,0($3)? No, creates hazard with add $3,$2,$1
•  add $6,$2,$8? OK
•  addi $3,$5,4? No, lw would read $3 from it
•  Still need one more insn, use nop

add $3,$2,$1
add $6,$2,$8
nop
lw $4,0($3)
sw $7,0($3)
addi $3,$5,4

ECE 152 © 2012 Daniel J. Sorin from Roth 26

Software Interlock Performance

•  Software interlocks
•  20% of insns require insertion of 1 nop
•  5% of insns require insertion of 2 nops

•  CPI is still 1 technically
•  But now there are more insns
•  #insns = 1 + 0.20*1 + 0.05*2 = 1.3
–  30% more insns (30% slowdown) due to data hazards

ECE 152 © 2012 Daniel J. Sorin from Roth 27

Hardware Interlocks

•  Problem with software interlocks? Not compatible
•  Where does 3 in “read register 3 cycles after writing” come from?

•  From structure (depth) of pipeline
•  What if next MIPS version uses a 7 stage pipeline?

•  Programs compiled assuming 5 stage pipeline will break

•  A better (more compatible) way: hardware interlocks
•  Processor detects data hazards and fixes them
•  Two aspects to this

•  Detecting hazards
•  Fixing hazards

ECE 152 © 2012 Daniel J. Sorin from Roth 28

Detecting Data Hazards

•  Compare F/D insn input register names with output
register names of older insns in pipeline
Hazard =

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||
(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

hazard

Data
Mem

a

d

O

D

IR

M/W

ECE 152 © 2012 Daniel J. Sorin from Roth 29

Fixing Data Hazards

•  Prevent F/D insn from reading (advancing) this cycle
•  Write nop into D/X.IR (effectively, insert nop in hardware)
•  Also clear the datapath control signals
•  Disable F/D latch and PC write enables (why?)

•  Re-evaluate situation next cycle

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

hazard

nop

Data
Mem

a

d

O

D

IR

M/W

ECE 152 © 2012 Daniel J. Sorin from Roth 30

Hardware Interlock Example: cycle 1

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||
(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

= 1

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1 lw $4,0($3)

hazard

nop

Data
Mem

a

d

O

D

IR

M/W

ECE 152 © 2012 Daniel J. Sorin from Roth 31

Hardware Interlock Example: cycle 2

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||
(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

= 1

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1 lw $4,0($3)

hazard

nop

Data
Mem

a

d

O

D

IR

M/W

ECE 152 © 2012 Daniel J. Sorin from Roth 32

Hardware Interlock Example: cycle 3

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) ||
(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD)

= 0

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1 lw $4,0($3)

hazard

nop

Data
Mem

a

d

O

D

IR

M/W

ECE 152 © 2012 Daniel J. Sorin from Roth 33

Pipeline Control Terminology

•  Hardware interlock maneuver is called stall or bubble

•  Mechanism is called stall logic
•  Part of more general pipeline control mechanism

•  Controls advancement of insns through pipeline

•  Distinguished from pipelined datapath control
•  Controls datapath at each stage
•  Pipeline control controls advancement of datapath control

ECE 152 © 2012 Daniel J. Sorin from Roth 34

Pipeline Diagram with Data Hazards

•  Data hazard stall indicated with d*
•  Stall propagates to younger insns

•  This is not OK (why?)

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W
lw $4,0($3) F d* d* D X M W
sw $6,4($7) F D X M W

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W
lw $4,0($3) F d* d* D X M W
sw $6,4($7) F D X M W

ECE 152 © 2012 Daniel J. Sorin from Roth 35

Hardware Interlock Performance

•  Hardware interlocks: same as software interlocks
•  20% of insns require 1 cycle stall (i.e., insertion of 1 nop)
•  5% of insns require 2 cycle stall (i.e., insertion of 2 nops)

•  CPI = 1 + 0.20*1 + 0.05*2 = 1.3
•  So, either CPI stays at 1 and #insns increases 30% (software)
•  Or, #insns stays at 1 (relative) and CPI increases 30% (hardware)
•  Same difference

•  Anyway, we can do better

ECE 152 © 2012 Daniel J. Sorin from Roth 36

Observe

•  This situation seems broken
•  lw $4,0($3) has already read $3 from regfile
•  add $3,$2,$1 hasn’t yet written $3 to regfile

•  But fundamentally, everything is still OK
•  lw $4,0($3) hasn’t actually used $3 yet
•  add $3,$2,$1 has already computed $3

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1 lw $4,0($3)

Data
Mem

a

d

O

D

IR

M/W

ECE 152 © 2012 Daniel J. Sorin from Roth 37

Bypassing

•  Bypassing
•  Reading a value from an intermediate (µarchitectural) source
•  Not waiting until it is available from primary source (RegFile)
•  Here, we are bypassing the register file
•  Also called forwarding

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1 lw $4,0($3)

Data
Mem

a

d

O

D

IR

M/W

ECE 152 © 2012 Daniel J. Sorin from Roth 38

WX Bypassing

•  What about this combination?
•  Add another bypass path and MUX input
•  First one was an MX bypass
•  This one is a WX bypass

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1 lw $4,0($3)

Data
Mem

a

d

O

D

IR

M/W

ECE 152 © 2012 Daniel J. Sorin from Roth 39

ALUinB Bypassing

•  Can also bypass to ALU input B

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

add $3,$2,$1 add $4,$2,$3

Data
Mem

a

d

O

D

IR

M/W

ECE 152 © 2012 Daniel J. Sorin from Roth 40

WM Bypassing?

•  Does WM bypassing make sense?
•  Not to the address input (why not?)
•  But to the store data input, yes

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $3,0($2) sw $3,0($4)

ECE 152 © 2012 Daniel J. Sorin from Roth 41

Bypass Logic

•  Each MUX has its own, here it is for MUX ALUinA
(D/X.IR.RS1 == X/M.IR.RD) à mux select = 0
(D/X.IR.RS1 == M/W.IR.RD) à mux select = 1
Else à mux select = 2

Register
File

S
X

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data
Mem

a

d

O

D

IR

M/W

bypass

ECE 152 © 2012 Daniel J. Sorin from Roth 42

Bypass and Stall Logic

•  Two separate things
•  Stall logic controls pipeline registers
•  Bypass logic controls muxes

•  But complementary
•  For a given data hazard: if can’t bypass, must stall

•  Slide #41 shows full bypassing: all bypasses possible
•  Is stall logic still necessary?

ECE 152 © 2012 Daniel J. Sorin from Roth 43

Yes, Load Output to ALU Input

Stall = (D/X.IR.OP == LOAD) &&
 ((F/D.IR.RS1 == D/X.IR.RD) ||
 ((F/D.IR.RS2 == D/X.IR.RD) && (F/D.IR.OP != STORE))

Register
File

S
X

s1 s2 d
Data
Mem

a

d

IR

A

B

IR

O

B

IR

O

D

IR

F/D D/X X/M M/W

lw $3,0($2)
stall

nop

add $4,$2,$3

lw $3,0($2) add $4,$2,$3

ECE 152 © 2012 Daniel J. Sorin from Roth 44

Pipeline Diagram With Bypassing

•  Sometimes you will see it like this
•  Denotes that stall logic implemented at X stage, rather than D
•  Equivalent, doesn’t matter when you stall as long as you do

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W
lw $4,0($3) F D X M W
addi $6,$4,1 F d* D X M W

1 2 3 4 5 6 7 8 9

add $3,$2,$1 F D X M W
lw $4,0($3) F D X M W
addi $6,$4,1 F D d* X M W

ECE 152 © 2012 Daniel J. Sorin from Roth 45

Pipelining and Multi-Cycle Operations

•  What if you wanted to add a multi-cycle operation?
•  E.g., 4-cycle multiply
•  P/W: separate output latch connects to W stage
•  Controlled by pipeline control and multiplier FSM

Register
File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data
Mem

a

d

O

D

IR

P

IR

X
P/W

Xctrl

ECE 152 © 2012 Daniel J. Sorin from Roth 46

A Pipelined Multiplier

•  Multiplier itself is often pipelined: what does this mean?
•  Product/multiplicand register/ALUs/latches replicated
•  Can start different multiply operations in consecutive cycles

Register
File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data
Mem

a

d

O

D

IR

P

M
IR

D/P0

P

M
IR

P0/P1

P

M
IR

P

M
IR

P1/P2 P2/W

ECE 152 © 2012 Daniel J. Sorin from Roth 47

What about Stall Logic?

Stall = (OldStallLogic) ||
 (F/D.IR.RS1 == D/P0.IR.RD) || (F/D.IR.RS2 == D/P0.IR.RD) ||
 (F/D.IR.RS1 == P0/P1.IR.RD) || (F/D.IR.RS2 == P0/P1.IR.RD) ||
 (F/D.IR.RS1 == P1/P2.IR.RD) || (F/D.IR.RS2 == P1/P2.IR.RD)

Register
File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data
Mem

a

d

O

D

IR

P

M
IR

D/P0

P

M
IR

P0/P1

P

M
IR

P

M
IR

P1/P2 P2/W

ECE 152 © 2012 Daniel J. Sorin from Roth 48

Actually, It’s Somewhat Nastier

•  What does this do? Hint: think about structural hazards
Stall = (OldStallLogic) ||
 (F/D.IR.RD != null && P0/P1.IR.RD != null)

Register
File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data
Mem

a

d

O

D

IR

P

M
IR

D/P0

P

M
IR

P0/P1

P

M
IR

P

M
IR

P1/P2 P2/W

ECE 152 © 2012 Daniel J. Sorin from Roth 49

Honestly, It’s Even Nastier Than That

•  And what about this? (“WAR” hazard”)
Stall = (OldStallLogic) ||
 (F/D.IR.RD == D/P0.IR.RD) || (F/D.IR.RD == P0/

P1.IR.RD)

Register
File

s1 s2 d

IR

A

B

IR

O

B

IR

F/D D/X X/M

Data
Mem

a

d

O

D

IR

P

M
IR

D/P0

P

M
IR

P0/P1

P

M
IR

P

M
IR

P1/P2 P2/W

ECE 152 © 2012 Daniel J. Sorin from Roth 50

Pipeline Diagram with Multiplier

•  This is the situation that slide #48 logic tries to avoid
•  Two instructions trying to write RegFile in same cycle

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W
addi $6,$4,1 F d* d* d* D X M W

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W
addi $6,$1,1 F D X M W
add $5,$6,$10 F D X M W

ECE 152 © 2012 Daniel J. Sorin from Roth 51

More Multiplier Nasties

•  This is the situation that slide #49 logic tries to avoid
•  Mis-ordered writes to the same register
•  Compiler thinks add gets $4 from addi, actually gets it from mul

•  Multi-cycle operations complicate pipeline logic
•  They’re not impossible, but they require more complexity

1 2 3 4 5 6 7 8 9

mul $4,$3,$5 F D P0 P1 P2 P3 W
addi $4,$1,1 F D X M W
…

…

add $10,$4,$6 F D X M W

ECE 152 © 2012 Daniel J. Sorin from Roth 52

Control Hazards

•  Control hazards
•  Must fetch post branch insns before branch outcome is known
•  Default: assume “not-taken” (at fetch, can’t tell if it’s a branch)

PC Insn
Mem

Register
File

s1 s2 d

+
4 <<

2

PC

F/D D/X

X/M

PC

A

B

IR

O

B

IR

PC

IR

S
X

ECE 152 © 2012 Daniel J. Sorin from Roth 53

Branch Recovery

•  Branch recovery: what to do when branch is taken
•  Flush insns currently in F/D and D/X (they’re wrong)

•  Replace with NOPs
+ Haven’t yet written to permanent state (RegFile, DMem)

PC Insn
Mem

Register
File

s1 s2 d

+
4 <<

2

PC

F/D D/X

X/M

nop nop

PC

A

B

IR

O

B

IR

PC

IR

S
X

ECE 152 © 2012 Daniel J. Sorin from Roth 54

Control Hazard Pipeline Diagram

•  Control hazards indicated with c* (or not at all)
•  Penalty for taken branch is 2 cycles

1 2 3 4 5 6 7 8 9

addi $3,$0,1 F D X M W
bnez $3,targ F D X M W
sw $6,4($7) c* c* F D X M W

ECE 152 © 2012 Daniel J. Sorin from Roth 55

Branch Performance

•  Again, measure effect on CPI (clock period is fixed)

•  Back of the envelope calculation
•  Branch: 20%, load: 20%, store: 10%, other: 50%
•  75% of branches are taken (why so many taken?)

•  CPI if no branches = 1
•  CPI with branches = 1 + 0.20*0.75*2 = 1.3

–  Branches cause 30% slowdown
•  How do we reduce this penalty?

ECE 152 © 2012 Daniel J. Sorin from Roth 56

One Option: Fast Branches

•  Fast branch: resolves in Decode stage, not Execute
•  Test must be comparison to zero or equality, no time for ALU
+  New taken branch penalty is only 1
–  Need additional comparison insns (slt) for complex tests
–  Must be able to bypass into decode now, too

PC Insn
Mem

Register
File

s1 s2 d

+
4 <<

2

PC

F/D

D/X X/M
S
X

<>
0

O

B

IR

A

B

IR

PC

IR

S
X

ECE 152 © 2012 Daniel J. Sorin from Roth 57

Another Option: Delayed Branches

•  Delayed branch: don’t flush insn immediately following
•  As if branch takes effect one insn later
•  ISA modification à compiler accounts for this behavior
•  Insert insns independent of branch into branch delay slot(s)

PC Insn
Mem

Register
File

s1 s2 d

+
4 <<

2

PC

F/D D/X

X/M

nop

O

B

IR

PC

A

B

IR

PC

IR

S
X

ECE 152 © 2012 Daniel J. Sorin from Roth 58

Improved Branch Performance?

•  Same parameters
•  Branch: 20%, load: 20%, store: 10%, other: 50%
•  75% of branches are taken

•  Fast branches
•  25% of branches have complex tests that require extra insn
•  CPI = 1 + 0.20*0.75*1(branch) + 0.20*0.25*1(extra insn) = 1.2

•  Delayed branches
•  50% of delay slots can be filled with insns, others need nops
•  CPI = 1 + 0.20*0.75*1(branch) + 0.20*0.50*1(extra insn) = 1.25
–  Bad idea: painful for compiler, gains are minimal
–  E.g., delayed branches in SPARC architecture (Sun computers)

ECE 152 © 2012 Daniel J. Sorin from Roth 59

Dynamic Branch Prediction

•  Dynamic branch prediction: guess outcome
•  Start fetching from guessed address
•  Flush on mis-prediction

PC Insn
Mem

Register
File

S
X

s1 s2 d

+
4

<<
2

TG
PC

IR

TG
PC

A

B

IR

O

B

IR

PC

F/D D/X

X/M

nop nop

BP

<>

ECE 152 © 2012 Daniel J. Sorin from Roth 60

Inside A Branch Predictor

•  Two parts
•  Target buffer: maps PC to taken target
•  Direction predictor: maps PC to taken/not-taken

•  What does it mean to “map PC”?
•  Use some PC bits as index into an array of data items (like Regfile)

PC

Predicted direction (taken/not taken)

Predicted target (if taken)

ECE 152 © 2012 Daniel J. Sorin from Roth 61

More About “Mapping PCs”

•  If array of data has N entries
•  Need log(N) bits to index it

•  Which log(N) bits to choose?
•  Least significant log(N) after the least significant 2, why?
•  LS 2 are always 0 (PCs are aligned on 4 byte boundaries)
•  Least significant change most often → gives best distribution

•  What if two PCs have same pattern in that subset of bits?
•  Called aliasing
•  We get a nonsense target (intended for another PC)
•  That’s OK, it’s just a guess anyway, we can recover if it’s wrong

PC[lgN+2:2]

PC[31:0]

ECE 152 © 2012 Daniel J. Sorin from Roth 62

Updating A Branch Predictor

•  How do targets and directions get into branch predictor?
•  From previous instances of branches
•  Predictor “learns” branch behavior as program is running

•  Branch X was taken last time, probably will be taken next time

•  Branch predictor needs a write port, too (not in my ppt)
•  New prediction written only if old prediction is wrong

ECE 152 © 2012 Daniel J. Sorin from Roth 63

Types of Branch Direction Predictors

•  Predict same as last time we saw this same branch PC
•  1 bit of state per predictor entry (take or don’t take)
•  For what code will this work well? When will it do poorly?

•  Use 2-level saturating counter
•  2 bits of state per predictor entry

•  11, 10 = take, 01, 00 = don’t take
•  Why is this usually better?

•  And every other possible predictor you could think of!
•  ICQ: Think of other ways to predict branch direction

•  Dynamic branch prediction is one of most important
problems in computer architecture

ECE 152 © 2012 Daniel J. Sorin from Roth 64

Branch Prediction Performance

•  Same parameters
•  Branch: 20%, load: 20%, store: 10%, other: 50%
•  75% of branches are taken

•  Dynamic branch prediction
•  Assume branches predicted with 75% accuracy
•  CPI = 1 + 0.20*0.75*2 = 1.15

•  Branch (esp. direction) prediction was a hot research topic
•  Accuracies now 90-95%

ECE 152 © 2012 Daniel J. Sorin from Roth 65

Pipelining And Exceptions

•  Remember exceptions?
–  Pipelining makes them nasty

•  5 instructions in pipeline at once

•  Exception happens, how do you know which instruction caused it?
•  Exceptions propagate along pipeline in latches

•  Two exceptions happen, how do you know which one to take first?
•  One belonging to oldest insn

•  When handling exception, have to flush younger insns
•  Piggy-back on branch mis-prediction machinery to do this

•  Just FYI – we’ll solve this problem in ECE 252

ECE 152 © 2012 Daniel J. Sorin from Roth 66

Pipeline Performance Summary

•  Base CPI is 1, but hazards increase it

•  Remember: nothing magical about a 5 stage pipeline
•  Pentium4 (first batch) had 20 stage pipeline

•  Increasing pipeline depth (#stages)
+  Reduces clock period (that’s why companies do it)
–  But increases CPI
•  Branch mis-prediction penalty becomes longer

•  More stages between fetch and whenever branch computes
•  Non-bypassed data hazard stalls become longer

•  More stages between register read and write
•  At some point, CPI losses offset clock gains, question is when?

ECE 152 © 2012 Daniel J. Sorin from Roth 67

Instruction-Level Parallelism (ILP)

•  Pipelining: a form of instruction-level parallelism (ILP)
•  Parallel execution of insns from a single sequential program

•  There are ways to exploit ILP
•  We’ll discuss this a bit more at end of semester, and then we’ll

really cover it in great depth in ECE 252

•  We’ll also talk a bit about thread-level parallelism (TLP)
and how it’s exploited by multithreaded and multicore
processors

ECE 152 © 2012 Daniel J. Sorin from Roth 68

Summary

•  Principles of pipelining
•  Pipelining a datapath and controller
•  Performance and pipeline diagrams

•  Data hazards
•  Software interlocks and code scheduling
•  Hardware interlocks and stalling
•  Bypassing

•  Control hazards
•  Branch prediction

