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This Unit: Pipelining 

•  Basic Pipelining 
•  Pipeline control 

•  Data Hazards 
•  Software interlocks and scheduling 
•  Hardware interlocks and stalling 
•  Bypassing 

•  Control Hazards 
•  Fast and delayed branches 
•  Branch prediction  

•  Multi-cycle operations 
•  Exceptions 
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Readings 

•  P+H 
•  Chapter 4: Section 4.5-end of Chapter 4 
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Pipelining 

•  Important performance technique 
•  Improves insn throughput (rather than insn latency) 

•  Laundry / SubWay analogy 
•  Basic idea: divide instruction’s “work” into stages 

•  When insn advances from stage 1 to 2 
•  Allow next insn to enter stage 1 
•  Etc. 

•  Key idea: each instruction does same amount of work as 
before 
+  But insns enter and leave at a much faster rate 
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5 Stage Pipelined Datapath 

•  Temporary values (PC,IR,A,B,O,D) re-latched every stage 
•  Why? 5 insns may be in pipeline at once, they share a single PC? 
•  Notice, PC not re-latched after ALU stage (why not?) 
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Pipeline Terminology 

•  Five stage: Fetch, Decode, eXecute, Memory, Writeback 
•  Latches (pipeline registers) named by stages they separate 

•  PC, F/D, D/X, X/M, M/W 
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Aside: Not All Pipelines Have 5 Stages 

•  H&P textbook uses well-known 5-stage pipe != all pipes 
have 5 stages 

•  Some examples 
•  OpenRISC 1200: 4 stages 
•  Sun UltraSPARC T1/T2 (Niagara/Niagara2): 6/8 stages 
•  AMD Athlon: 10 stages 
•  Pentium 4: 20 stages (later 32 stages!) 

•  ICQ: why does Pentium 4 have so many stages? 
•  ICQ: how can you possibly break “work” to do single insn 

into that many stages? 
•  Moral of the story: in ECE 152, we focus on H&P 5-stage 

pipe, but don’t forget that this is just one example 
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Pipeline Example: Cycle 1 

•  3 instructions 
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Pipeline Example: Cycle 2 
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Pipeline Example: Cycle 3 
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Pipeline Example: Cycle 4 

•  3 instructions 
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Pipeline Example: Cycle 5 
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Pipeline Example: Cycle 6 
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Pipeline Example: Cycle 7 
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Pipeline Diagram 

•  Pipeline diagram: shorthand for what we just saw 
•  Across: cycles 
•  Down: insns 
•  Convention: X means lw $4,0($5) finishes execute stage and 

writes into X/M latch at end of cycle 4 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 
lw $4,0($5) F D X M W 
sw $6,4($7) F D X M W 
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What About Pipelined Control? 

•  Should it be like single-cycle control? 
•  But individual insn signals must be staged 

•  How many different control units do we need? 
•  One for each insn in pipeline? 

•  Solution: use simple single-cycle control, but pipeline it 
•  Single controller 
•  Key idea: pass control signals with instruction through pipeline 
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Pipelined Control 
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Pipeline Performance Calculation 

•  Single-cycle 
•  Clock period = 50ns, CPI = 1 
•  Performance = 50ns/insn 

•  Pipelined 
•  Clock period = 12ns  (why not 10ns?) 
•  CPI = 1 (each insn takes 5 cycles, but 1 completes each cycle) 
•  Performance = 12ns/insn 
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Why Does Every Insn Take 5 Cycles? 

•  Why not let add skip M and go straight to W? 
•  It wouldn’t help: peak fetch still only 1 insn per cycle 
•  Structural hazards: not enough resources per stage for 2 insns 
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Pipeline Hazards 

•  Hazard: condition leads to incorrect execution if not fixed 
•  “Fixing” typically increases CPI 
•  Three kinds of hazards 

•  Structural hazards 
•  Two insns trying to use same circuit at same time 

•  E.g., structural hazard on RegFile write port 
•  Fix by proper ISA/pipeline design: 3 rules to follow 

•  Each insn uses every structure exactly once 
•  For at most one cycle 
•  Always at same stage relative to F 

•  Data hazards (next) 
•  Control hazards (a little later) 
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Data Hazards 

•  Let’s forget about branches and control for a while 
•  The sequence of 3 insns we saw earlier executed fine… 

•  But it wasn’t a real program 
•  Real programs have data dependences 

•  They pass values via registers and memory 
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Data Hazards 

•  Would this “program” execute correctly on this pipeline? 
•   Which insns would execute with correct inputs? 
•   add is writing its result into $3 in current cycle  
–   lw read $3 2 cycles ago → got wrong value 
–   addi read $3 1 cycle ago →  got wrong value 
•   sw is reading $3 this cycle → OK (regfile timing: write first half) 
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Memory Data Hazards 

•  What about data hazards through memory? No 
•   lw following sw to same address in next cycle, gets right value 
•   Why? DMem read/write take place in same stage 

•  Data hazards through registers? Yes (previous slide) 
•   Occur because register write is 3 stages after register read 
•   Can only read a register value 3 cycles after writing it  
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Fixing Register Data Hazards 

•  Can only read register value 3 cycles after writing it 

•  One way to enforce this: make sure programs can’t do it 
•  Compiler puts two independent insns between write/read insn 

pair 
•  If they aren’t there already 

•  Independent means: “do not interfere with register in question” 
•  Do not write it: otherwise meaning of program changes 
•  Do not read it: otherwise create new data hazard 

•  Code scheduling: compiler moves around existing insns to do this 
•  If none can be found, must use NOPs 

•  This is called software interlocks 
•  MIPS: Microprocessor w/out Interlocking Pipeline Stages 
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Software Interlock Example 
add $3,$2,$1 
lw $4,0($3) 
sw $7,0($3) 
add $6,$2,$8 
addi $3,$5,4 
 

•  Can any of last 3 insns be scheduled between first two? 
•   sw $7,0($3)? No, creates hazard with add $3,$2,$1 
•   add $6,$2,$8? OK 
•   addi $3,$5,4? No, lw would read $3 from it 
•   Still need one more insn, use nop 

add $3,$2,$1 
add $6,$2,$8 
nop 
lw $4,0($3) 
sw $7,0($3) 
addi $3,$5,4 



ECE 152 © 2012 Daniel J. Sorin from Roth 26 

Software Interlock Performance 

•  Software interlocks 
•  20% of insns require insertion of 1 nop 
•  5% of insns require insertion of 2 nops 

•  CPI is still 1 technically 
•  But now there are more insns 
•  #insns = 1 + 0.20*1 + 0.05*2 = 1.3 
–  30% more insns (30% slowdown) due to data hazards 
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Hardware Interlocks 

•  Problem with software interlocks? Not compatible 
•  Where does 3 in “read register 3 cycles after writing” come from? 

•  From structure (depth) of pipeline 
•  What if next MIPS version uses a 7 stage pipeline? 

•  Programs compiled assuming 5 stage pipeline will break 

•  A better (more compatible) way: hardware interlocks 
•  Processor detects data hazards and fixes them 
•  Two aspects to this 

•  Detecting hazards 
•  Fixing hazards 



ECE 152 © 2012 Daniel J. Sorin from Roth 28 

Detecting Data Hazards 

•  Compare F/D insn input register names with output 
register names of older insns in pipeline 
Hazard = 

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) || 
(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD) 
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Fixing Data Hazards 

•  Prevent F/D insn from reading (advancing) this cycle 
•  Write nop into D/X.IR (effectively, insert nop in hardware) 
•  Also clear the datapath control signals 
•  Disable F/D latch and PC write enables (why?) 

•  Re-evaluate situation next cycle 
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Hardware Interlock Example: cycle 1 

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) || 
(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD) 

= 1 
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Hardware Interlock Example: cycle 2 

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) || 
(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD) 

= 1 
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Hardware Interlock Example: cycle 3 

(F/D.IR.RS1 == D/X.IR.RD) || (F/D.IR.RS2 == D/X.IR.RD) || 
(F/D.IR.RS1 == X/M.IR.RD) || (F/D.IR.RS2 == X/M.IR.RD) 

= 0 
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Pipeline Control Terminology 

•  Hardware interlock maneuver is called stall or bubble 

•  Mechanism is called stall logic 
•  Part of more general pipeline control mechanism 

•  Controls advancement of insns through pipeline 

•  Distinguished from pipelined datapath control 
•  Controls datapath at each stage 
•  Pipeline control controls advancement of datapath control 
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Pipeline Diagram with Data Hazards 

•  Data hazard stall indicated with d* 
•  Stall propagates to younger insns 

•  This is not OK (why?) 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 
lw $4,0($3) F d* d* D X M W 
sw $6,4($7) F D X M W 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 
lw $4,0($3) F d* d* D X M W 
sw $6,4($7) F D X M W 
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Hardware Interlock Performance 

•  Hardware interlocks: same as software interlocks 
•  20% of insns require 1 cycle stall (i.e., insertion of 1 nop) 
•  5% of insns require 2 cycle stall (i.e., insertion of 2 nops) 

•  CPI = 1 + 0.20*1 + 0.05*2 = 1.3 
•  So, either CPI stays at 1 and #insns increases 30% (software) 
•  Or, #insns stays at 1 (relative) and CPI increases 30% (hardware) 
•  Same difference 

•  Anyway, we can do better 
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Observe 

•  This situation seems broken 
•   lw $4,0($3) has already read $3 from regfile 
•   add $3,$2,$1 hasn’t yet written $3 to regfile 

•  But fundamentally, everything is still OK 
•   lw $4,0($3) hasn’t actually used $3 yet 
•   add $3,$2,$1 has already computed $3 
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Bypassing 

•  Bypassing 
•  Reading a value from an intermediate (µarchitectural) source 
•  Not waiting until it is available from primary source (RegFile) 
•  Here, we are bypassing the register file 
•  Also called forwarding 

Register 
File 

S 
X 

s1 s2 d 

 
 
 
 
 
 
 
 
IR 

A 
 
 
B 
 
 
 
 
IR 

 
 
O 
 
 
B 
 
 
IR 

F/D D/X X/M 

add $3,$2,$1 lw $4,0($3) 

Data 
Mem 

a 

d 

O 
 
D 
 
 
 
 
 
IR 

M/W 



ECE 152 © 2012 Daniel J. Sorin from Roth 38 

WX Bypassing 

•  What about this combination? 
•  Add another bypass path and MUX input 
•  First one was an MX bypass 
•  This one is a WX bypass 
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ALUinB Bypassing 

•  Can also bypass to ALU input B 
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WM Bypassing? 

•  Does WM bypassing make sense? 
•  Not to the address input (why not?) 
•  But to the store data input, yes 
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Bypass Logic 

•  Each MUX has its own, here it is for MUX ALUinA 
(D/X.IR.RS1 == X/M.IR.RD) à mux select = 0 
(D/X.IR.RS1 == M/W.IR.RD) à mux select = 1 
Else à mux select = 2 
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Bypass and Stall Logic 

•  Two separate things 
•  Stall logic controls pipeline registers 
•  Bypass logic controls muxes 

•  But complementary 
•  For a given data hazard: if can’t bypass, must stall 

•  Slide #41 shows full bypassing: all bypasses possible 
•  Is stall logic still necessary? 
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Yes, Load Output to ALU Input 

Stall = (D/X.IR.OP == LOAD) && 
          ((F/D.IR.RS1 == D/X.IR.RD) ||  
           ((F/D.IR.RS2 == D/X.IR.RD) && (F/D.IR.OP != STORE))  
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Pipeline Diagram With Bypassing 

•  Sometimes you will see it like this 
•  Denotes that stall logic implemented at X stage, rather than D 
•  Equivalent, doesn’t matter when you stall as long as you do 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 
lw $4,0($3) F D X M W 
addi $6,$4,1 F d* D X M W 

1 2 3 4 5 6 7 8 9 

add $3,$2,$1 F D X M W 
lw $4,0($3) F D X M W 
addi $6,$4,1 F D d* X M W 
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Pipelining and Multi-Cycle Operations 

•  What if you wanted to add a multi-cycle operation? 
•  E.g., 4-cycle multiply 
•  P/W: separate output latch connects to W stage 
•  Controlled by pipeline control and multiplier FSM 
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A Pipelined Multiplier 

•  Multiplier itself is often pipelined: what does this mean? 
•  Product/multiplicand register/ALUs/latches replicated 
•  Can start different multiply operations in consecutive cycles 
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What about Stall Logic? 

Stall = (OldStallLogic) || 
     (F/D.IR.RS1 == D/P0.IR.RD) || (F/D.IR.RS2 == D/P0.IR.RD) || 
     (F/D.IR.RS1 == P0/P1.IR.RD) || (F/D.IR.RS2 == P0/P1.IR.RD) || 
     (F/D.IR.RS1 == P1/P2.IR.RD) || (F/D.IR.RS2 == P1/P2.IR.RD) 
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Actually, It’s Somewhat Nastier 

•  What does this do?  Hint: think about structural hazards 
Stall = (OldStallLogic) ||  
   (F/D.IR.RD != null && P0/P1.IR.RD != null)  
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Honestly, It’s Even Nastier Than That 

•  And what about this?  (“WAR” hazard”) 
Stall = (OldStallLogic) ||  
   (F/D.IR.RD == D/P0.IR.RD) || (F/D.IR.RD == P0/

P1.IR.RD)  
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Pipeline Diagram with Multiplier 

•  This is the situation that slide #48 logic tries to avoid 
•  Two instructions trying to write RegFile in same cycle 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 
addi $6,$4,1 F d* d* d* D X M W

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 
addi $6,$1,1 F D X M W 
add $5,$6,$10 F D X M W 
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More Multiplier Nasties 

•  This is the situation that slide #49 logic tries to avoid 
•  Mis-ordered writes to the same register 
•  Compiler thinks add gets $4 from addi, actually gets it from mul 

•  Multi-cycle operations complicate pipeline logic 
•  They’re not impossible, but they require more complexity 

1 2 3 4 5 6 7 8 9 

mul $4,$3,$5 F D P0 P1 P2 P3 W 
addi $4,$1,1 F D X M W 
… 

… 

add $10,$4,$6 F D X M W
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Control Hazards 

•  Control hazards 
•  Must fetch post branch insns before branch outcome is known 
•  Default: assume “not-taken” (at fetch, can’t tell if it’s a branch) 

PC Insn 
Mem 

Register 
File 

s1 s2 d 

+ 
4 << 

2 

PC 

F/D D/X 

X/M 

PC 
 
 
 
A 
 
 
B 
 
IR 

 
 
O 
 
B 
 
IR 

PC 
 
 
 
 
 
 
 
 
IR 

S 
X 



ECE 152 © 2012 Daniel J. Sorin from Roth 53 

Branch Recovery  

•  Branch recovery: what to do when branch is taken 
•  Flush insns currently in F/D and D/X (they’re wrong) 

•  Replace with NOPs 
+ Haven’t yet written to permanent state (RegFile, DMem) 
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Control Hazard Pipeline Diagram 

•  Control hazards indicated with c* (or not at all) 
•  Penalty for taken branch is 2 cycles 

1 2 3 4 5 6 7 8 9 

addi $3,$0,1 F D X M W 
bnez $3,targ F D X M W 
sw $6,4($7) c* c* F D X M W 
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Branch Performance 

•  Again, measure effect on CPI (clock period is fixed) 

•  Back of the envelope calculation 
•  Branch: 20%, load: 20%, store: 10%, other: 50% 
•  75% of branches are taken (why so many taken?) 

•  CPI if no branches = 1 
•  CPI with branches = 1 + 0.20*0.75*2 = 1.3 

–  Branches cause 30% slowdown 
•  How do we reduce this penalty? 
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One Option: Fast Branches 

•  Fast branch: resolves in Decode stage, not Execute 
•  Test must be comparison to zero or equality, no time for ALU 
+  New taken branch penalty is only 1 
–  Need additional comparison insns (slt) for complex tests 
–  Must be able to bypass into decode now, too 

PC Insn 
Mem 

Register 
File 

s1 s2 d 

+ 
4 << 

2 

PC 

F/D 

D/X X/M 
S 
X 

<> 
0  

 
O 
 
B 
 
IR 

A 
 
 
B 
 
 
IR 

PC 
 
 
 
 
 
 
 
 
IR 

S 
X 



ECE 152 © 2012 Daniel J. Sorin from Roth 57 

Another Option: Delayed Branches 

•  Delayed branch: don’t flush insn immediately following 
•  As if branch takes effect one insn later 
•  ISA modification à compiler accounts for this behavior 
•  Insert insns independent of branch into branch delay slot(s) 
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Improved Branch Performance? 

•  Same parameters 
•  Branch: 20%, load: 20%, store: 10%, other: 50% 
•  75% of branches are taken 

•  Fast branches 
•  25% of branches have complex tests that require extra insn 
•  CPI = 1 + 0.20*0.75*1(branch) + 0.20*0.25*1(extra insn) = 1.2 

•  Delayed branches 
•  50% of delay slots can be filled with insns, others need nops 
•  CPI = 1 + 0.20*0.75*1(branch) + 0.20*0.50*1(extra insn) = 1.25 
–  Bad idea: painful for compiler, gains are minimal 
–  E.g., delayed branches in SPARC architecture (Sun computers) 
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Dynamic Branch Prediction 

•  Dynamic branch prediction: guess outcome 
•  Start fetching from guessed address 
•  Flush on mis-prediction 
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Inside A Branch Predictor 

•  Two parts 
•  Target buffer: maps PC to taken target 
•  Direction predictor: maps PC to taken/not-taken 

•  What does it mean to “map PC”? 
•  Use some PC bits as index into an array of data items (like Regfile) 

PC 

Predicted direction (taken/not taken) 

Predicted target (if taken) 
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More About “Mapping PCs” 

•  If array of data has N entries 
•  Need log(N) bits to index it 

•  Which log(N) bits to choose? 
•  Least significant log(N) after the least significant 2, why? 
•  LS 2 are always 0 (PCs are aligned on 4 byte boundaries) 
•  Least significant change most often → gives best distribution  

•  What if two PCs have same pattern in that subset of bits? 
•  Called aliasing 
•  We get a nonsense target (intended for another PC) 
•  That’s OK, it’s just a guess anyway, we can recover if it’s wrong 

PC[lgN+2:2] 

PC[31:0] 
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Updating A Branch Predictor 

•  How do targets and directions get into branch predictor? 
•  From previous instances of branches 
•  Predictor “learns” branch behavior as program is running 

•  Branch X was taken last time, probably will be taken next time 

•  Branch predictor needs a write port, too (not in my ppt) 
•  New prediction written only if old prediction is wrong 
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Types of Branch Direction Predictors 

•  Predict same as last time we saw this same branch PC 
•  1 bit of state per predictor entry (take or don’t take) 
•  For what code will this work well?  When will it do poorly? 

•  Use 2-level saturating counter 
•  2 bits of state per predictor entry 

•  11, 10 = take, 01, 00 = don’t take 
•  Why is this usually better? 

•  And every other possible predictor you could think of! 
•  ICQ: Think of other ways to predict branch direction 

•  Dynamic branch prediction is one of most important 
problems in computer architecture 
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Branch Prediction Performance 

•  Same parameters 
•  Branch: 20%, load: 20%, store: 10%, other: 50% 
•  75% of branches are taken 

•  Dynamic branch prediction 
•  Assume branches predicted with 75% accuracy 
•  CPI = 1 + 0.20*0.75*2 = 1.15 

•  Branch (esp. direction) prediction was a hot research topic 
•  Accuracies now 90-95% 
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Pipelining And Exceptions 

•  Remember exceptions? 
–  Pipelining makes them nasty 

•  5 instructions in pipeline at once 

•  Exception happens, how do you know which instruction caused it? 
•  Exceptions propagate along pipeline in latches 

•  Two exceptions happen, how do you know which one to take first? 
•  One belonging to oldest insn 

•  When handling exception, have to flush younger insns 
•  Piggy-back on branch mis-prediction machinery to do this 

•  Just FYI – we’ll solve this problem in ECE 252 
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Pipeline Performance Summary 

•  Base CPI is 1, but hazards increase it 

•  Remember: nothing magical about a 5 stage pipeline 
•  Pentium4 (first batch) had 20 stage pipeline 

•  Increasing pipeline depth (#stages)  
+  Reduces clock period (that’s why companies do it) 
–  But increases CPI 
•  Branch mis-prediction penalty becomes longer 

•  More stages between fetch and whenever branch computes 
•  Non-bypassed data hazard stalls become longer 

•  More stages between register read and write 
•  At some point, CPI losses offset clock gains, question is when? 
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Instruction-Level Parallelism (ILP) 

•  Pipelining: a form of instruction-level parallelism (ILP) 
•  Parallel execution of insns from a single sequential program 

•  There are ways to exploit ILP 
•  We’ll discuss this a bit more at end of semester, and then we’ll 

really cover it in great depth in ECE 252 

•  We’ll also talk a bit about thread-level parallelism (TLP) 
and how it’s exploited by multithreaded and multicore 
processors 
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Summary 

•  Principles of pipelining 
•  Pipelining a datapath and controller 
•  Performance and pipeline diagrams 

•  Data hazards 
•  Software interlocks and code scheduling 
•  Hardware interlocks and stalling 
•  Bypassing 

•  Control hazards 
•  Branch prediction 

 


