
ECE 250 / CS 250
Computer Architecture

“C to Binary: Memory & Data Representations”

Benjamin Lee

Slides based on those from Alvin Lebeck, Daniel Sorin, Andrew

Hilton, Amir Roth, Gershon Kedem

2
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Administrivia

•  What did you learn last week?
§  Pointers are hard!

•  Today
§  More pointers / memory
§  Data representations

•  Resources (from course web page)
§  Video snippets by Prof Drew Hilton in ECE

o Videos don’t work with Firefox (use Safari or Chrome)
§  MIT Open Course

CS/ECE 250

3
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

A Program’s View of Memory

•  What is Memory?
§  A large linear array of bits

•  Find things by indexing into array
§  memory address (unsigned integer)
§  read to and write from address

•  Processor issues commands to read/write
specific locations
§  Read from memory location 0x1400
§  Write 0xff to memory location 0x8675309

•  Array of …
§  Bytes? 32-bit ints? 64-bit ints?

1
2
3
4

•

2n-1

•
•

0 00110110
00001100

Memory
Address Memory

2n-1-4

3

4
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Memory Partitions

•  Text for instructions
§  add dest, src1, src2
§  mem[dest] = mem[src1] + mem[src2]

•  Data
§  static (constants, global variables)
§  dynamic (heap, new allocated)
§  grows up

•  Stack
§  local variables
§  grows down

•  Variables are names for memory
locations
§  int x;

4

Stack

Data

Text
Reserved 0

2n-1

Typical
Address
Space

Heap

5
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

A Simple Program’s Memory Layout

...
int result; // global var

main()

{

 int x;

 ...

 result = x + result;
 ...

}

mem[0x208] = mem[0x400] + mem[0x208]

5

Stack

Text

Data

Reserved 0

2n-1

Heap

x 0x400 5

result 0x208 3

6
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Pointers

•  “address of” operator &
§  don’t confuse with bitwise AND operator (later)

Given
 int x; int* p; // p points to an int
 p = &x;

Then
 *p = 2; and x = 2; produce the same result

 Note: p is a pointer, *p is an int

•  What happens for p = 2?
•  On 32-bit machine, p is 32-bits

0x26cf0

x 0x26cf0

p 0x26d00
...

7
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

C Memory Allocation

•  How do you allocate an object in Java?
§  What do you do when you are finished with an object?
§  Garbage collection
§  Counts references to objects, when == 0 can reuse

•  C does not have garbage collection
§  Must explicitly manage memory

•  void * malloc(nbytes)
§  Obtain storage for your data (like new in Java)
§  Use sizeof(type), which returns bytes needed for type
§  Cast return value into appropriate type(int) malloc(sizeof(int));

•  free(ptr)
§  Return the storage when you are finished (no Java equivalent)
§  ptr must be a value previously returned from malloc

CS/ECE 250

8
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Memory Manager (Heap Manager)

•  Malloc & free are library
routines that handle memory
management for the heap
(allocation / deallocation)

•  Java has garbage collection
•  C must use free

§  else memory leak -> no more
available memory

•  Write a Heap Manager in
Compsci 310

CS/ECE 250

Available Memory

Allocated Memory
(part of this is
 data structures
 for managing
 memory

Memory

Text

Stack

9
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Linked List (two nodes)

#include <stdio.h>
#include <stdlib.h>
struct list_ent {

 int id;
 struct list_ent *next;

};
main()
{
 struct list_ent *head, *ptr;
 head = (struct list_ent *)

 malloc(sizeof(struct list_ent));
 head->id = 66;
 head->next = NULL;

 ptr = (struct list_ent *)

 malloc(sizeof(struct list_ent));
 ptr->id = 23;
 ptr->next = NULL;

 head->next = ptr;

 printf("head id: %d, next id: %d\n",

 head->id,head->next->id);

 ptr = head;
 head = ptr->next;

 printf("head id: %d, next id: %d\n",

 head->id, ptr->id);
 free(head);
 free(ptr);
}

CS/ECE 250

10
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Back to C: Command Line Arguments

•  Parameters to main (int argc, char *argv[])
§  argc = number of arguments (0 to argc-1)
§  argv is array of strings (i.e., array of character pointers)
§  argv[0] = program name

!
main(int argc, char *argv[]) {!
 int i;!
 printf("%d arguments\n", argc);!
 for (i=0; i< argc; i++)!
 printf("argument %d: %s\n", i, argv[i]);
}!

CS/ECE 250

11
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

C Summary

•  C Language is lower level than Java
•  Many things are similar

§  Data types
§  Control flow

•  Some important differences
§  No objects!
§  Explicit memory allocation/deallocation

•  Create and compile a program
•  Intro to Memory & Pointers
•  Up Next:

§  So what are those chars, ints, floats?

CS/ECE 250

12
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Representations: Thought Experiment

•  Do this at home with friends…
•  Using only the three symbols @ # $ specify a

representation for the following:
§  All integers from 0 to 10
§  Commands to 1) walk, 2) turn, 3) sit, 4) raise right arm, 5) raise left

arm

•  Using only your representation write down series of
commands & integers (if appropriate, e.g., raise left
arm-3, turn-2)
§  Must have at least 5 commands

•  Give someone your representations from above and the series
of commands, see if they can execute the commands.

13
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Data Representation

•  Compute two hundred twenty nine minus one hundred
sixty seven divided by twelve

•  Compute XIX - VII + IV

•  We reason about numbers many different ways

•  Computers store variables (data)
§  Typically numbers, characters or combination of these

•  Computers have instructions (operations like add)

•  The key is to use a representation that is “efficient”

14
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Number Systems

•  A number is a mathematical concept
§  10

•  Many ways to represent a number
§  10, ten, 2x5, X, 100/10, ||||| |||||

•  Symbols are used to create a representation

•  Which representation is best for counting?
•  Which representation is best for addition and subtraction?
•  Which representation is best for multiplication and

division?

15
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

More Number Systems

•  Humans use decimal (base 10)
§  digits 0-9 are composed to make larger numbers

 11 = 1*101 + 1*100

§  weighted positional notation

•  Addition and Subtraction are straightforward
§  carry and borrow (today called regrouping)

•  Multiplication and Division less so
§  can use logarithms and then do adds and subtracts

•  The key is to use a representation that is “efficient”

16
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Number Systems for Computers

•  Today’s computers are built from transistors
•  Transistor is either off or on
•  Need to represent numbers using only off and on

§  two symbols

•  off and on can represent the digits 0 and 1
§  BIT is Binary Digit
§  A bit can have a value of 0 or 1

•  Everything in a computer is represented using Bits!

17
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Representing High Level Things in Binary

•  Computers represent everything using binary (0 or 1)
•  Instructions are specified using binary

•  Instructions must be able to describe
§  Operation types (add, subtract, shift, etc.)
§  Data objects (integers, decimals, characters, etc.)
§  Memory locations

•  Example:
int x, y; // Where are x and y? How to represent an int?
bool decision; // How do we represent a bool? Where is it?
y = x + 7; // How do we specify “add”? How to represent 7?
decision=(y>18); // Etc.

18
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Representing Operation Types

•  How do we tell computer to add? Shift? Read from
memory? Etc.

•  Arbitrarily! J

•  Each Instruction Set Architecture (ISA) has its own binary
encodings for each operation type

•  E.g., in MIPS:
§  Integer add is: 00000 010000
§  Read from memory (load) is: 010011
§  Etc.

•  More on Instruction Sets later this semester

19
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Representing Data Types

•  How do we specify an integer? A character? A floating
point number? A bool? Etc.

•  Same as before: binary!

•  Key Idea: the same 32 bits might mean one thing if
interpreted as an integer but another thing if interpreted
as a floating point number, and yet another if interpreted
as an instruction, etc.

20
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Basic Data Types
Bit (bool): 0, 1

Bit String: sequence of bits of a particular length
 4 bits is a nibble
 8 bits is a byte
 16 bits is a half-word
 32 bits is a word
 64 bits is a double-word
 128 bits is a quad-word

Integers (int, long):
 “2's Complement” (32-bit or 64-bit representation)

Floating Point (float, double):
 Single Precision (32-bit representation)
 Double Precision (64-bit representation)
 Extended (Quad) Precision (128-bit representation)

Character (char):
 ASCII 7-bit code

21
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Binary, Octal and Hexadecimal numbers

•  Computers can input and output decimal numbers but
they convert them to internal binary representation.

•  Binary is good for computers, hard for us to read
§  Use numbers easily computed from binary

•  Binary numbers use only two different digits: {0,1}
§  Example: 120010 = 00000100101100002

•  Octal numbers use 8 digits: {0 - 7}
§  Example: 120010 = 022608

•  Hexadecimal numbers use 16 digits: {0-9, A-F}
§  Example: 120010 = 04B016 = 0x04B0
§  does not distinguish between upper and lower case

22
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Issues for Binary Representation of Numbers

•  There are many ways to represent numbers in binary
§  Binary representations are encodings à many encodings possible
§  What are the issues that we must address?

•  Issue #1: Complexity of arithmetic operations
•  Issue #2: Negative numbers
•  Issue #3: Maximum representable number

•  Choose representation that makes these issues easy for
machine, even if it’s not easy for humans

23
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Unsigned Binary Numbers

•  Weighted positional notation using base 2

 1110 = 1*23 + 1*21 + 1*20 = 10112

 1110 = 8 + 2 + 1

•  Only positive numbers
§  unsigned int data type

•  What is largest number, given 4 bits?

CS/ECE 250

24
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Example:
1100 0010 0110 0111 0100 1111 1101 01012
 C 2 6 7 4 F D 5 16

0 0000 8 1000
1 0001 9 1001
2 0010 A 1010
3 0011 B 1011
4 0100 C 1100
5 0101 D 1101
6 0110 E 1110
7 0111 F 1111

Hex Bin Bin Hex

Binary and Hex

•  To convert to and
from hex: group
binary digits in groups
of four and convert
according to table

•  24 = 16

25
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Sign Magnitude

•  Use leftmost bit for + (0) or – (1):
•  6-bit example (1 sign bit + 5 magnitude bits):
•  +17 = 010001
•  -17 = 110001
•  Pros:

§  Conceptually simple
§  Easy to convert

•  Cons:
§  Harder to compute (add, subtract, etc.) with
§  Positive and negative 0: 000000 and 100000

CS/ECE 250

26
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

1’s Complement Representation for Integers

•  Use largest positive binary numbers
to represent negative numbers

•  To negate a number,
 invert (“not”) each bit:
 0 à 1
 1 à 0

•  Cons:
§  two 0s
§  hard to compute with

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 -7
1001 -6
1010 -5
1011 -4
1100 -3
1101 -2
1110 -1
1111 -0

27
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

2’s Complement Integers

•  Use large positives to represent
negatives

•  (-x) = 2n - x

•  This is 1’s complement + 1
•  (-x) = 2n - 1 - x + 1

•  Invert bits and add 1

6-bit examples:
0101102 = 2210 ; 1010102 = -2210
110 = 0000012; -110 = 1111112

010 = 0000002; -010 = 0000002 à good!

0000 0
0001 1
0010 2
0011 3
0100 4
0101 5
0110 6
0111 7
1000 -8
1001 -7
1010 -6
1011 -5
1100 -4
1101 -3
1110 -2
1111 -1

28
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Pros and Cons of 2’s Complement

•  Advantages:
§  Only one representation for 0 (unlike 1’s comp): 0 = 000000
§  Addition algorithm is much easier than with sign and magnitude

o  Independent of sign bits

•  Disadvantage:
§  One more negative number than positive
§  Example: 6-bit 2’s complement number
 1000002 = -3210; but 3210 could not be represented

All modern computers use 2’s complement for integers

29
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

•  Most computers today support 32-bit (int) or 64-bit integers
§  Specify 64-bit using gcc C compiler with long long type

•  To extend precision, use sign bit extension
§  Integer precision is number of bits used to represent a number

Examples

1410 = 0011102 in 6-bit representation.

1410 = 0000000011102 in 12-bit representation

-1410 = 1100102 in 6-bit representation

-1410 = 1111111100102 in 12-bit representation.

2’s Complement Precision Extension

30
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Binary Math : Addition

•  Suppose we want to add two 8-bit numbers:

 00011101

 + 00101011

•  How do we do this?

CS/ECE 250

31
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Binary Math : Addition

•  Suppose we want to add two 8-bit numbers:

 00011101 695

 + 00101011 + 232

•  How do we do this?
§  Let’s revisit decimal addition
§  Think about the process as we do it

CS/ECE 250

32
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Binary Math : Addition

•  Suppose we want to add two 8-bit numbers:

 00011101 695

 + 00101011 + 232
 7

•  First add one’s digit 5+2 = 7

CS/ECE 250

33
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Binary Math : Addition

•  Suppose we want to add two 8-bit numbers:
 1
 00011101 695

 + 00101011 + 232
 27

•  First add one’s digit 5+2 = 7
•  Next add ten’s digit 9+3 = 12 (2 carry a 1)

CS/ECE 250

34
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Binary Math : Addition

•  Suppose we want to add two 8-bit numbers:

 00011101 695

 + 00101011 + 232
 927

•  First add one’s digit 5+2 = 7
•  Next add ten’s digit 9+3 = 12 (2 carry a 1)
•  Last add hundred’s digit 1+6+2 = 9

CS/ECE 250

35
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Binary Math : Addition

•  Suppose we want to add two 8-bit numbers:

 00011101

 + 00101011

•  Back to the binary:
§  First add 1’s digit 1+1 = …?

CS/ECE 250

36
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Binary Math : Addition

•  Suppose we want to add two 8-bit numbers:
 1
 00011101

 + 00101011
 0

•  Back to the binary:
§  First add 1’s digit 1+1 = 2 (0 carry a 1)

CS/ECE 250

37
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Binary Math : Addition

•  Suppose we want to add two 8-bit numbers:
 11
 00011101

 + 00101011
 00

•  Back to the binary:
§  First add 1’s digit 1+1 = 2 (0 carry a 1)
§  Then 2’s digit: 1+0+1 =2 (0 carry a 1)

•  You all finish it out….

CS/ECE 250

38
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Binary Math : Addition

•  Suppose we want to add two 8-bit numbers:
 111111
 00011101 = 29

 + 00101011 = 43
 01001000 = 72

•  Can check our work in decimal

CS/ECE 250

39
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Binary Math : Addition

•  What about this one:

 01011101

 + 01101011

CS/ECE 250

40
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Binary Math : Addition

•  What about this one:
 1111111
 01011101 = 93

 + 01101011 = 107
 11001000 = -56

•  But… that can’t be right?
§  What do you expect for the answer?
§  What is your expected answer in 8-bit signed 2’s complement?

CS/ECE 250

41
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Software Implication! Integer Overflow

•  Answer should be 200
§  Not representable in 8-bit signed representation
§  No right answer

•  Call Integer Overflow
•  Real problem in programs

CS/ECE 250

42
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Subtraction

•  2’s complement makes subtraction easy:
§  Remember: A - B = A + (-B)
§  And: -B = ~B + 1
 é that means flip bits (“not”)
§  So we just flip the bits and start with CI = 1
§  Later: No new circuits to subtract (re-use add)

 1

 0110101 -> 0110101

- 1010010 + 0101101

CS/ECE 250

43
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

What About Non-integer Numbers?

•  There are infinitely many real numbers between two
integers

•  Many important numbers are real
§  Speed of light ~= 3x108
§  Pi = 3.1415…

•  Fixed number of bits limits range of integers
§  Can’t represent some important numbers

•  Humans use Scientific Notation
§  1.3x104

44
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Option 1: Fixed Point Representation

•  Decimal fixed point (6 digits)
§  102832
§  1028.32
§  Same digits, different decimal point
§  Right of decimal point weight is 1/10-i (i starts at 1 -> 1/10, 1/100, …)

•  Binary Point (6 bits)
§  001010
§  0010.10
§  Right of binary point weight is 1/2-i (i starts at 1 -> ½, ¼, 1/8,…)

•  General Fixed Point representation specifies
§  Total number of bits (i.e., width)
§  Fixed point position (e.g., fixed<6,0> fixed<6,2>)

•  It’s all just bits…what decimal values are above binary numbers?

CS/ECE 250

45
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Fixed Point Representation

•  Pros:
§  Addition/subtraction just like integers (“free”)

•  Cons:
§  Mul/div require renormalizing (divide by 64K)
§  Range limited (no good rep for large + small)

•  Can be good in specific situations

CS/ECE 250

46
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Can we do better?

•  Think about scientific notation for a second:
•  For example:

6.82 * 1023

•  Real number, but comprised of ints:
§  6 generally only 1 digit here
§  82 any number here
§  10 always 10 (base we work in)
§  23 can be positive or negative

•  Can we do something like this in binary?

CS/ECE 250

47
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Option 2: Floating Point Representation

•  How about:
§  +/- X.YYYYYY * 2+/-N

•  Big numbers: large positive N
•  Small numbers (<1): negative N
•  Numbers near 0: small N

•  This is “floating point” : most common way

CS/ECE 250

