ECE 250 / CS 250 Computer Architecture

"C to Binary: Memory & Data Representations"

Benjamin Lee

Slides based on those from Alvin Lebeck, Daniel Sorin, Andrew Hilton, Amir Roth, Gershon Kedem

Administrivia

- What did you learn last week?
 - Pointers are hard!
- Today
 - More pointers / memory
 - Data representations
- Resources (from course web page)
 - Video snippets by Prof Drew Hilton in ECE
 - $_{\odot}$ Videos don't work with Firefox (use Safari or Chrome)
 - MIT Open Course

A Program's View of Memory

- What is Memory?
 - A large linear array of bits
- Find things by indexing into array
 - memory address (unsigned integer)
 - read to and write from address
- Processor issues commands to read/write specific locations
 - Read from memory location 0x1400
 - Write 0xff to memory location 0x8675309
- Array of ...
 - Bytes? 32-bit ints? 64-bit ints?

Memory Partitions

- Text for instructions
 - add dest, src1, src2
 - mem[dest] = mem[src1] + mem[src2]
- Data
 - static (constants, global variables)
 - dynamic (heap, new allocated)
 - grows up
- Stack
 - local variables
 - grows down
- Variables are names for memory locations
 - int x;

© 2013 Alvin R. Lebeck from Hilton, Roth, Sorin

A Simple Program's Memory Layout

0

Pointers

- "address of" operator &
 don't confuse with bitwise AND operator (later)
 Given
 int x; int* p; // p points to an int
 p = &x;
 Then
 *p = 2; and x = 2; produce the same result
 Note: p is a pointer, *p is an int
- What happens for p = 2?
- On 32-bit machine, p is 32-bits

© 2013 Alvin R. Lebeck from Hilton, Roth, Sorin

CS/ECE 250

C Memory Allocation

• How do you allocate an object in Java?

- What do you do when you are finished with an object?
- Garbage collection
- Counts references to objects, when == 0 can reuse

• C does not have garbage collection

- Must explicitly manage memory
- void * malloc(nbytes)
 - Obtain storage for your data (like new in Java)
 - Use *sizeof(type)*, which returns bytes needed for type
 - Cast return value into appropriate type(int) malloc(sizeof(int));
- free(ptr)
 - Return the storage when you are finished (no Java equivalent)
 - ptr must be a value previously returned from malloc

Memory Manager (Heap Manager)

- Malloc & free are library routines that handle memory management for the heap (allocation / deallocation)
- Java has garbage collection
- C must use free
 - else memory leak -> no more available memory
- Write a Heap Manager in Compsci 310

© 2013 Alvin R. Lebeck from Hilton, Roth, Sorin

Linked List (two nodes)

```
#include <stdio.h>
   #include <stdlib.h>
   struct list_ent {
             int id;
             struct list ent *next;
   };
   main()
   {
    struct list_ent *head, *ptr;
    head = (struct list ent *)
              malloc(sizeof(struct list ent));
    head->id = 66;
    head->next = NULL;
    ptr = (struct list_ent *)
              malloc(sizeof(struct list_ent));
    ptr > id = 23;
    ptr > next = NULL;
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin
```

head->next = ptr;

ptr = head; head = ptr->next;

Back to C: Command Line Arguments

- Parameters to main (int argc, char *argv[])
 - argc = number of arguments (0 to argc-1)
 - argv is array of strings (i.e., array of character pointers)
 - argv[0] = program name

```
main(int argc, char *argv[]) {
    int i;
    printf("%d arguments\n", argc);
    for (i=0; i< argc; i++)
    printf("argument %d: %s\n", i, argv[i]);
}</pre>
```

C Summary

- C Language is lower level than Java
- Many things are similar
 - Data types
 - Control flow
- Some important differences
 - No objects!
 - Explicit memory allocation/deallocation
- Create and compile a program
- Intro to Memory & Pointers
- Up Next:
 - So what are those chars, ints, floats?

Representations: Thought Experiment

- Do this at home with friends...
- Using only the three symbols @ # \$ specify a representation for the following:
 - All integers from 0 to 10
 - Commands to 1) walk, 2) turn, 3) sit, 4) raise right arm, 5) raise left arm
- Using only your representation write down series of commands & integers (if appropriate, e.g., raise left arm-3, turn-2)
 - Must have at least 5 commands
- Give someone your representations from above and the series of commands, see if they can execute the commands.

Data Representation

- Compute two hundred twenty nine minus one hundred sixty seven divided by twelve
- Compute XIX VII + IV
- We reason about numbers many different ways
- Computers store variables (data)
 - Typically numbers, characters or combination of these
- Computers have instructions (operations like add)
- The key is to use a representation that is "efficient"

Number Systems

• A number is a mathematical concept

• 10

- Many ways to represent a number
 - 10, ten, 2x5, X, 100/10, |||| ||||
- Symbols are used to create a representation
- Which representation is best for counting?
- Which representation is best for addition and subtraction?
- Which representation is best for multiplication and division?

More Number Systems

- Humans use decimal (base 10)
 - digits 0-9 are composed to make larger numbers

 $11 = 1^* 10^1 + 1^* 10^0$

- weighted positional notation
- Addition and Subtraction are straightforward
 - carry and borrow (today called regrouping)
- Multiplication and Division less so
 - can use logarithms and then do adds and subtracts
- The key is to use a representation that is "efficient"

Number Systems for Computers

- Today's computers are built from transistors
- Transistor is either off or on
- Need to represent numbers using only off and on
 - two symbols
- off and on can represent the digits 0 and 1
 - BIT is Binary Digit
 - A bit can have a value of 0 or 1
- Everything in a computer is represented using Bits!

Representing High Level Things in Binary

- Computers represent everything using binary (0 or 1)
- Instructions are specified using binary
- Instructions must be able to describe
 - Operation types (add, subtract, shift, etc.)
 - Data objects (integers, decimals, characters, etc.)
 - Memory locations
- Example:

int x, y; // Where are x and y? How to represent an int? bool decision; // How do we represent a bool? Where is it? y = x + 7; // How do we specify "add"? How to represent 7? decision=(y>18); // Etc.

Representing Operation Types

- How do we tell computer to add? Shift? Read from memory? Etc.
- Arbitrarily! 🙂
- Each Instruction Set Architecture (ISA) has its own binary encodings for each operation type
- E.g., in MIPS:
 - Integer add is: 00000 010000
 - Read from memory (load) is: 010011
 - Etc.
- More on Instruction Sets later this semester

Representing Data Types

- How do we specify an integer? A character? A floating point number? A bool? Etc.
- Same as before: binary!
- Key Idea: the same 32 bits might mean one thing if interpreted as an integer but another thing if interpreted as a floating point number, and yet another if interpreted as an instruction, etc.

Basic Data Types

<u>Bit (bool)</u>: 0, 1

Bit String: sequence of bits of a particular length 4 bits is a nibble 8 bits is a byte 16 bits is a half-word 32 bits is a word 64 bits is a double-word 128 bits is a quad-word

Integers (int, long):

"2's Complement" (32-bit or 64-bit representation)

Floating Point (float, double):

Single Precision (32-bit representation) Double Precision (64-bit representation) Extended (Quad) Precision (128-bit representation)

Character (char): ASCII 7-bit code

© 2013 Alvin R. Lebeck from Hilton, Roth, Sorin

Binary, Octal and Hexadecimal numbers

- Computers can input and output decimal numbers but they convert them to internal binary representation.
- Binary is good for computers, hard for us to read
 - Use numbers easily computed from binary
- Binary numbers use only two different digits: {0,1}
 - Example: 1200₁₀ = 0000010010110000₂
- Octal numbers use 8 digits: {0 7}
 - Example: 1200₁₀ = 02260₈
- Hexadecimal numbers use 16 digits: {0-9, A-F}
 - Example: 1200₁₀ = 04B0₁₆ = 0x04B0
 - does not distinguish between upper and lower case

Issues for Binary Representation of Numbers

- There are many ways to represent numbers in binary
 - Binary representations are encodings \rightarrow many encodings possible
 - What are the issues that we must address?
- Issue #1: Complexity of arithmetic operations
- Issue #2: Negative numbers
- Issue #3: Maximum representable number
- Choose representation that makes these issues easy for machine, even if it's not easy for humans

Unsigned Binary Numbers

- Weighted positional notation using base 2 $11_{10} = 1*2^3 + 1*2^1 + 1*2^0 = 1011_2$ $11_{10} = 8 + 2 + 1$
- Only positive numbers
 - unsigned int data type
- What is largest number, given 4 bits?

Binary and Hex

- To convert to and from hex: group binary digits in groups of four and convert according to table
- $2^4 = 16$

Hex	Bin	Hex	Bin
0	0000	8	1000
1	0001	9	1001
2	0010	Α	1010
3	0011	В	1011
4	0100	С	1100
5	0101	D	1101
6	0110	E	1110
7	0111	F	1111

Example: 1100 0010 0110 0111 0100 1111 1101 0101_2 C 2 6 7 4 F D 5₁₆

© 2013 Alvin R. Lebeck from Hilton, Roth, Sorin

CS/ECE 250

Sign Magnitude

- Use leftmost bit for +(0) or -(1):
- 6-bit example (1 sign bit + 5 magnitude bits):
- +17 = 010001
- -17 = 110001
- Pros:
 - Conceptually simple
 - Easy to convert
- Cons:
 - Harder to compute (add, subtract, etc.) with
 - Positive and negative 0: 000000 and 100000

1's Complement Representation for Integers

ullet	Use largest positive binary numbers	0000	0
	to represent negative numbers	0001	1
	to represent negative numbers	0010	2
		0011	3
	To pogato a number	0100	4
•	TO negate a number,	0101	5
	invert ("not") each bit:	0110	6
		0111	7
	$0 \rightarrow 1$	1000	-7
	$1 \rightarrow 0$	1001	-6
L	1 / 0	1010	-5
		1011	-4
•	Conci	1100	-3
•	CONS.	1101	-2
	two 0s	1110	-1
	hard to compute with	1111	-0

2's Complement Integers

 Use large positives to represent 	0000	0
negatives	0001	1
	0010	2
• $(-x) = 2^n - x$	0011	3
	0100	4
	0101	5
• This is 1's complement + 1	0110	6
	0111	7
• $(-x) = 2^n - 1 - x + 1$	1000	-8
Invert hits and add 1	1001	-7
	1010	-6
	1011	-5
6-hit examples:	1100	-4
	1101	-3
$010110_2 = 22_{10}; 101010_2 = -22_{10}$	1110	-2
$1_{10} = 000001_2; -1_{10} = 111111_2$	1111	-1
$0_{10} = 000000_2; -0_{10} = 000000_2 \rightarrow \text{good!}$		

© 2013 Alvin R. Lebeck from Hilton, Roth, Sorin

Pros and Cons of 2's Complement

• Advantages:

- Only one representation for 0 (unlike 1's comp): 0 = 000000
- Addition algorithm is much easier than with sign and magnitude
 Independent of sign bits
- Disadvantage:
 - One more negative number than positive
 - Example: 6-bit 2's complement number $100000_2 = -32_{10}$; but 32_{10} could not be represented

All modern computers use 2's complement for integers

2's Complement Precision Extension

- Most computers today support 32-bit (int) or 64-bit integers
 - Specify 64-bit using gcc C compiler with long long type
- To extend precision, use sign bit extension
 - Integer precision is number of bits used to represent a number

Examples

 $14_{10} = 001110_2$ in 6-bit representation.

 $14_{10} = 00000001110_2$ in 12-bit representation

$$-14_{10} = 110010_2$$
 in 6-bit representation

 $-14_{10} = 11111110010_2$ in 12-bit representation.

• Suppose we want to add two 8-bit numbers:

00011101 + 00101011

• How do we do this?

• Suppose we want to add two 8-bit numbers:

$$\begin{array}{rcrcrcr} 00011101 & 695 \\ + & 00101011 & + & 232 \end{array}$$

- How do we do this?
 - Let's revisit decimal addition
 - Think about the process as we do it

• Suppose we want to add two 8-bit numbers:

• First add one's digit 5+2 = 7

• Suppose we want to add two 8-bit numbers:

		1
	00011101	6 <mark>9</mark> 5
+	00101011	+ 232
		27

- First add one's digit 5+2 = 7
- Next add ten's digit 9+3 = 12 (2 carry a 1)

• Suppose we want to add two 8-bit numbers:

- First add one's digit 5+2 = 7
- Next add ten's digit 9+3 = 12 (2 carry a 1)
- Last add hundred's digit 1+6+2 = 9

• Suppose we want to add two 8-bit numbers:

00011101 + 00101011

- Back to the binary:
 - First add 1's digit 1+1 = ...?

• Suppose we want to add two 8-bit numbers:

1 00011101 + 00101011

0

- Back to the binary:
 - First add 1's digit 1+1 = 2 (0 carry a 1)

• Suppose we want to add two 8-bit numbers:

11 00011101 + 00101011 00

- Back to the binary:
 - First add 1's digit 1+1 = 2 (0 carry a 1)
 - Then 2's digit: 1+0+1 =2 (0 carry a 1)
- You all finish it out....

- Suppose we want to add two 8-bit numbers:
 - 111111
 - 00011101 = 29
- $\begin{array}{rcrcrc} + & 00101011 & = & 43 \\ & 01001000 & = & 72 \end{array}$
- Can check our work in decimal

• What about this one:

01011101 + 01101011

- What about this one:
 - 1111111
 - 01011101 = 93
- $\begin{array}{rcrcr} + & 01101011 \\ & 11001000 \end{array} &= 107 \\ & -56 \end{array}$
- But... that can't be right?
 - What do you expect for the answer?
 - What is your expected answer in 8-bit signed 2's complement?

Software Implication! Integer Overflow

- Answer should be 200
 - Not representable in 8-bit signed representation
 - No right answer
- Call Integer Overflow
- Real problem in programs

Subtraction

- 2's complement makes subtraction easy:
 - Remember: A B = A + (-B)
 - And: $-B = \sim B + 1$

↑ that means flip bits ("not")

- So we just flip the bits and start with CI = 1
- Later: No new circuits to subtract (re-use add)

What About Non-integer Numbers?

- There are infinitely many real numbers between two integers
- Many important numbers are real
 - Speed of light $\sim = 3 \times 10^8$
 - Pi = 3.1415...
- Fixed number of bits limits range of integers
 - Can't represent some important numbers
- Humans use Scientific Notation
 - 1.3x10⁴

Option 1: Fixed Point Representation

- Decimal fixed point (6 digits)
 - 102832
 - 1028.32
 - Same digits, different decimal point
 - Right of decimal point weight is 1/10⁻ⁱ (i starts at 1 -> 1/10, 1/100, ...)
- Binary Point (6 bits)
 - 001010
 - 0010.10
 - Right of binary point weight is 1/2⁻ⁱ (i starts at 1 -> 1/2, 1/4, 1/8,...)
- General Fixed Point representation specifies
 - Total number of bits (i.e., width)
 - Fixed point position (e.g., fixed<6,0> fixed<6,2>)
- It's all just bits...what decimal values are above binary numbers?

Fixed Point Representation

- Pros:
 - Addition/subtraction just like integers ("free")
- Cons:
 - Mul/div require renormalizing (divide by 64K)
 - Range limited (no good rep for large + small)
- Can be good in specific situations

Can we do better?

- Think about scientific notation for a second:
- For example: 6.82 * 10²³
- Real number, but comprised of ints:
 - 6 generally only 1 digit here
 - 82 any number here
 - 10 always 10 (base we work in)
 - 23 can be positive or negative
- Can we do something like this in binary?

Option 2: Floating Point Representation

- How about:
 - +/- X.YYYYYY * 2+/-N
- Big numbers: large positive N
- Small numbers (<1): negative N
- Numbers near 0: small N
- This is "floating point" : most common way