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Administrivia 

•  What did you learn last week? 
§  Pointers are hard! 

•  Today 
§  More pointers / memory 
§  Data representations 

•  Resources (from course web page) 
§  Video snippets by Prof Drew Hilton in ECE 

o Videos don’t work with Firefox (use Safari or Chrome) 
§  MIT Open Course 

CS/ECE 250 
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A Program’s View of Memory 

•  What is Memory?  
§  A large linear array of bits 

•  Find things by indexing into array 
§  memory address (unsigned integer) 
§  read to and write from address 

•  Processor issues commands to read/write 
specific locations 
§  Read from memory location 0x1400 
§  Write 0xff to memory location 0x8675309  

•  Array of …   
§  Bytes? 32-bit ints? 64-bit ints? 
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Memory Partitions 

•  Text for instructions 
§  add dest, src1, src2 
§  mem[dest] = mem[src1] + mem[src2] 

•  Data 
§  static (constants, global variables) 
§  dynamic (heap, new allocated) 
§  grows up 

•  Stack 
§  local variables 
§  grows down 

•  Variables are names for memory 
locations 
§  int x; 
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A Simple Program’s Memory Layout 

... 
int result; // global var 

main() 

{ 

   int x; 

   ... 

 result = x + result; 
 ... 

} 

 
mem[0x208] =  mem[0x400] + mem[0x208] 
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Pointers 

•  “address of” operator & 
§  don’t confuse with bitwise AND operator (later) 

Given 
 int x; int* p;  // p points to an int 
 p = &x; 

Then  
 *p = 2;  and x = 2; produce the same result 

   Note: p is a pointer, *p is an int 
 

•  What happens for p = 2? 
•  On 32-bit machine, p is 32-bits  

0x26cf0 

x 0x26cf0 

p 0x26d00 
... 
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C Memory Allocation 

•  How do you allocate an object in Java? 
§  What do you do when you are finished with an object? 
§  Garbage collection 
§  Counts references to objects, when == 0 can reuse 

•  C does not have garbage collection 
§  Must explicitly manage memory 

•  void * malloc(nbytes) 
§  Obtain storage for your data (like new in Java) 
§  Use sizeof(type), which returns bytes needed for type 
§  Cast return value into appropriate type(int) malloc(sizeof(int)); 

•  free(ptr) 
§  Return the storage when you are finished (no Java equivalent) 
§  ptr must be a value previously returned from malloc 

CS/ECE 250 
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Memory Manager (Heap Manager) 

•  Malloc & free are library 
routines that handle memory 
management for the heap 
(allocation / deallocation) 

•  Java has garbage collection  
•  C must use free 

§  else memory leak -> no more 
available memory 

•  Write a Heap Manager in 
Compsci 310 

CS/ECE 250 
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Linked List (two nodes) 

#include <stdio.h> 
#include <stdlib.h> 
struct list_ent { 

 int id; 
 struct list_ent *next; 

}; 
main() 
{ 
  struct list_ent *head, *ptr; 
  head = (struct list_ent *)      

 malloc(sizeof(struct list_ent)); 
  head->id = 66; 
  head->next = NULL; 

  
  ptr = (struct list_ent *)  

 malloc(sizeof(struct list_ent));  
  ptr->id = 23; 
  ptr->next = NULL; 
 

  
  head->next = ptr;  

  
  printf("head id: %d, next id: %d\n", 

 head->id,head->next->id); 
  

  ptr = head; 
  head = ptr->next; 

  
  printf("head id: %d, next id: %d\n", 

 head->id, ptr->id); 
  free(head); 
  free(ptr); 
} 
 

CS/ECE 250 
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Back to C: Command Line Arguments 

•  Parameters to main (int argc, char *argv[]) 
§  argc = number of arguments (0 to argc-1) 
§  argv is array of strings (i.e., array of character pointers) 
§  argv[0] = program name 

!
main(int argc, char *argv[]) {!
  int i;!
  printf("%d arguments\n", argc);!
  for (i=0; i< argc; i++)!
  printf("argument %d: %s\n", i, argv[i]);   
}!

CS/ECE 250 
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C Summary 

•  C Language is lower level than Java 
•  Many things are similar 

§  Data types 
§  Control flow 

•  Some important differences 
§  No objects! 
§  Explicit memory allocation/deallocation 

•  Create and compile a program 
•  Intro to Memory & Pointers 
•  Up Next:  

§  So what are those chars, ints, floats? 

CS/ECE 250 
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Representations: Thought Experiment 

•  Do this at home with friends…  
•  Using only the three symbols @ # $ specify a 

representation for the following: 
§  All integers from 0 to 10 
§  Commands to 1) walk, 2) turn, 3) sit, 4) raise right arm, 5) raise left 

arm 

•  Using only your representation write down series of 
commands & integers (if appropriate, e.g., raise left 
arm-3, turn-2) 
§  Must have at least 5 commands 

•  Give someone your representations from above and the series 
of commands, see if they can execute the commands.  
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Data Representation  

•  Compute two hundred twenty nine minus one hundred 
sixty seven divided by twelve 

•  Compute XIX - VII + IV 

•  We reason about numbers many different ways 

•  Computers store variables (data) 
§  Typically numbers, characters or combination of these 

•  Computers have instructions (operations like add) 

•  The key is to use a representation that is “efficient” 
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Number Systems 

•  A number is a mathematical concept 
§  10 

•  Many ways to represent a number 
§  10, ten, 2x5, X, 100/10, ||||| ||||| 

•  Symbols are used to create a representation 

•  Which representation is best for counting? 
•  Which representation is best for addition and subtraction? 
•  Which representation is best for multiplication and 

division? 
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More Number Systems 

•  Humans use decimal (base 10) 
§  digits 0-9 are composed to make larger numbers 

   11 = 1*101 + 1*100 

§  weighted positional notation 

•  Addition and Subtraction are straightforward 
§  carry and borrow (today called regrouping) 

•  Multiplication and Division less so 
§  can use logarithms and then do adds and subtracts 

•  The key is to use a representation that is “efficient” 
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Number Systems for Computers 

•  Today’s computers are built from transistors 
•  Transistor is either off or on 
•  Need to represent numbers using only off and on 

§  two symbols 

•  off and on can represent the digits 0 and 1 
§  BIT is Binary Digit 
§  A bit can have a value of 0 or 1 

•  Everything in a computer is represented using Bits! 
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Representing High Level Things in Binary 

•  Computers represent everything using binary (0 or 1) 
•  Instructions are specified using binary 

•  Instructions must be able to describe 
§  Operation types (add, subtract, shift, etc.) 
§  Data objects (integers, decimals, characters, etc.) 
§  Memory locations 

•  Example: 
int x, y;               // Where are x and y?  How to represent an int? 
bool decision;      // How do we represent a bool?  Where is it? 
y = x + 7;          // How do we specify “add”?  How to represent 7? 
decision=(y>18);  //  Etc. 
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Representing Operation Types 

•  How do we tell computer to add?  Shift?  Read from 
memory?  Etc. 

•  Arbitrarily!   J 

•  Each Instruction Set Architecture (ISA) has its own binary 
encodings for each operation type 

•  E.g., in MIPS: 
§  Integer add is: 00000 010000 
§  Read from memory (load) is: 010011 
§  Etc. 

•  More on Instruction Sets later this semester 
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Representing Data Types 

•  How do we specify an integer?  A character?  A floating 
point number?  A bool?  Etc. 

•  Same as before: binary! 

•  Key Idea: the same 32 bits might mean one thing if 
interpreted as an integer but another thing if interpreted 
as a floating point number, and yet another if interpreted 
as an instruction, etc. 
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Basic Data Types 
Bit (bool):  0, 1 
 
Bit String:  sequence of bits of a particular length 
       4 bits is a nibble 
       8 bits is a byte 
     16 bits is a half-word 
     32 bits is a word 
     64 bits is a double-word 
   128 bits is a quad-word 
 
Integers (int, long): 
      “2's Complement” (32-bit or 64-bit representation) 
 
Floating Point (float, double): 
      Single Precision (32-bit representation) 
      Double Precision (64-bit representation) 
      Extended (Quad) Precision (128-bit representation) 
 
Character (char): 
      ASCII  7-bit code 



21 
© 2013 Alvin R. Lebeck 
from Hilton, Roth, Sorin CS/ECE 250 

Binary, Octal and Hexadecimal numbers 

•  Computers can input and output decimal numbers but 
they convert them to internal binary representation.  

•  Binary is good for computers, hard for us to read 
§  Use numbers easily computed from binary 

•  Binary numbers use only two different digits: {0,1} 
§  Example: 120010 = 00000100101100002 

•  Octal numbers use 8 digits: {0 - 7} 
§  Example: 120010 = 022608 

•  Hexadecimal numbers use 16 digits: {0-9, A-F} 
§  Example: 120010 = 04B016 = 0x04B0 
§  does not distinguish between upper and lower case 
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Issues for Binary Representation of Numbers 

•  There are many ways to represent numbers in binary 
§  Binary representations are encodings à many encodings possible 
§  What are the issues that we must address? 

•  Issue #1: Complexity of arithmetic operations 
•  Issue #2: Negative numbers 
•  Issue #3: Maximum representable number 

•  Choose representation that makes these issues easy for 
machine, even if it’s not easy for humans 
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Unsigned Binary Numbers 

•  Weighted positional notation using base 2 

   1110 = 1*23 + 1*21 + 1*20  = 10112
 

   1110 =   8    +   2   +  1 

•  Only positive numbers 
§  unsigned int data type 

•  What is largest number, given 4 bits? 

CS/ECE 250 



24 
© 2013 Alvin R. Lebeck 
from Hilton, Roth, Sorin CS/ECE 250 

Example: 
1100 0010  0110  0111 0100 1111 1101  01012 
   C       2        6       7        4        F      D        5 16 

0  0000   8  1000 
1  0001   9  1001 
2  0010   A  1010 
3  0011   B  1011 
4  0100   C  1100 
5  0101   D  1101 
6  0110   E  1110 
7  0111   F  1111 

Hex Bin Bin Hex 

Binary and Hex 

•  To convert to and 
from hex: group 
binary digits in groups 
of four and convert 
according to table 

•  24 = 16 
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Sign Magnitude 

•  Use leftmost bit for + (0) or – (1): 
•  6-bit example (1 sign bit + 5 magnitude bits): 
•    +17 = 010001 
•    -17 =  110001 
•  Pros:  

§  Conceptually simple 
§  Easy to convert 

•  Cons: 
§  Harder to compute (add, subtract, etc.) with 
§  Positive and negative 0:  000000  and  100000  

CS/ECE 250 
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1’s Complement Representation for Integers 

•  Use largest positive binary numbers 
to represent negative numbers 

•  To negate a number,  
 invert (“not”) each bit: 
 0 à 1 
 1 à 0 

•  Cons: 
§  two 0s 
§  hard to compute with 

0000  0 
0001  1 
0010  2 
0011  3 
0100  4 
0101  5 
0110  6 
0111  7 
1000  -7 
1001  -6 
1010  -5 
1011  -4 
1100  -3 
1101  -2 
1110  -1 
1111  -0 
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2’s Complement Integers 

•  Use large positives to represent 
negatives  

•  (-x) = 2n - x 

•  This is 1’s complement + 1 
•  (-x) = 2n - 1 - x + 1 

•  Invert bits and add 1 

6-bit examples: 
0101102 = 2210 ; 1010102 = -2210 
110 = 0000012; -110 = 1111112 

010 = 0000002; -010 = 0000002  à good! 

0000  0 
0001  1 
0010  2 
0011  3 
0100  4 
0101  5 
0110  6 
0111  7 
1000  -8 
1001  -7 
1010  -6 
1011  -5 
1100  -4 
1101  -3 
1110  -2 
1111  -1 
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Pros and Cons of 2’s Complement 

•  Advantages: 
§  Only one representation for 0 (unlike 1’s comp): 0 = 000000 
§  Addition algorithm is much easier than with sign and magnitude 

o  Independent of sign bits 

•  Disadvantage: 
§  One more negative number than positive 
§  Example: 6-bit 2’s complement number 
 1000002 = -3210;  but 3210 could not be represented 

 
 

All modern computers use 2’s complement for integers  
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•  Most computers today support 32-bit (int) or 64-bit integers 
§  Specify 64-bit using gcc C compiler with long long type 

•  To extend precision, use sign bit extension 
§  Integer precision is number of bits used to represent a number 

 

Examples 

1410 =  0011102 in 6-bit representation. 

1410 =  0000000011102 in 12-bit representation 
 

-1410 = 1100102  in 6-bit representation 

-1410 = 1111111100102  in 12-bit representation.  

  

2’s Complement Precision Extension 
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Binary Math : Addition 

•  Suppose we want to add two 8-bit numbers: 

    00011101 

 +  00101011 

•  How do we do this? 

CS/ECE 250 
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Binary Math : Addition 

•  Suppose we want to add two 8-bit numbers: 

    00011101           695 

 +  00101011         + 232     

•  How do we do this? 
§  Let’s revisit decimal addition 
§  Think about the process as we do it 

CS/ECE 250 
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Binary Math : Addition 

•  Suppose we want to add two 8-bit numbers: 

    00011101           695 

 +  00101011         + 232     
                         7 

•  First add one’s digit 5+2 = 7  

CS/ECE 250 
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Binary Math : Addition 

•  Suppose we want to add two 8-bit numbers: 
                                              1 
    00011101           695 

 +  00101011         + 232     
                        27 

•  First add one’s digit 5+2 = 7  
•  Next add ten’s digit 9+3 = 12  (2 carry a 1)  

CS/ECE 250 
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Binary Math : Addition 

•  Suppose we want to add two 8-bit numbers: 
                                                
    00011101           695 

 +  00101011         + 232     
                       927 

•  First add one’s digit 5+2 = 7  
•  Next add ten’s digit 9+3 = 12  (2 carry a 1)  
•  Last add hundred’s digit 1+6+2 = 9 

CS/ECE 250 
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Binary Math : Addition 

•  Suppose we want to add two 8-bit numbers: 
                                                   
    00011101  

 +  00101011 
            

•  Back to the binary: 
§  First add 1’s digit 1+1 = …? 

CS/ECE 250 
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Binary Math : Addition 

•  Suppose we want to add two 8-bit numbers: 
                   1                                                  
    00011101  

 +  00101011 
           0           

•  Back to the binary: 
§  First add 1’s digit 1+1 = 2 (0 carry a 1) 

CS/ECE 250 
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Binary Math : Addition 

•  Suppose we want to add two 8-bit numbers: 
         11                                                  
    00011101  

 +  00101011 
          00           

•  Back to the binary: 
§  First add 1’s digit 1+1 = 2 (0 carry a 1) 
§  Then 2’s digit: 1+0+1 =2 (0 carry a 1) 

•  You all finish it out…. 

CS/ECE 250 
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Binary Math : Addition 

•  Suppose we want to add two 8-bit numbers: 
     111111                                                  
    00011101   = 29  

 +  00101011   = 43 
    01001000   = 72           

•  Can check our work in decimal 

CS/ECE 250 
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Binary Math : Addition 

•  What about this one: 
                                                       
    01011101 

 +  01101011 
     

CS/ECE 250 
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Binary Math : Addition 

•  What about this one: 
    1111111                                                      
    01011101   =  93 

 +  01101011   = 107 
    11001000   = -56 

•  But… that can’t be right? 
§  What do you expect for the answer? 
§  What is your expected answer in 8-bit signed 2’s complement? 

CS/ECE 250 
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Software Implication! Integer Overflow 

•  Answer should be 200 
§  Not representable in 8-bit signed representation 
§  No right answer 

•  Call Integer Overflow 
•  Real problem in programs 

CS/ECE 250 
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Subtraction 

•  2’s complement makes subtraction easy: 
§  Remember: A - B = A + (-B) 
§  And:  -B = ~B + 1 
                     é that means flip bits (“not”) 
§  So we just flip the bits and start with CI = 1 
§  Later: No new circuits to subtract (re-use add)                                                   

                           1 

  0110101     ->     0110101             

- 1010010          + 0101101 

CS/ECE 250 
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What About Non-integer Numbers? 

•  There are infinitely many real numbers between two 
integers 

•  Many important numbers are real 
§  Speed of light ~= 3x108 
§  Pi = 3.1415… 

•  Fixed number of bits limits range of integers 
§  Can’t represent some important numbers 

•  Humans use Scientific Notation 
§  1.3x104 
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Option 1: Fixed Point Representation 

•  Decimal fixed point (6 digits) 
§  102832 
§  1028.32 
§  Same digits, different decimal point 
§  Right of decimal point weight is 1/10-i  (i starts at 1 -> 1/10, 1/100, …) 

•  Binary Point (6 bits) 
§  001010 
§  0010.10 
§  Right of binary point weight is 1/2-i  (i starts at 1 -> ½, ¼, 1/8,…) 

•  General Fixed Point representation specifies 
§  Total number of bits (i.e., width) 
§  Fixed point position (e.g., fixed<6,0> fixed<6,2>) 

•  It’s all just bits…what decimal values are above binary numbers? 

CS/ECE 250 
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Fixed Point Representation 

•  Pros: 
§  Addition/subtraction just like integers (“free”) 

•  Cons: 
§  Mul/div require renormalizing (divide by 64K) 
§  Range limited (no good rep for large + small) 

•  Can be good in specific situations  

CS/ECE 250 
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Can we do better? 

•  Think about scientific notation for a second: 
•  For example: 

6.82 * 1023 

•  Real number, but comprised of ints: 
§  6           generally only 1 digit here 
§  82         any number here 
§  10         always 10 (base we work in) 
§  23         can be positive or negative 

•  Can we do something like this in binary? 

CS/ECE 250 
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Option 2: Floating Point Representation 

•  How about: 
§  +/- X.YYYYYY * 2+/-N 

•  Big numbers:  large positive N 
•  Small numbers (<1): negative N 
•  Numbers near 0: small N 

•  This is “floating point” : most common way 

CS/ECE 250 


