ECE 250/ CS 250
Computer Architecture

Bit Operations and Memory

Benjamin Lee

Slides based on those from Alvin Lebeck,
Daniel Sorin, Andrew Hilton, Amir Roth,
Gershon Kedem

Admin

e Homework 1
= Due Jan 30, 11:55pm
= Code must compile and run for credit
* 10% for reasonable, commented code
¢ 20% for code that compiles
e Additional credit for satisfying each of 5 test cases
= Start early and plan ahead

e Today’s Outline
= Floating point representations
= Character representations
= Bit operations
= Memory: pointer arithmetic

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Floating Point

e Option 1: Fixed Point
= Binary Point (6 bits)
o 001010
o 0010.10
o Right of binary point weight is 1/2- (i starts at 1 -> >, V4, 1/8,...)
= General Fixed Point representation specifies <width, point postion>
o eg., fixed<6,2>
= Range limited (no good rep for large + small)

¢ Scientific notation is good
= 6.82 * 10%3
= One digit, decimal point, some number, base 10, exponent (+/-)

e Can we do something similar in Binary?

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Option 2: Floating Point Representation

e How about:
= +/- X.YYYYYY * 2+/N

e Big numbers: large positive N
e Small numbers (<1): negative N
e Numbers near 0: small N

e This is “floating point™ : most common representation for
non-integer numbers (type float)

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

IEEE Single Precision Floating Point

e Specific format called IEEE single precision:
e +/- 1.YYYYY * 2(N-127)
e “float” in Java, C, C++,...

e Sign: 1signbit(+ =0,1=-)

e Exponent: 8-bit biased exponent (N-127)
= N = E + 127 where E is actual exponent

e Mantissa: 23-bit mantissa (YYYY)
= implicit 1 before binary point to save a bit

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Floating Point Example

e Binary fraction example:

= 101.101 = 4+ 1 + Y2 + /3= 5.625
e For floating point, needs normalization:

= 1.01101 * 22
e Sign is +, which = 0

e Exponent = 127 + 2 = 129 = 1000 0001
e Mantissa = 1.011 0100 0000 0000 0000 0000

3130 23

22

0

0

1000 0001

011 0100 0000 0000 0000 0000|

S

N

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

CS/ECE 250

Floating Point Representation

Example:
What floating-point number is:
0xC15800007?

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Answer

What floating-point number is
0xC15800007?
1100 0001 0101 1000 0000 0000 0000 0000

3130 23 22 0
111000 0010|101 1000 0000 0000 0000 0000
S N M

« Sign = 1 means this is a negative number
 Exponent = (128+2)-127 = 3

* Mantissa =1.1011

¢« -1.1011x23 =-1101.1 =-13.5

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Trick question

e How do you represent 0.0 in IEEE Floating Point?
= Why is this a trick question?

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Trick question

e How do you represent 0.0 in IEEE Floating Point?
= Why is this a trick question?
= 0.0 = 000000000
= But need 1.XXXXX representation?

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

10

Trick question

e How do you represent 0.0 in IEEE Floating Point?
= Why is this a trick question?
= 0.0 = 000000000
= But need 1.XXXXX representation?

e Exponent of 0 is denormalized
= Zero exponent and zero mantissa
= Implicit 0. instead of implicit 1. in mantissa
= Allows 0000....0000 to be 0
= Helps with very small numbers near 0

e Results in +/- 0 in FP (but they are “equal™)

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

11

Other Special FP Values

o If exponent = 1111 1111 ...

= And if mantissa is zero, value is oo
= 1/0 = +00; -1/0 = -0

e If exponent = 1111 1111 ...

= And if mantissa is hon-zero, value is NaN
= sqrt(-42) = NaN

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

12

Floating Point Arithmetic

e Example in Decimal: 99.5 + 0.8
= Step I: align exponents (if necessary)
o Temporarily de-normalize operand with smaller exponent
o Add 2 to exponent = Shift significand right by 2
o 8.0%10°1 - 0.08*10!

= Step II: add significands
0 9.95*%10! + 0.08*10! -> 10.03*10!

= Step IIT: normalize result
o Shift significand right by 1
o 10.03*10! - 1.003*102

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

13

Floating Point Arithmetic

e Now a binary “quarter” example: 7.5 + 0.5
= 8 bits: 1-bit sign, 3-bit exponent, 4-bit significand, bias is 3=(2N-1-1)

= 7.5 =1.875%22=0101 11110 (the 1 is the implicit leading 1)
o 1.875 = 1*204+1*2-141%2-241%*2-3
= 0.5=1*%21=0010 10000

Step I: align exponents (if necessary)
= 0010 10000 — 0 101 00010
= Add 3 to exponent — shift significand right by 3
Step II: add significands
= 0101 11110 + 0 101 00010 = 0 101 100000
o Step III: normalize result
= 0 101 100000 — 0 110 10000
= Shift significand right by 1 — add 1 to exponent

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

14

Rounding Errors

e We only have 32-bits to represent floats
= Must approximate some values
= Limited bits for mantissa
e Does (x+y)*z = (x*z+y*z)?
= Mathematically yes, but assumes infinite precision
e Example in base 10,
= four digits available (two to left, two to right of decimal point)
= X =99,96 x 103
= X =X + 0.07
= x = 100.03 x 103
= x =10.00 x 10%

e Numerical Analysis (CS 220) studies these issues

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Floating Point Representation

e Double Precision Floating point:

64-bit representation:
= 1-bit sign
= 11-bit (biased) exponent
= 52-bit fraction (with implicit 1).

e “double” in Java, C, C++, ...

S Exp Mantissa

1 11-bit 52 - bit

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

What About Strings?

Recall Strings
= char str1[256] = “hi";
= str1[0] ='h’, stri[1] = "',str1[2] = O;
= 0 is value of NULL character \0’, identifies end of string

e A string is an array of characters
e S0 we need to represent characters

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

17

ASCII Character Representation

Oct. Char

000| nul| 001 |[soh|002|stx|003|etx |004 [eot |[005 |eng|006 |ack|007|bel
010 bs | 011 |ht |012|nl |013|vt |014 np |015 |cr |01l6|so |017|si

020| dle| 021 [dc1 |022|dc2|023|dc3 |024 |[dc4 |025 |nak |026 |syn|027|etb
030| can| 031 |em |[032|sub|033|esc |034 (fs |035|gs |036|rs |[037|us

040| sp | 041 | ' |042| ™ |043| # (044 | $ |045| & |046| & |047| '

050 (| 051|) |052| * |053| + |054| , |055| - |056| . |057| /

060 O |061| 1 |062| 2 |063| 3 [|064| 4 |065| 5 |066| 6 |067| 7

070, 8 {071 9 |072| : |073| ; |074| < |075| = |076| > |077| »

100f @ 101 A |102| B |103| C |104| D |105| E |106| F |107| G

110 H#|111| T |112| J |113| K |114 | L. |115| M |116| N |117| O

120 P |121| Q |122| R |123| S |124 | T |125| U |126| V |127| W

130/ X |131| Y (132 Z |133| [(134 | \ |135|] |136| ~ |137| _

140 ~ | 141 a |142| b |143| c |144| d |145| e |146| £ |147| g

150/ h | 151 i |250| j |153| k |154| 1 |155| m |156| n |157| o

160f p|161| g |162| r |163| s |164 | t |165| u |166| v |167| w

170 x |171| y (172 =z |173| { |174 | | |175| } |176| ~ |177|del

e Each character represented by 7-bit ASCII code (packed into 8-bits)
e Convert upper to lower case ‘A" + 32 = '3’

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

CS/ECE 250

18

Review: Strings as Arrays

e lil e W

st
0O 1 1516 42 43

e A string is an array of characters with \0O’ at the end
e Each element is one byte, ASCII code

e \0’ is null (ASCII code 0)

e Char str1[256]

e Char *str

e Str = (char *) str

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Unicode

e Many types

e UTF-8: variable length encoding backward compatible
with ASCII

= Linux

e UTF-16: variable length
= Windows, Java

e UTF-32: fixed length

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

20

Bit Manipulations

Problem

e 32-bit word contains many values

= e.qg., input device, sensors, etc.

= current X,y position of mouse and which button (left, mid, right)
e Assume X, y position is 0-255

= How many bits for position?

= How many for button?

Goal
e Extract position and button from 32-bit word
e Need operations on individual bits of word

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CPS 104

21

Bitwise AND / OR / XOR

o & operator performs bitwise AND
* | operator performs bitwise OR
o /* operator performs bitwise Exclusive OR (XOR)

e Per bit
0&0=0
O&1=0
1&0=0
1&1=1

0]0=0 0~0=0
0]1=1 or1=1
1/|0=1 170=1
111=1 171=0
o For multiple bits, apply operation to individual bits in same position
AND OR XOR
011010 011010 011010
101110 101110 101110
001010 111110 110100

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

CPS 104

22

Mouse Example

e 32-bit word with x,y and button fields

= bits 0-7 contain x position
= bits 8-15 contain y position
= bits 16-17 contain button (0 = left, 1 = middle, 2 = right)

e Use bitwise operations to extract specific fields from bit
string...

button X
Oxla34c = 01 0100 1100

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CPS 104 23

Mouse Solution

e AND with a bit mask

= gspecific values that clear some bits, but pass others through

e To extract x position use mask 0x000ff
= Xxpos = 0x1a34c & 0x000ff

button X
Ox1a34c = 01 0100 1100
O0x000ff = 0O 1111 1111

0x0004c = 00 0000 0000 0100 1100

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CPS 104

24

More of the Mouse Solution

e Extract y position with mask
= ypos = 0xl1a34c & 0x0ff00

e Extract button with mask
= button = 0x1a34c & 0x30000

e Not quite done...why?

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CPS 104

25

The Shift Operator

e >> shifts right, << shifts left,

e operands are int and number of positions to shift
= Shifting signed integers requires sign extension

e (1 << 3) shifts ...001 -> ...1000 (it's 23)

o Oxff << 8 = 0xff0OO

e OxffOO >> 8 = 0Ox0Off if integer is unsigned
e OxffOO >> 8 = Oxffff if integer is signed

e Example: shift to extract ypos and button values
ypos = (0xla34c & 0x0ff00) >> 8
button = (0x1a34c & 0x30000) >> 16

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CPS 104

26

Extracting Parts of Floating Point Number

e X is a 32-bit word
#define EXP BITS 8
#define FRACTION BITS 23
#define SIGN MASK 0x80000000
#define EXP MASK 0x7£800000
#define FRACTION MASK O0xO007fffff
Struct myfloat ({

int sign;

unsigned 1nt exp;

unsigned 1nt fraction;
I

struct myfloat x;

num->sign = (X & SIGN_MASK) >> (EXP_BITS + FRACTION_BITS);
num->exp = (x & EXP_MASK) >> FRACTION_BITS;
num->fraction = x & FRACTION MASK;

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CPS 104

A Program’s View of Memory

e What is Memory?
= A large linear array of bits

e Find things by indexing into array
= memory address (unsigned integer)
= read to and write from address

e Processor issues commands to read/write
specific locations

= Read from memory location 0x1400
= Write Oxff to memory location 0x8675309

e Array of ...
= Bytes? 32-bit ints? 64-bit ints?

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin 28

Memory

Address Memory

00110110

00001100

RBRN=O

20-1-4

2n-1

28

Processor Word Size

e Processor has word size
= Nominal size of integer-valued data, addresses
= 32-bit vs. 64-bit addresses
= 32-bit words addressed 0x100 and 0x104

e Most systems are byte (8-bit) addressed
= Support to load/store 16, 32, 64 bit quantities
o short, int, long long, etc. data types
= What is order of bytes in memory?
= Byte ordering varies from system to system

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

29

Endianess and Byte Ordering

Byte Order
e Big Endian: byte 0 is 8 most significant bits

= IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

e Little Endian: byte 0 is 8 least significant bits

= Intel 80x86, DEC Vax, DEC Alpha

little endian byte 0

3 2 1 0 /

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

30

Memory Partitions

2n-1

e Text for instructions Stack
» add dest, srcl, src2
= mem[dest] = mem[srcl] + mem|[src2] lL

e Data

= static (constants, global variables)
= dynamic (heap, new allocated)
= grows up

e Stack

= |ocal variables
= grows down

Typical
Address
Space

e Variables are names for memory o LReserved
locations

= int x;

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin 31 31

Memory Layout: Example

int anumber = 3;

int factorial (int =) {
if (x == 0) {
return 1;
}
else {

return x * factorial (x - 1);

int main (void) {
int z = factorial (anumber);
printf (“sd\n”, z);
return O;

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

2n-1

Typical
Address
Space

0 Reserved

32

A Simple Program’s Memory Layout

2"-1
. Stack
int result; // global var x 0x400 5
main ()
| 4
int x;

result = x + result;

mem[0x208] = mem[0x400] + mem[0x208] result 0x208

0 Reserved

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin 33 33

Review: Pointers

e “address of” operator &
= don’ t confuse with bitwise AND operator (later)
Given
int x; int* p; // p points to an int
P = &x;
Then
*p = 2; and x = 2; produce the same result

Note: p is a pointer, *p is an int

e What happens for p = 2?;

On 32-bit machine, p is 32-bits x 0x26c£0

p 0x26d00[0x26c£0

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

34

Example Array malloc() & free()

#include <stdio.h>
#include <stdlib.h> /* so we get malloc and free definitions */

main() {
char *str;
int *ar;
str = (char *) malloc(256);
ar = (int *) malloc(100*sizeof(int));
str[0] = 'H"; str[1] = 'i"; str[2] = O;
ar[24] = 272;
printf("str = %s, ar[24]= %d\n",str,ar[24]);
free(str);
free(ar);

}

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

35

Address Calculation

e X is a pointer, what is x+337? int* a=malloc(100*sizeof (int)) ;
e A pointer, but where?

= what does calculation depend on? —F—F---=---

0O 1 32 33 98 99

] i a[33] is the same as * (a+33)

* Re_SUIt of addmg an II’_]t toa if a is 0x00a0, then a+l is
pointer depends on size of 0x00a4, a+2 is 0x00a8

object pointed to
= One reason why we tell compiler

what type of pointer we have, : .
even though all pointers are really double* d=malloc (200*sizeof (double)) ;

the same thing (and same size) Sniainiinle . Saiaiiiee .

(decimal 160, 164, 168)

0 1 33 199
* (d+33) is the same as d[33]
if d is 0x00b0, then d+1 is
0x00b8, d+2 is 0x00cO
(decimal 176, 184, 192)

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250 36

More Pointer Arithmetic

e what'sat * (begin+44) >

0 1 15 16 42 43
e what does begin++ mean?
char* a = new char[44];
char* begin = a;

e how are pointers compared using <
and using == ? char* end = a + 44;

while (begin < end)

e what is value of end - begin? {

1 ’

*begin = z ;
begin++;

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

37

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

More Pointers & Arrays

a+32 is a pointer

*(a+l) is an int (same as a[l])
* (a+99) is an int

* (a+100) is trouble

CS/ECE 250

38

Array Example

#include <stdio.h>

main ()
{
int *a = (int*)malloc (100 * sizeof(int));
int *p = a;
int k;
for (k = 0; k < 100; k++)
{
*p = k;
pt++;
}

printf (“entry 3 = %d\n”, a[3])

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

39

C Array of Structures: Linked List

#include <stdio.h>
#include <stdlib.h>
struct node {
int me;
struct node *next;
I
int main ()
{
struct node *ar;
struct node *p;
int k;

ar = (struct node ¥*)

malloc (10*sizeof (struct node));

p = ar;
for (k = 0; k < 9; k++)

p->me = k;
p->next = ar + k + 1;

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

p->me = 9;
p->next = NULL;
p = &ar[O0];
while (p != NULL) {
printf ("$d 0x%1lx 0x%1x\n", \

p->me, (unsigned long) p,
(unsigned long) p->next);

P = p->next;
}

return (0) ;

e Given ar = 0x10000, what does

memory layout look like?
= What is stored at each address?

40

Memory Layout

Output Memory Memory Source
Me p p->next Address Contents Symbol
0 0x26ca8 0x26chb0 0x26ca8 0 me }ar[O]
1 0x26ch0 0x26ch8 0x26cb0 |next
0x26cb0 1
2 0x26cb8 0x26ccO 0x26cb8
3 0x26cc0 0x26cc8 0x26cb8 2 QT
oxz6cco | MeIs int (4 bytes)
4 Ox2bces Oxz6cdl 0x26cc0 3 next is node* (4 bytes)
5 0x26cd0 0x26cd8 0x26cc8
6 0x26cd8 0x26cel 0x26cc8 4
0x26cd0
7 O0x26cel 0Ox26ce8 0x26cd0 5
8 0x26ce8 0x26cf0 0x26cd8
0x26cd8 6
9 0x26cf0 0x0 5%260e0
e NOTE: If you run 0x26ce0 - 2Z;ces
. . X
this program twice oxz6ces] 8
you'll get different 0x26cb£0
addresses! 0x26c£0 2 me 1 4:[9]
0x0 next

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin 41

Summary: From C to Binary

e Everything must be represented in binary!

e There are issues for numbers
= Max, min, rounding, etc.

o Computer memory is linear array of bytes

e Pointer is memory location that contains address of
another memory location

o We' Il visit these topics again throughout semester

e Next week
= Assembly Programming

© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

42

