
ECE 250 / CS 250
Computer Architecture

Bit Operations and Memory

Benjamin Lee

Slides based on those from Alvin Lebeck,
Daniel Sorin, Andrew Hilton, Amir Roth,

Gershon Kedem

2
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Admin

•  Homework 1
§  Due Jan 30, 11:55pm
§  Code must compile and run for credit

• 10% for reasonable, commented code
• 20% for code that compiles
• Additional credit for satisfying each of 5 test cases

§  Start early and plan ahead

•  Today’s Outline
§  Floating point representations
§  Character representations
§  Bit operations
§  Memory: pointer arithmetic

CS/ECE 250

3
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Floating Point

•  Option 1: Fixed Point
§  Binary Point (6 bits)

o  001010
o  0010.10
o  Right of binary point weight is 1/2-i (i starts at 1 -> ½, ¼, 1/8,…)

§  General Fixed Point representation specifies <width, point postion>
o  eg., fixed<6,2>

§  Range limited (no good rep for large + small)

•  Scientific notation is good
§  6.82 * 1023
§  One digit, decimal point, some number, base 10, exponent (+/-)

•  Can we do something similar in Binary?

CS/ECE 250

4
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Option 2: Floating Point Representation

•  How about:
§  +/- X.YYYYYY * 2+/-N

•  Big numbers: large positive N
•  Small numbers (<1): negative N
•  Numbers near 0: small N

•  This is “floating point” : most common representation for
non-integer numbers (type float)

CS/ECE 250

5
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

IEEE Single Precision Floating Point

•  Specific format called IEEE single precision:
•  +/- 1.YYYYY * 2(N-127)

•  “float” in Java, C, C++,…

•  Sign: 1 sign bit (+ = 0, 1 = -)
•  Exponent: 8-bit biased exponent (N-127)

§  N = E + 127 where E is actual exponent

•  Mantissa: 23-bit mantissa (YYYY)
§  implicit 1 before binary point to save a bit

CS/ECE 250

6
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Floating Point Example

•  Binary fraction example:
§  101.101 = 4 + 1 + ½ + 1/8 = 5.625

•  For floating point, needs normalization:
§  1.01101 * 22

•  Sign is +, which = 0
•  Exponent = 127 + 2 = 129 = 1000 0001
•  Mantissa = 1.011 0100 0000 0000 0000 0000

CS/ECE 250

0 1000 0001 011 0100 0000 0000 0000 0000
0 22 23 30 31

S N M

7
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Floating Point Representation

Example:
What floating-point number is:
0xC1580000?

8
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Answer

What floating-point number is
 0xC1580000?
 1100 0001 0101 1000 0000 0000 0000 0000

1 1000 0010 101 1000 0000 0000 0000 0000
0 22 23 30 31

S N M

•  Sign = 1 means this is a negative number
•  Exponent = (128+2)-127 = 3
•  Mantissa = 1.1011
•  -1.1011x23 = -1101.1 = -13.5

9
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Trick question

•  How do you represent 0.0 in IEEE Floating Point?
§  Why is this a trick question?

CS/ECE 250

10
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Trick question

•  How do you represent 0.0 in IEEE Floating Point?
§  Why is this a trick question?
§  0.0 = 000000000
§  But need 1.XXXXX representation?

CS/ECE 250

11
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Trick question

•  How do you represent 0.0 in IEEE Floating Point?
§  Why is this a trick question?
§  0.0 = 000000000
§  But need 1.XXXXX representation?

•  Exponent of 0 is denormalized
§  Zero exponent and zero mantissa
§  Implicit 0. instead of implicit 1. in mantissa
§  Allows 0000….0000 to be 0
§  Helps with very small numbers near 0

•  Results in +/- 0 in FP (but they are “equal”)

CS/ECE 250

12
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Other Special FP Values

•  If exponent = 1111 1111 …

§  And if mantissa is zero, value is ∞
§  1/0 = +∞; -1/0 = -∞

•  If exponent = 1111 1111 …
§  And if mantissa is non-zero, value is NaN
§  sqrt(-42) = NaN

CS/ECE 250

13
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Floating Point Arithmetic

•  Example in Decimal: 99.5 + 0.8
§  Step I: align exponents (if necessary)

o Temporarily de-normalize operand with smaller exponent
o Add 2 to exponent à Shift significand right by 2
o 8.0*10-1 à 0.08*101

§  Step II: add significands
o 9.95*101 + 0.08*101 à 10.03*101

§  Step III: normalize result
o Shift significand right by 1
o 10.03*101 à 1.003*102

CS/ECE 250

14
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Floating Point Arithmetic

•  Now a binary “quarter” example: 7.5 + 0.5
§  8 bits: 1-bit sign, 3-bit exponent, 4-bit significand, bias is 3=(2N-1-1)

§  7.5 = 1.875*22 = 0 101 11110 (the 1 is the implicit leading 1)
o 1.875 = 1*20+1*2-1+1*2-2+1*2-3

§  0.5 = 1*2-1 = 0 010 10000

•  Step I: align exponents (if necessary)
§  0 010 10000 → 0 101 00010
§  Add 3 to exponent → shift significand right by 3

•  Step II: add significands
§  0 101 11110 + 0 101 00010 = 0 101 100000

•  Step III: normalize result
§  0 101 100000 → 0 110 10000
§  Shift significand right by 1 → add 1 to exponent

CS/ECE 250

15
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Rounding Errors

•  We only have 32-bits to represent floats
§  Must approximate some values
§  Limited bits for mantissa

•  Does (x+y)*z = (x*z+y*z)?
§  Mathematically yes, but assumes infinite precision

•  Example in base 10,
§  four digits available (two to left, two to right of decimal point)
§  x = 99.96 x 103

§  x = x + 0.07
§  x = 100.03 x 103
§  x = 10.00 x 104

•  Numerical Analysis (CS 220) studies these issues

CS/ECE 250

16
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Floating Point Representation

•  Double Precision Floating point:

64-bit representation:
§  1-bit sign
§  11-bit (biased) exponent
§  52-bit fraction (with implicit 1).

•  “double” in Java, C, C++, …

1 11-bit 52 - bit
Exp S Mantissa

17
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

What About Strings?

Recall Strings
§  char str1[256] = “hi”;
§  str1[0] = ‘h’, str1[1] = ‘i’,str1[2] = 0;
§  0 is value of NULL character ‘\0’, identifies end of string

•  A string is an array of characters
•  So we need to represent characters

18
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

ASCII Character Representation
000 nul 001 soh 002 stx 003 etx 004 eot 005 enq 006 ack 007 bel
010 bs 011 ht 012 nl 013 vt 014 np 015 cr 016 so 017 si
020 dle 021 dc1 022 dc2 023 dc3 024 dc4 025 nak 026 syn 027 etb
030 can 031 em 032 sub 033 esc 034 fs 035 gs 036 rs 037 us
040 sp 041 ! 042 " 043 # 044 $ 045 % 046 & 047 '
050 (051) 052 * 053 + 054 , 055 - 056 . 057 /
060 0 061 1 062 2 063 3 064 4 065 5 066 6 067 7
070 8 071 9 072 : 073 ; 074 < 075 = 076 > 077 ?
100 @ 101 A 102 B 103 C 104 D 105 E 106 F 107 G
110 H 111 I 112 J 113 K 114 L 115 M 116 N 117 O
120 P 121 Q 122 R 123 S 124 T 125 U 126 V 127 W
130 X 131 Y 132 Z 133 [134 \ 135] 136 ^ 137 _
140 ` 141 a 142 b 143 c 144 d 145 e 146 f 147 g
150 h 151 i 250 j 153 k 154 l 155 m 156 n 157 o
160 p 161 q 162 r 163 s 164 t 165 u 166 v 167 w
170 x 171 y 172 z 173 { 174 | 175 } 176 ~ 177 del

Oct. Char

•  Each character represented by 7-bit ASCII code (packed into 8-bits)
•  Convert upper to lower case ‘A’ + 32 = ‘a’

19
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Review: Strings as Arrays

•  A string is an array of characters with ‘\0’ at the end
•  Each element is one byte, ASCII code
•  ‘\0’ is null (ASCII code 0)
•  Char str1[256]
•  Char *str
•  Str = (char *) str

0 1 43 15
s t ‘\0’ r i g

16 42

20
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Unicode

•  Many types
•  UTF-8: variable length encoding backward compatible

with ASCII
§  Linux

•  UTF-16: variable length
§  Windows, Java

•  UTF-32: fixed length

CS/ECE 250

21
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CPS 104

Bit Manipulations

Problem
•  32-bit word contains many values

§  e.g., input device, sensors, etc.
§  current x,y position of mouse and which button (left, mid, right)

•  Assume x, y position is 0-255
§  How many bits for position?
§  How many for button?

Goal
•  Extract position and button from 32-bit word
•  Need operations on individual bits of word

22
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CPS 104

Bitwise AND / OR / XOR

•  & operator performs bitwise AND
•  | operator performs bitwise OR
•  ^ operator performs bitwise Exclusive OR (XOR)
•  Per bit

 0 & 0 = 0 0 | 0 = 0 0 ^ 0 = 0
 0 & 1 = 0 0 | 1 = 1 0 ^ 1 = 1
 1 & 0 = 0 1 | 0 = 1 1 ^ 0 = 1
 1 & 1 = 1 1 | 1 = 1 1 ^ 1 = 0

•  For multiple bits, apply operation to individual bits in same position

011010
101110
001010

011010
101110
111110

AND OR
011010
101110
110100

XOR

23
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CPS 104

Mouse Example

•  32-bit word with x,y and button fields
§  bits 0-7 contain x position
§  bits 8-15 contain y position
§  bits 16-17 contain button (0 = left, 1 = middle, 2 = right)

•  Use bitwise operations to extract specific fields from bit
string…

 button y x
0x1a34c = 01 1010 0011 0100 1100

24
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CPS 104

Mouse Solution

•  AND with a bit mask
§  specific values that clear some bits, but pass others through

•  To extract x position use mask 0x000ff
§  xpos = 0x1a34c & 0x000ff

 button y x
0x1a34c = 01 1010 0011 0100 1100
0x000ff = 00 0000 0000 1111 1111
0x0004c = 00 0000 0000 0100 1100

25
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CPS 104

More of the Mouse Solution

•  Extract y position with mask 0x0ff00
§  ypos = 0x1a34c & 0x0ff00

•  Extract button with mask 0x30000
§  button = 0x1a34c & 0x30000

•  Not quite done…why?

26
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CPS 104

The Shift Operator

•  >> shifts right, << shifts left,
•  operands are int and number of positions to shift

§  Shifting signed integers requires sign extension

•  (1 << 3) shifts …001 -> …1000 (it’s 23)
•  0xff << 8 = 0xff00
•  0xff00 >> 8 = 0x00ff if integer is unsigned
•  0xff00 >> 8 = 0xffff if integer is signed

•  Example: shift to extract ypos and button values
 ypos = (0x1a34c & 0x0ff00) >> 8
 button = (0x1a34c & 0x30000) >> 16

27
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CPS 104

Extracting Parts of Floating Point Number

•  x is a 32-bit word
#define EXP_BITS 8

#define FRACTION_BITS 23

#define SIGN_MASK 0x80000000

#define EXP_MASK 0x7f800000

#define FRACTION_MASK 0x007fffff

Struct myfloat {

 int sign;

 unsigned int exp;

 unsigned int fraction;

};

struct myfloat x;

num->sign = (x & SIGN_MASK) >> (EXP_BITS + FRACTION_BITS);

num->exp = (x & EXP_MASK) >> FRACTION_BITS;

num->fraction = x & FRACTION_MASK;

28
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

A Program’s View of Memory

•  What is Memory?
§  A large linear array of bits

•  Find things by indexing into array
§  memory address (unsigned integer)
§  read to and write from address

•  Processor issues commands to read/write
specific locations
§  Read from memory location 0x1400
§  Write 0xff to memory location 0x8675309

•  Array of …
§  Bytes? 32-bit ints? 64-bit ints?

1
2
3
4

•

2n-1

•
•

0 00110110
00001100

Memory
Address Memory

2n-1-4

28

29
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Processor Word Size

•  Processor has word size
§  Nominal size of integer-valued data, addresses
§  32-bit vs. 64-bit addresses
§  32-bit words addressed 0x100 and 0x104

•  Most systems are byte (8-bit) addressed
§  Support to load/store 16, 32, 64 bit quantities

o  short, int, long long, etc. data types
§  What is order of bytes in memory?
§  Byte ordering varies from system to system

CS/ECE 250

30
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

3 2 1 0

little endian byte 0

0 1 2 3

big endian byte 0

Endianess and Byte Ordering

Byte Order
•  Big Endian: byte 0 is 8 most significant bits

§  IBM 360/370, Motorola 68k, MIPS, Sparc, HP PA

•  Little Endian: byte 0 is 8 least significant bits
§  Intel 80x86, DEC Vax, DEC Alpha

31
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Memory Partitions

•  Text for instructions
§  add dest, src1, src2
§  mem[dest] = mem[src1] + mem[src2]

•  Data
§  static (constants, global variables)
§  dynamic (heap, new allocated)
§  grows up

•  Stack
§  local variables
§  grows down

•  Variables are names for memory
locations
§  int x;

31

Stack

Data

Text
Reserved 0

2n-1

Typical
Address
Space

Heap

32
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Memory Layout: Example
int anumber = 3;

int factorial (int x) {
 if (x == 0) {
 return 1;
 }
 else {
 return x * factorial (x – 1);
 }
}

int main (void) {
 int z = factorial (anumber);
 printf(“%d\n”, z);
 return 0;
}

Stack

Data

Text
Reserved 0

2n-1

Typical
Address
Space

Heap

33
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

A Simple Program’s Memory Layout

...
int result; // global var

main()

{

 int x;

 ...

 result = x + result;
 ...

}

mem[0x208] = mem[0x400] + mem[0x208]

33

Stack

Text

Data

Reserved 0

2n-1

Heap

x 0x400 5

result 0x208 3

34
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Review: Pointers

•  “address of” operator &
§  don’t confuse with bitwise AND operator (later)

Given
 int x; int* p; // p points to an int
 p = &x;

Then
 *p = 2; and x = 2; produce the same result

 Note: p is a pointer, *p is an int

•  What happens for p = 2?;

0x26cf0

x 0x26cf0

p 0x26d00
... On 32-bit machine, p is 32-bits

35
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Example Array malloc() & free()

#include <stdio.h>
#include <stdlib.h> /* so we get malloc and free definitions */

main() {

 char *str;
 int *ar;

 str = (char *) malloc(256);
 ar = (int *) malloc(100*sizeof(int));

 str[0] = 'H'; str[1] = 'i'; str[2] = 0;
 ar[24] = 272;
 printf("str = %s, ar[24]= %d\n",str,ar[24]);

 free(str);
 free(ar);

}

CS/ECE 250

36
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

•  x is a pointer, what is x+33?
•  A pointer, but where?

§  what does calculation depend on?

•  Result of adding an int to a
pointer depends on size of
object pointed to
§  One reason why we tell compiler

what type of pointer we have,
even though all pointers are really
the same thing (and same size)

Address Calculation

0 1 33 199

0 1 99 32 33 98
a[33] is the same as *(a+33)
if a is 0x00a0, then a+1 is
0x00a4, a+2 is 0x00a8
(decimal 160, 164, 168)

double* d=malloc(200*sizeof(double));

*(d+33) is the same as d[33]
if d is 0x00b0, then d+1 is
0x00b8, d+2 is 0x00c0
(decimal 176, 184, 192)

int* a=malloc(100*sizeof(int));

37
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

0 1 43 15 16 42

More Pointer Arithmetic

•  what’s at *(begin+44)?

•  what does begin++ mean?

•  how are pointers compared using <
and using == ?

•  what is value of end - begin?

char* a = new char[44];
char* begin = a;
char* end = a + 44;

while (begin < end)
{
 *begin = ‘z’;
 begin++;
}

38
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

More Pointers & Arrays

int * a = new int[100];

0 1 99 32 33 98

a is a pointer
*a is an int
a[0] is an int (same as *a)
a[1] is an int
a+1 is a pointer
a+32 is a pointer
*(a+1) is an int (same as a[1])
*(a+99) is an int
*(a+100) is trouble

39
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Array Example
#include <stdio.h>

main()
{
 int *a = (int*)malloc (100 * sizeof(int));
 int *p = a;
 int k;

 for (k = 0; k < 100; k++)
 {
 *p = k;
 p++;
 }
 printf(“entry 3 = %d\n”, a[3])
}

40
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

C Array of Structures: Linked List
#include <stdio.h>

#include <stdlib.h>

struct node {

 int me;

 struct node *next;

};

int main()

{

 struct node *ar;

 struct node *p;

 int k;

 ar = (struct node *)
malloc(10*sizeof(struct node));

 p = ar;
for (k = 0; k < 9; k++)

 {

 p->me = k;

 p->next = ar + k + 1;
 p++;
 }

 p->me = 9;

 p->next = NULL;

 p = &ar[0];
 while (p != NULL) {

 printf("%d 0x%lx 0x%lx\n", \

 p->me, (unsigned long) p,
 (unsigned long) p->next);

 p = p->next;
 }

 return(0);

}}

•  Given ar = 0x10000, what does
memory layout look like?

§  What is stored at each address?

41
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin

Memory Layout

Output
Me p p->next

0 0x26ca8 0x26cb0

1 0x26cb0 0x26cb8

2 0x26cb8 0x26cc0

3 0x26cc0 0x26cc8

4 0x26cc8 0x26cd0

5 0x26cd0 0x26cd8

6 0x26cd8 0x26ce0

7 0x26ce0 0x26ce8

8 0x26ce8 0x26cf0

9 0x26cf0 0x0

•  NOTE: If you run
this program twice
you’ll get different
addresses!

0x26cb0
0

0x26ce8
7

0x26cd0
4

0x26cb8
1

0x26ce0
6

0x26cd8
5

0x26cc0
2

0x26cbf0
8

0x26cc8
3

0x0
9

0x26ca8

0x26cb0

0x26cb8

0x26cc0

0x26cc8

0x26cd0

0x26cd8

0x26ce0

0x26ce8

0x26cf0

me
next

ar[0]

me
next ar[9]

Memory
Address

Memory
Contents

Source
Symbol

me is int (4 bytes)
next is node* (4 bytes)

42
© 2013 Alvin R. Lebeck
from Hilton, Roth, Sorin CS/ECE 250

Summary: From C to Binary

•  Everything must be represented in binary!
•  There are issues for numbers

§  Max, min, rounding, etc.

•  Computer memory is linear array of bytes
•  Pointer is memory location that contains address of

another memory location
•  We’ll visit these topics again throughout semester
•  Next week

§  Assembly Programming

