
ECE 250 / CS 250
Computer Architecture

Instruction Set Architecture

Benjamin Lee

Slides based on those from Alvin Lebeck, Daniel Sorin, Andrew
Hilton, Amir Roth, Gershon Kedem

2
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

•  Homework #1
§  Due this Thursday, Jan 30 @ 11:55pm

•  Today’s Lecture

§  Operations provided by the machine (the CPU)
§  From high level to instructions
§  Types of Instruction Sets

•  Reading

§  Ch 1 -- Introduction, data representations, memory
§  Ch 2 – Instruction sets and assembly programming
§  An overview of SPIM and the MIPS32 instruction set

@ http://spimsimulator.sourceforge.net/HP_AppA.pdf

Admin

3
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

Review: Memory & Bit Operations

•  Computer memory is linear array of bytes
•  Pointer is memory location that contains address of

another memory location
•  Data representations

§  char 1 byte
§  int 4 bytes
§  float 4 bytes
§  double 8 bytes

•  Bitwise operations (&, |, ^, ~, <<, >>)

•  Code examples are linked to course web page (docs)

4
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin

Instruction Set Architecture

CS/ECE 250

I/O system CPU

Compiler

Operating
System

Application

Digital Design
Circuit Design

Firmware

Memory

Software

Hardware

HW-SW Interface,
Instruction Set Architecture

5
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

High Level Language
Program

Assembly Language
Program

Machine Language
Program

Control Signal
Specification

Compiler

Assembler

Machine Interpretation

temp = v[k];
v[k] = v[k+1];
v[k+1] = temp;

0000 1001 1100 0110 1010 1111 0101 1000
1010 1111 0101 1000 0000 1001 1100 0110
1100 0110 1010 1111 0101 1000 0000 1001
0101 1000 0000 1001 1100 0110 1010 1111

 Levels of Representation

lw $15, 0($2)
lw $16, 4($2)
sw $16, 0($2)
sw $15, 4($2)

Transistors turning on and off

6
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin

What is an ISA?

•  Instruction Set Architecture (ISA)
§  The “contract” between software and hardware
§  If software does X, hardware promises to do Y

o Functional definition of operations, modes, storage
locations supported by hardware

o Precise description of how software invokes, accesses them

§  Strictly speaking, ISA is the architecture, i.e., the interface
between the hardware and the software

§  Less strictly speaking, when people talk about architecture,
they’re also talking about how the the architecture is implemented

CS/ECE 250

7
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

Requirements for ISA
#include <stdio.h>

main()
{
 int *a = new int[100];
 int *p = a;
 int k;

 for (k = 0; k < 100; k++)
 {
 *p = k;
 p++;
 }

 printf(“entry 3 = %d\n”, a[3]);
}

What primitive operations
do we need?

What should be implemented
in hardware?

8
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin

How Would You Design an ISA?

•  What interface should hardware present to software?
§  Types of instructions?
§  Instruction representation?
§  Change in control flow?
§  View of storage? Where do variables live?

§  Does the hardware help to support function/method calls?
§  If so, how?

§  Should the hardware support other features that are specific to
certain HLLs (e.g., garbage collection for Java)?

CS/ECE 250

9
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin

Microarchitecture

•  ISA specifies what hardware does, not how it does it
§  No guarantees regarding…

o How operations are implemented
o Which operations are fast and which are slow
o Which operations take more power and which take less

§  These issues are determined by the microarchitecture
o Microarchitecture = how hardware implements architecture
o Any number of microarchitectures can implement the same

architecture
o Pentium and Pentium 4 are almost the same architecture, but

are very different microarchitectures

CS/ECE 250

10
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin

Aspects of ISAs

•  We will discuss the following aspects of ISAs
1.  The Von Neumann (pronounced NOY-muhn) model

o  Stored-program computer
o  Implicit structure of all modern ISAs

2.  Format
o  Length and encoding

3.  Operations
4.  Operands

o  Where are operands stored and how to address them?
5.  Datatypes
6.  Control

•  Example with MIPS instruction set

CS/ECE 250

11
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin

(1) The Sequential (Von Neumann) Model

•  Implicit model of all modern ISAs
§  Often called Von Neumann, but in ENIAC before

•  Program counter (PC)
§  Defines total order of dynamic instructions

o Next PC is PC++ unless insn says otherwise
§  Instruction order, named storage define computation

o Value flows from insn X to Y via storage A…
o X names A as output, Y names A as input…
o  Insn Y after X

§  Processor implicitly executes loop at left
§  Instruction execution is assumed atomic
§  Instruction X finishes before insn X+1 starts

Fetch PC

Decode

Read Inputs

Execute

Write Output

Next PC

CS/ECE 250

12
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin

(2) Instruction Format

•  Length
1.  Fixed length

o  8, 16, 32 or 64 bits (depends on architecture)
+  Simple implementation: compute next PC using only this PC
–  Code density: 32 or 64 bits for a NOP (no operation)?

2.  Variable length
–  Complex implementation
+  Code density

3.  Compromise: two lengths
o  Example: MIPS16

•  Encoding
§  A few simple encodings simplify decoder implementation

CS/ECE 250

13
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin

(3) Operations

•  Operation type encoded in instruction opcode
•  Many types of operations

§  Integer arithmetic: add, sub, mul, div, mod/rem (signed/unsigned)
§  FP arithmetic: add, sub, mul, div, sqrt
§  Integer logical: and, or, xor, not, sll, srl, sra

•  What other operations might be useful?
•  More operation types == better ISA??

•  DEC VAX computer had many operation types
§  Example: instruction for polynomial evaluation
§  But many of them were rarely/never used. Why?

CS/ECE 250

14
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin

(4) Operations Act on Operands

•  If you’re going to add, you need at least 3 operands
§  Two source operands, one destination operand
§  Note: operands don’t have to be unique (e.g., A = B + A)

•  Question #1: Where do operands come from?

•  Question #2: How are they specified?

CS/ECE 250

15
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

Accumulator:
 1 address add A acc ← acc + mem[A]
 1+x address addx A acc ← acc + mem[A + x]

Stack:
 0 address add tos ← tos + next

General Purpose Register:
 2 address add A B A ← A + B
 3 address add A B C A ← B + C

Load/Store:
 3 address add Ra Rb Rc Ra ← Rb + Rc
 load Ra Rb Ra ← mem[Rb]
 store Ra Rb mem[Rb] ← Ra

Basic ISA Classes

16
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

Accumulator

•  Instruction set: Accumulator is implicit operand
one explicit operand
add, sub, mult, div, . . .
clear, store (st)

Example: a*b - (a+c*b)

4
3
2

a
b
c

tmp

clear 0
add c 2
mult b 6
add a 10
st tmp 10
clear 0
add a 4
mult b 12
sub tmp 2
9 instructions

Memory

17
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

Stack Instruction Set Architecture

•  Instruction set
add, sub, mult, div Top of stack (TOS) and TOS+1 are implicit
push A, pop A TOS is implicit operand, one explicit operand

Example: a*b - (a+c*b)

A B
A

A*B

-

+

a a b

*

b

*

c

A*B
A*B

A*B

A

A
C

A*B
A A*B A

C B C*B + * - + *

time
push a
push b
mult
push a
push c
push b
mult
add
sub
9 instructions

18
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

2-address ISA

•  Instruction set: two explicit operands, one implicit
add, sub, mult, div, …
one source operand is also destination

 add a,b a <- a + b

Example: a*b - (a+c*b)

 tmp1, tmp2
 add tmp1, b 3, ?
 mult tmp1, c 6, ?
 add tmp1, a 10, ?
 add tmp2, b 10, 3
 mult tmp2, a 10, 12
 sub tmp2, tmp1 10, 2
 6 instructions

4
3
2

a
b
c

tmp1
tmp2

Memory

19
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

3-address ISA

•  Instruction set: Three explicit operands
add, sub, mult, div, …
add a,b,c a <- b + c

Example: a*b - (a+c*b)

4
3
2

a
b
c

tmp1
tmp2

 tmp1, tmp2
mult tmp1, b, c 6, ?
add tmp1, tmp1, a 10, ?
mult tmp2, a, b 10, 12
sub tmp2, tmp2, tmp1 10, 2
4 instructions

20
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

Adding Registers to an ISA

•  Registers hold values.
•  Registers are named within the instruction

•  Like memory, but much smaller
§  32-128 locations

•  How many bits to specify a register?

r0

r31

1
2
3
4

•

2n-1

•
•

0 00110110
00001100

Byte
Address Data

2n-1-4

21
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

3-address General Pupose Register ISA

•  Instruction set: Three explicit operands
 add, sub, mult, div, …
 add a,b,c a <- b + c

Example: a*b - (a+c*b)
 r1, r2
 mult r1, b, c 6, ?
 add r1, r1, a 10, ?
 mult r2, a, b 10, 12
 sub r2, r2, r1 10, 2
 4 instructions

4
3
2

a
b
c

22
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

LOAD / STORE ISA

•  Instruction set:
add, sub, mult, div only for operands in registers
ld, st, to move data from/to mem

Example: a*b - (a+c*b)

4
3
2

a
b
c

 r1, r2, r3
ld r1, c 2, ?, ?
ld r2, b 2, 3, ?
mult r1, r1, r2 6, 3, ?
ld r3, a 6, 3, 4
add r1, r1, r3 10, 3, 4
mult r2, r2, r3 10, 12, 4
sub r3, r2, r1 10, 12, 2
7 instructions

23
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

Using Registers for Pointer Access

•  Registers can hold memory addresses
Given
 int x; int *p;

 p = &x;

 *p = *p + 8;

Instructions
 ld r1, p // r1 <- mem[p]
 ld r2, r1 // r2 <- mem[r1]

 add r2, r2, 0x8 // increment x by 8
 st r1, r2 // mem[r1] <- r2

•  Many different ways to address operands

0x26cf0

x 0x26cf0

p 0x26d00
...

24
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

Operand Addressing Modes
•  Register direct Ri
•  Immediate (literal) v
•  Direct (absolute) M[v]

•  Register indirect M[Ri]
•  Base+Displacement M[Ri + v]
•  Base+Index M[Ri + Rj]
•  Scaled Index M[Ri + Rj*d + v]
•  Autoincrement M[Ri++]
•  Autodecrement M[Ri - -]

•  Memory Indirect M[M[Ri]]

Ri Rj v
memory

registers

Instruction Fields

25
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

Making Instructions Machine Readable

•  So far, still too abstract
§  add r1, r2, r3

•  Need to specify instructions in machine readable form
§  Bunch of Bits

•  Instructions are bits with well defined fields
§  Like a floating point number has different fields

•  Instruction Format
§  establishes a mapping from “instruction” to binary values
§  which bit positions correspond to which parts of the instruction

(operation, operands, etc.)

26
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin

•  RISC – reduced instruction set computer

•  3-address, reg-reg arithmetic instruction
•  32-bit fixed format instruction (3 formats)

•  32 64-bit general-purpose registers (R0 contains zero)
•  Single address mode for load/store

§  base + displacement

CS/ECE 250

A Typical RISC Instruction Set

27
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

Example: MIPS

Op
31 26 0 15 16 20 21 25

Rs1 Rd immediate

Op
31 26 0 25

Op
31 26 0 15 16 20 21 25

Rs1 Rs2

target

Rd Opx

Register-Register
5 6 10 11

Register-Immediate

Op
31 26 0 15 16 20 21 25

Rs1 Rs2/Opx immediate

Branch

Jump / Call

28
© 2013 Alvin R. Lebeck
from Hilton, Kedem, Roth, Sorin CS/ECE 250

Summary

•  Instruction Set Architecture is bridge between Software
and the Processor (CPU)

•  Many different possibilities
§  Accumulator
§  Stack
§  General-purpose registers
§  Load-store

Reading
§  An overview of SPIM and the MIPS32 instruction set

@ http://spimsimulator.sourceforge.net/HP_AppA.pdf

