Lectures

TuTh 11:45 – 1:00PM Biological Sciences 111

Faculty

Professor Benjamin Lee (benjamin.c.lee@duke.edu) Office Hours: TuTh 2:00-3:00PM, Hudson 210

Recitations W 1:25PM-2:40PM, 3:05-4:20PM, 4:40PM-5:55PM

Graduate Teaching Assistants

Yuhao Li (yuhao.li@duke.edu) Atefeh Mehrabi (atefeh.mehrabi@duke.edu) Parker Trofatter (kenneth.trofatter@duke.edu)

Undergraduate Teaching Assistants

25 UTAs will lead recitations, hold office hours, and grade.

Webpage

http://people.duke.edu/~bcl15/class/class_ece250spr18.html See Sakai for homework assignments, lecture slides

Synopsis

Computer structure, machine language, instruction execution, addressing techniques, and digital representation of data. Computer systems organization, logic design, microprogramming, and interpreters. Symbolic coding and assembly systems. Prerequisite: Computer Science 201 or consent of instructor.

Text

(1) Patterson and Hennessy. *Computer Organization and Design: The Hardware/Software Interface*, 5th edition, Morgan-Kaufmann. (2) Kernighan and Ritchie. *The C Programming Language*, 2nd edition (optional)

Assignments and Grading

This course will require readings from the textbook, problem sets, programming assignments, and digital logic design. Grades are assigned based on homework (50%), midterm-1 (12.5%), midterm-2 (12.5%), final (20%), recitations (5%). You are expected to complete the homework individually unless otherwise stated. However, you may discuss topics covered in the class. Late homework submissions incur a 10% penalty when <24 hours late, incur a 20% penalty when 24-48 hours late, and receive no credit when >48 hours late.

Academic Integrity

The discussion of ideas and design strategies is an integral part of the learning experience. However, cheating and plagiarism is not. Practically, you violate academic integrity when

- (1) you obtain solutions and code from others, or
- (2) you provide solutions and code to others.

The Duke Community Standard, will be strictly enforced with zero tolerance for cheating and/or plagiarism. If a student is suspected of academic dishonesty (e.g., cheating on an exam, copying code, collaborating inappropriately on an assignment), the instructor will report the matter to the Office of Student Conduct. A student found responsible for academic dishonesty faces formal disciplinary action, which may include suspension. A student twice suspended automatically faces a minimum 5-year separation from Duke University.

Week	Торіс	Reading
Jan 8	Module 1: Course Introduction and Overview	Chapter 1
Jan 15	Introduction	
	Medule 2. Instruction Sate and Assembly Drogramming	Chanter 2
	C Programming	Chapter 2
Jan 22	From C to Binary	
Jan 29	Assembly Programming	
Feb 5	Module 3: Digital Logic Design	Appendix B
	Sequential Logic, Finite State Machines	
Feb 12	Module 4: Processor Design	Chapter 4.1 – 4.4
	Datapath, Control, Exceptions / Interrupts / Syscalls	
Feb 19	Midterm 1 (Feb 22)	
Feb 26	Module 5: Memory	Chapter 5
	Caches	
Mar 5	Caches	
	Main Memory	
Mar 12	Spring Break	
Mar 19	Main Memory	
	Virtual Memory	
Mar 26	<u>Module 6</u> : I/O	Appendix A.8
	Midterm 2 (Mar 27)	
Apr 2	Module 7: Pipelined Cores	Chapter 4.5 – end
Apr 9	Module 8: Multi-core	Chapter 6
Apr 16	Survey – Modern Processors	
Apr 23	Review for Final Exam	