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Abstract 

MIPS is a new single chip VLSI microprocessor. It aftempts to 

achieve high performance with the use of a simplified instruction 

set, similar to those found in microengines. The processor is a fast 

pipelined engine without pipeline interlocks. Software solutions 

to several traditional hardware problems, such as providing 
pipeline interlocks, are used. 

Introduction 

MIPS (Microprocessor without Interlocked Pipe Stages) is a new 

general purpose microprocessor architecture designed to be 
implemented on a single VLSI chip. The main goal of the design 

is high performance in the execution of comPiled code. The 

architecture is experimental since it is a radical break with the 

trend of modern computer architectures. The basic philosophy of 

MIPS is to present an instruction set that is a co~!apiler-driven 
encoding of the microengine. Thus, little or no decoding is 

needed and the instructions correspond closely to microeode 

instructions. The processor is pipelined but provides no pipeline 

interlock hardware; this function must be provided by software. 

The MIPS architecture presents the user with a fast machine with 
a simple instruction set. This approach has been used by the IBM 

8071_ project I and is currently being explored by the RISC project 

at Berkeley2; it is directly 'opposed to the approach taken by 

architectures such as the VAX. However, there are significant 

differences between the RISC approach and the approach used in 

MIPS: 

1. The RISC architecture is simple both in the instruction set 

and the hardware needed to implement that instruction set. 

Although the MIPS instruction set has a simple hardware 

implementation (i.e. it requires a minimal amount of 

hardware control), the user level instruction set is not as 

straightforward, and the simplicity of the user level 

instruction set is secondary to the performance goals. 

2. The thrust of the R I S C  design is towards cfficient 

implementation of a straightforward instruction set. In the 

M1PS design, high performance from the hardware engine 

is a primary goal, and the microengine is presented to the 

end user with a minimal amount of interpretation. This 

makes most of the microcngine's parallelism available at the 

instruction set level. 

3. The RISC project relies on a straightforward instruction set 

and straightforward compiler technology. MIPS will require 

more sophisticated compiler technology and will gain 

significant performance benefits from that technology. The 

compiler technology allows a microcode-level instruction 

set to appear like a normal instruction set to both code 

generators and assembly language programmers. 

The MIPS architecture is closer to the 801 architecture in many 

aspects. In both machines the macroinstruction set maps very 

directly to the microoperations of the processor. Both processors 
may be thought of as architectures with micro-level user 

instruction sets. Microcode is created by compilers and code 

generators as it is needed to implement complex operations. The 

primary differences lie in various architectural choices about 

pipeline design, registers, opeodes and in the attempt in the MIPS 

instruction set to make all the microengine parallelism available at 

the user instruction set level. These attempts are most visible 

within MIPS in the following ways: the two-part memory/ALU 
and ALU/ALU instructions, the explicit pipeline interlocks, and 

the conditional jump instructions. 

MIPS is designed for high performance. To allow the user to get 

maximum perf~)rmance, the complexity of individual instructions 

is minimized. This allows the execution of these instructions at 
significantly higher speeds. To take advantage of simpler 

hardware and an instruction set that easily maps to the 
mieroinstruction set, additional compiler-type translation is 

needed. This compiler technology makes a compact and time- 
efficient mapping between higher level constructs and the 

simplified instruction set. The shifting of the complexity from the 

hardware to the software has several major advantages: 

• The complexity is paid for only once during compilation. 
When a user runs his program on a complex architecture, 

he pays the cost of the architectural overhead cach time he 
runs his progrmn. 

• It allows the concentration of energies on the software, 

rather than constructing a complex hardware engine, which 

is hard to design, debug, and efficiently utilize. Software is 

not necessarily easier to construct, but the WLSI envi- 

ronment makes hardware simplicity important. 

The design of a high performance VLSI processor is drarnatically 

affected by the technology. Among the most important design 
considerations are: the effect of pin limitations, available silicon 
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area, and size/speed tradeoffs. Pin limitations force the careful 

design of a scheme for multiplexing the available pins, especially 

when data and instruction fetches are overlapped. Area 

limitations and the speed of off-chip intercommunication require 

choices between on- and off-chip functions as well as limiting the 

complete on-chip design. With current state-of-the-art iechnology 

either some vital component of the processor (such as memory 

management) must be off-chip, or the size of the chip will make 

both its performance and yields unacceptably low. Choosing what 

functions are migrated off-chip must be done carefully so that the 

performance effects of the partitioning are minimized. In some 

cases, through careful design, the effects may be eliminated at 

some extra cost for high speed off-chip functions. 

Speed/complexity/area tradeoffs are perhaps the most important 

and difficult phenomena to deal with. Additional on-chip 
functionality requires more area, which also slows down the 

performance of every other function. "Ibis occurs for two equally 

important reasons: additional control and decoding logic in- 

creases the length of the critical path (by increasing the number of 

active elements in the path) and each additional function 

increases the length of internal wire delays. In the processor's data 

path these wire delays can be substantial, since thy accumulate 

both from bus delays, which occur when the data path is 

lengthed, and control delays, which occur when the decoding and 

control is expanded or when the data path is widened. In the 
MIPS architecture we have attempted to control these delays; 

however, they remain a dominant factor in detexTnining the speed 

of the processor. 

T h e  m i c r o a r c h i t e c t u r e  

D e s i g n  p h i l o s o p h y  

The fastest execution of a task on a microengine would be one in 

which all resources of the microengine were used at a 100% duty 
cycle performing a nonrcdundant and algorithmically efficient 

encoding of the task. The MIPS microengine attempts to achieve 

this goal. The user instruction set is an encoding of the 
microengine that makes a maximum amount of the microengine 

available. This goal motivated many of the design decisions 

found in the architecture. 

MIPS is a load/store architecture, i.e. data may be operated on 

only when it is in a register and only load/store instructions access 

memory. If data operands are used repeatedly in a basic block of 

code, having them in registers will prevent redundant load/stores 

and redundant addressing calculations; this allows higher 

throughput since more operations directly related to the 
computation can be performed. The only addressing modes 

supported are immediate, based with offset, indexed, or base 

shifted. ~ibese addressing modes may require fields from the 

instruction itself, general registers, and one ALU or shifter 

~peration. Another ALU operation available in the fourth stage 

of every instruction can be used for a (possibly unrelated) 

computation. Another major benefit derived from the load/store 

architecture is simplicity of the pipeline structure. The simplified 

structure has a fixed number of pipestages, each of the same 

length. Because, the stages .can be used in varying (but related) 

ways, pipline utilization improves. Also, the absence of 

synchronization between stages of the pipe, increases the 

performance of the pipeline and simplifies the hardware. The 

simplified pipeline eases the handling of both interrupts and page 
faults. 

Although MIPS is a pipelined processor it does not have 

hardware pipeline interlocks. This approach is often seen in low 

and medium performance microengines. MIPS five stage pipeline 

contains three active instructions at any time; either the odd or 

even pipestages are active. The major pipestages and their tasks 
are shown in Table 1. 

Table 1" Major pipestages and their functions 

Staqe Hnemonic Task 
Ins t ruc t ion  Fetch IF Send out the PC, 

increment i t  

Instruction Decode ID Decode instruction 

Operand Decode OD Compute effectivo 
address and send tO 
memory i f  load or 
store, use ALU 

Operand Store/ OS/ Store: w r i t e  operand/ 
Execution EX "Execution: use ALU 

Operand Fetch OF Load: read operand 

Interlocks that are required because of dependencies brought out 

by pipelining are not provided by the hardware. Instead, these 

interlocks must be statically provided where they areneeded by a 

pipeline reorganizer. This has two benefits: 

1. A more regular and faster harclware implementation is 

possible since it does not have the usual complexity 

associated with a pipelined machine. Hardware interlocks 
cause small delays for ,all instructions, regardless of their 
relationship on other instructions. Also, interlock hardware 

tends to be very complex and nonregular 3,4. qhe lack of 

such hardware is especially important for VLSI implemen- 
tations, ~vhere regularity and simplicity is important. 

2. Rearranging operations at compile time is better than 

delaying them at mn time. With a good pipeline 

reorganizer, most cases where interlocks are avoidable 

should be found and taken advantage of. This results in 

performance better than a comparable machine with 

hardware interlocks, since usage of resources will not be 

delayed. In cases where this is not detected or is not 

possible, no-ops must be inserted into the code. This does 

not slow down execution compared to a similar machine 

with- hardware interlocks, but does increase code size. The 

shifting of work to a reorganizer would be a disadvantage if 

it took excessive amounts of computation. It appears this is 

not a problem for our first reorganizer. 

In the MIPS pipeline resource usage is permanently allocated to 
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various pipe stages. Rather than having pipeline stages compete 

for the ase of resources through queues or priority schemes, the 

machine's resources are dedicated to specific stages so that they 

are 100% utilized. In Figure I, the allocation of  resources to 

individual pipe stages is shown. When concurrendy executing 

pipe stages are overlayed, all available resources can be used. 

Figure I: Resource Allocation by Pipestage 
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To achieve 100% utilization primitive operations in the micro- 

engine (e.g., load/store, AI.U operations) must be completely 

packed into maeroinstructions. This is not possible for three 
reasolls: 

1. Dependencies can prevent full usage of the microengine, 

for example when a sequence of register loads must be done 

before an ALU operation or when no-ops must be inserted. 

Z An encoding that preserved all the parallelism (i.e., the 

microcontrol word itsel0 would be too large. This is not 

serious problem since many of the possible micro- 

instructions are not useful. 

3. The encoding of the microcngine presented in the instruc- 

tion set ~acrifiees some functional specification for immed- 

iate data. In the worst case, space in the instrxlcti.on word 

used for loading large immediate values takes up the space 

norumlly used for a b;Lse register, displacement, and ALU 

operation specification. In this case the memory interface 

and AI,U can nut be used during the pipe stage for which 

they are dedicated. 

Nevertheless, first results on micrucngine utilization am 

e,~eouraging. Many instructions fully utilize the major resources 

ofthe machine. Other instructions, s~Jch ~ Io;id immediate which 

use few of the resources of the m:lchine, would mandate greatly 

increased control complexity if ovett~tp with surrounding instruc- 

lions wasattempted in an irregular fashion. 

MIPS has one instruction size, and all instructions execute in the 

.,ame amount of time (one data memory cycle). This choice 

simplifies the construction of code generators for the architecture 

(by eliminating many nonobvious code sequences for different 

functions) and makes the construction of a synchronous regular 

pipeline much easier. Additionally, the fact'that each maerom- 

struction is a single microinstruction of fixed length and execution 

time means that a minimum amount of internal state is needed in 

the processor. The absence of this internal state leads to a faster 

processor and minimizes the difficulty of supporting interrupts 

and page faults. 

R e s o u r c e s  of  t h e  m i c r o e n g i n e  

The major functional components of the microengine include: 

• ALU resources: A high speed, 32-bit carry lookahead ALU 

with hardware support for multiply and divide; and a barrel 

shitter with byte insert and extract capabilities. Only one of 

the ALU resources is usable at a time. Thus within the class 

of ALU resources, functional units can not be fully used 

even when the class itself is used 100%. 

• Internal bus resources: Two 32-bit bidirectional busses, 

each connecting almost all functional components. 

• On chip storage: Sixteen 32-bit general,purpose registers. 

• Memory resources: Two memory interfaces, one for 

instructions and one for data. reach of the parts of the 

memory resource can be 100% utilized (subject to packing 

and instruction space usage) because either one store or 

load form data memol3, and one instruction fetch can occur 
simultaneously. 

• A multistage PC unit: An incrementable current PC with 

Storage of ono branch target as well as four previous PC 

values. These are required by the pipelining of'instructions 

and interupt and exception handling. 

The instruction set 

All MIPS instructions are 32-bits. The user instruction set is a 

compiler-based encoding of the micromachine. Static and 

dyn,'unie instruction set efficiency, as detcn:ained by a code 

generator, is used to decide what micromachine features to 

encode into macroinstructim~s in the architecture. Multiple 

simple (and possibly unrelated)instruction pieces are packed 

togetlter into an instruction word. ' lhe basic instruction pieces 

are-" 

l. ALU pieces - these instructions are all register/register (2 

and 3 operand form:=ts). 'lllcy all use less that1 1/2 of an 

instruction word. Included in this category are byte 

insert/extract, two b!t l~oolhs multiply step, and one bit 

nonrcstoring divide step, ,as well as ,,,taudard AI,U and 

logical oper, ttions. 

2. Load/store picce,~ - these iustrucli,ns load and store 
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memory operands. They use between 16 and 32 bits of an 

instruction word. When a load instruction is less than 32 

bits, it may be packaged with an ALU instruction, which is 

executed during the Execution stage of the pipeline. 

3. Control flow pieces - these include direct jumps and 

compare instructions with relative jumps. MIPS does not 

have condition codes, but includes a rich collection of set 
conditionally and comp,'ire and jump instructions. The set 

conditional instructions provide a powerful implementation 

for conditional expressions. They set a register to all l 's or 
O's based on one of 16 possible comparisons done during 

the operand decode stage. During the Execution stage an 

ALU operation is available for logical operations with other 

booleans. The compare and jump instructions are direct 

encodings of the micromacfiine: the operand decode stage 

computes the address of the branch target and the 

Execution cycle does the comparison. All branch instruc- 

tions have a delay in their effect of one instruction; i.e., the 

next sequential instruction is always executed. 

4. Other instructions - inc!ude procedure and interrupt 

linkage. The procedure linkage instructions also fit easily 

into the micromachine format of effective address calcu- 

lation and register-register computation instructions. 

MIPS is a word-addressed machine. This provides several major 

performance advantages over a byte addressed architecture. First, 

the use of word addressing simplifies the memory interface since 

extraction and insertion hardware is not needed. This is 

particularly important, since instruction and data fetch/store are 

in a critical path. Second, when byte data (characters) can be 

handled in word blocksl the computation is much more efficient. 

Last, the effectiveness of short offsets from base register is 
multiplied by a factor of four. 

MIPS does not directly support floating point arithmetic. For 

applications where such computations are infrequent, floating 
point operations implemented with integer opcrations and field 
insertion/extraction sequences should be sufficient. For more 

intensive applications a numeric co-processor similar to the Intel 
8087 would be appropriate. 

Systems issues 

The key systems issues are the memory system, and internal traps 
and external interrupt support. 

The memory system 

The use of memory mapping hardware (off chip in the current 

design) is needed to support virtual memory. Modern micro- 

processors (Motorola 68000) are already faced with the problem 

that thesum of the memory access time and the memory mapping 

time is too long to allow the processor to run at full speed. This 

problem is compounded in MIPS; the effect of pipelining is that a 

single instruction/data memor3/ must provide acce~ at 

approximately twice the normal rate (for 64k RAMS). 

The solution we have chosen to this pl:oblem is to separate the 

data and instruction memory systems. Separation of program and 

data is a regular practice on many machines; in file MIPS system 

it allows us to significantly increase performance. Another benefit 

of the separation is that it allows the use of a cache only for 

instructions. Because the instruction memory can be treated as 

read-only memory (except when a program is being loaded), the 

cache control is simple. The use of an instruction cache allows 

increased performance by providing more time during the critical 

instruction decode pipe stage. 

Faults and interrupts 

The MIPS architecture will support page faults, externally 

generated interrupts, and internally generated traps (arithmetic 

overflow). The necessary hardware to handle such things in a 
pipelined architecture usually large and complex 3,4. Further- 

more, this is an area where the lack of sufficient hardware support 

makes the construction of systems software impossible. However, 

because the MIPS instruction set is not interpreted by a 
microengine (with its own state), hardware support for page faults 

and interrupts is significantly simplified. 

To handle interrupts and page faults correctly, two important 

properties are required. First, the architecture must ensure correct 

shutdown of the pipe, without executing any faulted instructions 

(such as the instruction which page faulted). Most present 
microprocessors can not perform this function correctly (e.g. 

Motorola 68000, Zilog ZS000, and the Intel 8086). Second, the 

processor must be able to correctly restore the pipe ,and continue 

execution as if the interrupt or fault had not occurred. 

These problems are significantly eased in MIPS because of the 

location of writes within the pipe stages. In MIPS all instructions 

which can page fault do not write to any storage, either registers 

or memory, before the fault is detected. The occurrence of a page 

fault need only turn off writes generated by this and any 
instructions following it which are already in the pipe. These 

following instructions also have not written to any storage before 

the fault occurs. The instruction preceding the faulting 

instruction is guaranteed to be executable or to fault in a 
restartable manner even after the instruction following it faults. 

The pipeline is drained and control is transferred to a general 

purpose exception handler. To correctly restart execution three 

instructions need to be reexecuted. A multistage PC tracks these 

instructions and aids in correctly executing them. 

Software issues 

The two major components of the MIPS software system are 

compilers ,and pipeline reorganizers. The input to a pipeline 

reorganizer is a sequence of simple MIPS instructions or 

instruction pieces generated without taking the pipeline interlocks 

and instruction packing features into account. This relieves the 

compiler from the task of dealing with the restrictions that are 

imposed by the pipeline constraints on lega! co.';e ~;equences. The 
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reorganizer reorders the instructions to make maximum use of the 

pipeline while enforcing the pipeline interlocks in the code. It also 

packs the instruction pieces to maximize use of each instruction 

word. Lastly. the pipeline reorganizer handle, s the effect of 
branch delays. This software is an important part of the MIPS 
architecture. It is responsible for making the low-level 
microarchitecture into a usable and comprehensible instruction 
seL Since the exact details of pipeline interlocks and branch 

delays may change between implementations, the architecture is 
actually defined by the input to the pipeline reorganizer. 

Since all instructions execute in the same time, and most 
instructions generated by a code generator will not be full MIPS 
instruction set, the instruction packing can be very effective in 
reducing execution time. In fully packed instructions, e.g. a load 

combined with an ALU instruction, all the major processor 
resources (both memory interfaces, the alu, busses and control 
logic) are used 100% of the time. 

The basic optimization techniques aoplied to the code sequences 
are 

i reorder instruction sequences to remove pipeline interlocks, 

2. pack together instruction pieces into a single MIPS 
instructior, 

3. remove the cffccts of delayed branches 
In some cases it may be ncccssary to insert no-ops to prevefit 
illegal pipeline interactions or to accomodate delayed branches. 
Also, pieces of instructions may be left blank whenever no i)ietm 
is available to pack with the instruction. 

The reorganization problem is discussed in detail in another 
paperS; the problem is shown to be NP-complete and a set of  

heuristic solutions is proposed. The reorganization algorithm is 
essentially an instruction scheduling algorithm. The basic algo- 
rithm is 

1. Read in the program in assembly language and create a dag 
indicating precedence scheduling relationships among the 
instructions. 

2. Determine which groups of instructions can be schcduled 
for exec.ution next and eliminate the others, 

3. Heuristically choose an instruction to shcdule from the 
,executable instructions. Attempt to choose an instruction 

that can be packed with the last instruction executed and 
that will allow the rest of the code to be scheduled with a 
minimum number of no-ops. 

The reorganization problem is made difficult but the potential 
• presence of overlal~ping resource utilitation in parallel code 
streams. This overlap nmst be detected before scheduling of 
either stream occurs; once it is detected, a deadlock state where 

neither stream can be scheduled for execution is avoidable. "lhese 
reorganization techniques (without the instruction packing) can 

obtain performance improvements of 5-.10% over code that must 
~'ait for c o!nplction of a previously dependent instructiolt. The 
use of in.qtructiot~ packi,~g increases the relative effcctivenc~ of 
this reorganization. 

"l'l~e optimization of delayed branches ks the control-now 
conterpart of code reorganization. Our algorithm for branch 

delay optimization examines the targets of the branch in an 
attempt to obtain useful instructions to execute during the delay 
time. "l'he branch delay algorithm 6 can obtain space and time 
improvements in the range of 10-20% for the MIPS branch 
instructions. 

Present status and conclusions 

The entire MIPS processor has oeen raid out and partitioned into 
a set of six test chips that  cover all the data path and  control 
functions on the chip. Four test chips have been sent out for 

fabrication as of August 1982; we expect send the remainder to 
fabrication during August 1982. 

In the software area. code generators have been written for boll: 
C and PascaL These code generators produce simple instructions, 
relying on a pipeline reorganizer. A complete version of the 
pipeline reorganizer is running. An instruction level simulator is 
being used to obtain performance estimates. 

Figure 2 shows the floorplan of the chip. The dimensions of the 
chip are approximately 6.9 by 7.2 mm with a minimum feature 
size of 4 p. (i.e. }~ = 2 p,). The chip area is heavily dedicated to the 

data path as opposed to control structure, but not as radically as 
in RISC implementation. -Early estimates of performance seem to 

indicate that we should ac;hieve approximately 2 MIPS (using the 
Puzzle program 7 as a benchmark) compared to other architect~tres 
executing compiler generated code. We expect to have more 
accurate and complete benchmarks available in the near future. 

Figure 2: MIPS Floorplan 
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both processors. The M]PS numbers are a close approximation of 

our expected perfomaance. 
Motorola 68000 MIPS 

T r a n s i s t o r  Count 65,000 25,00~ 
Clock speed 8 MHz 8 MHz = 
Data path w id th  16 b i t s  32 b i t s  2 
S t a t i c  I n s t r u c t i o n  Count 1300 647 
S t a t i c  I n s t r u c t i o n  Bytes 5360 2588 
Execution Time (sec) 26.5 0.6 

Acknowledgments 

The MIPS project has been supported by the Defense Advanced 
Research Projects Agency under contract # MDA903-79-C-0680. 
Thomas Gross is supported by an IBM Graduate Fellowship. 

Many other people have contributed to the success of the MIPS 
project; these include Judson Leonard, Alex  Strong, 
K. Gopinath, and John Burnett. 

An earlier version of this report appears in th,.~ Proceedings of the 
CMU Conference on VLSI Systems and Computations, 1981. 

References 

Radin, G., "The 801 Minicomputer," Proc 
SIGARCIt/SIGPLAN Symposium on Architectural. 
Support for Programming Languages and Operating 
Systems,, ACM, Palo Alto, March 1982, pp. 39 - 47. 

Patterson, D.A. and Sequin C.H., "RISC-I: A Reduced 
Instruction Set VLSI Computer," Proc. of the I~Tghth 
.4nnual Symposium on Computer Architecture 
Minneapolis, Minn., May 1981,. 

I.arnpson, B.W., McDaniel, G.A. and S.M. Ornstein, "An 
Instruction Fetch Unit for a High Performance Personal 
C~,mputer," Tech. report CSL-81-1, Xerox PARC, January 
i98.t. 

4. 

5. 

6. 

Widdoes, LC., "The S-1 Project: Developing high 
performance digital computers," Proc. Compcon, IEEE, 
San Francisco, February 1980,. 

Hennessy, J.L. and Gross, T.R., "Code Generation and 
Reorganization in the Presence of Pipeline Constraints," 
Proa Ninth POPL Conference, ACM, January 1982,. 

Gross, T.R. and Hennessy, J.L, "Optmizing Delayed 
Branches," Proceedings of Micro-15, IEEE, October 1982,. 

7. Baskett, F., "Puzzle: an informal coalpute bound bench- 
mark", Widely circulated and nln. 

LI'he 68(X)0 IC-techr.ology is much better, and the 68000 perfolms across a wide 
range of environmental situations. We do not expect to achieve this clock speed across 
the same range of environmental factors. 

2This advantage is not  used in the benchrnat'.',:~ i.e. the 68iX.~) version deals with 16 l:i~ 
objects while MIPS uses 32 bit objects 

22 


