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he Computer Systems Laboratory at Stanford University is developing a 
shared-memory multiprocessor called Dash (an abbreviation for Direc- 
tory Architecture for Shared Memory). The fundamental premise behind 

the architecture is that it is possible to build a scalable high-performance machine 
with a single address space and coherent caches. 

The Dash architecture is scalable in that it achieves linear or near-linear 
performance growth as the number of processors increases from a few to  a few 
thousand. This performance results from distributing the memory among process- 
ing nodes and using a network with scalable bandwidth to  connect the nodes. The 
architecture allows shared data to  be cached, thereby significantly reducing the 
latency of memory accesses and yielding higher processor utilization and higher 
overall performance. A distributed directory-based protocol provides cache co- 
herence without compromising scalability. 

The Dash prototype system is the first operational machine to include a scalable 
cache-coherence mechanism. The prototype incorporates up to  64 high-perfor- 
mance RISC microprocessors to yield performance up to 1.6 billion instructions 
per second and 600 million scalar floating point operations per second. The design 
of the prototype has provided deeper insight into the architectural and implemen- 
tation challenges that arise in a large-scale machine with a single address space. 
The prototype will also serve as a platform for studying real applications and 
software on a large parallel system. 

This article begins by describing the overall goals for Dash, the major features 
of the architecture, and the methods for achievingscalability. Next, we describe the 
directory-based coherence protocol in detail. We then provide an overview of the 
prototype machine and the corresponding software support, followed by some 
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preliminary performance numbers. The 
article concludes with a discussion of 
related work and the current status of 
the Dash hardware and software. 

The Dash team 
Many graduate students and fac- 

ultv members contributed to the 
Dash project. The PhD students 
are Daniel Lenoski and James Lau- Dash project Overview 

The overall goal of the Dash project 
is to  investigate highly parallel architec- 
tures. For these architectures to achieve 
widespread use, they must run a variety 
of applications efficiently without im- 
posing excessive programming difficul- 
ty. T o  achieve both high performance 
and wide applicability, we believe a par- 
allel architecture must provide scalabil- 
ity to  support hundreds to  thousands of 
processors. high-performance individ- 
ual processors, and a single shared ad-  
dress space. 

The gap between the computingpow- 
er  of microprocessors and that of the 
largest supercomputers is shrinking. 
while the priceiperformance advantage 
of microprocessors is increasing. This 
clearly points to  using microprocessors 
as the compute engines in a multipro- 
cessor. The challenge lies in building a 
machine that can scale up its perfor- 
mance while maintaining the initial price/ 
performance advantage of the individu- 
al processors. Scalability allows a paral- 
lel architecture to  leverage commodity 
microprocessors and small-scale multi- 
processors to build larger scale machines. 
These larger machines offer substan- 
tially higher performance, which pro- 
vides the impetus for programmers to  
port their sequential applications to  par- 
allel architectures instead of waiting for 
the next higher performance uniproces- 
sor. 

High-performance processors a r e  
important to  achieve both high total 
system performance and general appli- 
cability. Using the fastest microproces- 
sors reduces the impact of limited or 
uneven parallelism inherent in some 
applications. It also allows a wider set of 
applications to  exhibit acceptable per- 
formance with less effort from the pro- 
grammer. 

A single address space enhances the 
programmability of a parallel machine 
by reducing the problems of data parti- 
tioning and dynamic load distribution, 
two of the toughest problems in pro- 
grammingparallel machines. The shared 
address space also improves support for 
automatically parallelizing compilers, 
standard operating systems, multipro- 

don (Dash architecture and hard- 
ware design); Kourosh Gharachor- 
loo (Dash architecture and 
consistency models); Wolf-Dietrich 
Weber (Dash simulator and scal- 
able directories); Truman Joe 
(Dash hardware and protocol verifi- 
cation tools); Luis Stevens (operat- 
ing system); Helen Davis and Ste- 
phen Goldschmidt (trace 
generation tools, synchronization 
patterns, locality studies); Todd 
Mowry (evaluation of prefetch oper- 
ations); Aaron Goldberg and Marg- 
aret Martonosi (performance de- 
bugging tools); Tom Chanak (mesh 
routing chip design); Richard Simo- 
ni (synthetic load generator and di- 
rectory studies); Josep Torrellas 
(sharing patterns in applications); 
Edward Rothberg, Jaswinder Pal 
Singh, and Larry Soule (applica- 
tions and algorithm development). 
Staff research engineer David Na- 
kahira contributed to the hardware 
design. 

The faculty associated with the 
project are Anoop Gupta, John 
Hennessy, Mark Horowitz, and 
Monica Lam. 

gramming, and incremental tuning of 
parallel applications - features that 
make a single-address-space machine 
much easier to  use than a message-pass- 
ing machine. 

Caching of memory, including shared 
writable data, allows multiprocessors 
with a single address space to achieve 
high performance through reduced 
memory latency. Unfortunately, cach- 
ing shared data introduces the problem 
of cache coherence (see the sidebar and 
accompanying figure). 

While hardware support for cache 
coherence has its costs, it also offers 
many benefits. Without hardware sup- 
port, the responsibility for coherence 
falls to  the user or the compiler. Expos- 
ing the issue of coherence to  the user 
would lead to  a complex programming 
model, where users might well avoid 
caching to  ease the programming bur- 

den. Handling the coherence problem 
in the compiler is attractive. but cur- 
rently cannot be done in a way that is 
competitive with hardware. With hard- 
ware-supported cache coherence, the 
compiler can aggressively optimize pro- 
grams to  reduce latency without having 
to  rely purely on a conservative static 
dependence analysis. 

T h e  major problem with existing 
cache-coherent  shared-address  ma-  
chines is that they have not demonstrat- 
ed the ability to  scale effectively be- 
yond a few high-performance processors. 
To date, only message-passing machines 
have shown this ability. We believe that 
using a directory-based coherence mech- 
anism will permit single-address-space 
machines to  scale as well as message- 
passing machines, while providing a 
more flexible and general programming 
model. 

Dash system 
organization 

Most existing multiprocessors with 
cache coherence rely on snooping t o  
maintain coherence. Unfortunately,  
snooping schemes distribute the infor- 
mation about which processors are cach- 
ing which data items among the caches. 
Thus, straightforward snooping schemes 
require that all caches see every memo- 
ry request from every processor. This 
inherently limits the scalability of these 
machines because the common bus and 
the individual processor caches eventu- 
ally saturate. With today’s high-perfor- 
mance RISC processors this saturation 
can occur with just a few processors. 

Directory structures avoid the scal- 
ability problems of snoopy schemes by 
removing the need to  broadcast every 
memory request to all processor caches. 
The directory maintains pointers to the 
processor caches holding a copy of each 
memory block. Only the caches with 
copies can be affected by an access to  
the memory block, and only those cach- 
es need be notified of the access. Thus, 
the processor caches and interconnect 
will not saturate due to  coherence re- 
quests. Furthermore. directory-based co- 
herence is not dependent on  any specif- 
ic interconnection network like the bus 
used by most snooping schemes. The 
same scalable, low-latency networks 
such as Omega networks or  k-nary n- 
cubes used by non-cache-coherent and 
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Cache coherence 
Cache-coherence problems can arise in shared-memory 

multiprocessors when more than one processor cache holds 
a copy of a data item (a). Upon a write, these copies must be 
updated or invalidated (b). Most systems use invalidation 
since this allows the writing processor to gain exclusive ac- 
cess to the cache line and complete further writes into the 
cache line without generating external traffic (c). This fufther 
complicates coherence since this dirty cache must respond 
instead of memory on subsequent accesses by other proces- 
sors (d). 

Small-scale multiprocessors frequently use a snoopy 
cache-coherence protocol,' which relies on all caches moni- 
toring the common bus that connects the processors to 
memory. This monitoring allows caches to independently de- 
termine when to invalidate cache lines (b), and when to in- 
tervene because they contain the most up-to-date copy of a 
given location (d). Snoopy schemes do not scale to a large 
number of processors because the common bus or individual 
processor caches eventually saturate, since they must pro- 
cess every memory request from every processor. 

on memory requests by keeping track of which caches hold 
each memory block. A simple directory structure first pro- 
posed by Censier and Feautrier* has one directory entry per 
block of memory (e). Each entry contains one presence bit 
per processor cache. In addition, a state bit indicates wheth- 
er the block is uncached, shared in multiple caches, or held 
exclusively by one cache (that IS, whether the block is dirty). 
Using the state and presence bits, the memory can tell which 
caches need to be invalidated when a location is written (b). 
Likewise, the directory indicates whether memory's copy of 
the block is up to date or which cache holds the most recent 
copy (d). If the memory and directory are partitioned into in- 
dependent units and connected to the processors by a scal- 
able interconnect, the memory system can provide scalable 
memory bandwidth. 

The directory relieves the processor caches from snooping 
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message-passing machines can be em- 
ployed. 

The  concept of directory-based cache 
coherence is not new. I t  was first pro- 
posed in the late 1970s. However, the 

original directory structures were not 
scalable because they used a central- 
ized directory that quickly became a 
bottleneck. The Dash architecture over- 
comes this limitation by partitioning and 

distributing the directory and main 
memory, and by using a new coherence 
protocol that can suitably exploit dis- 
tributed directories. In addition, Dash 
provides several other mechanisms to  
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reduce and hide the latency 
of memory operations. 

Figure 1 shows Dash’s  
high-level organization. The 
architecture consists of a 
number of processing nodes 
connected through directo- 
ry controllers to  a low-laten- 
cy interconnection network. 
Each processing node,  or 
cluster, consists of a small 
number of high-performance 
processors and a portion of 
the shared memory intercon- 
nected by a bus. Multipro- 
cessing within the cluster can 
be  viewed either as increas- 
ing the power of each pro- 
cessing node or  as reducing 
the cost of the directory and 
network interface by amor- 
tizing it over a larger num- 
ber of processors. 

Distributing memory with 
the processors is essential be- 
cause it allows the system t o  
exploit locality. All private 
data  and code references, 
along with some of the shared 
references, can be  made lo- 

o 
0 
0 

Figure 1. The Dash architecture consists of a set of clus- 
ters connected by a general interconnection network. Di- 
rectory memory contains pointers to the clusters currently 
caching each memory line. 

Scalability 
of the Dash 
approach 

We have outlined why we 
believe a single-address- 
space machine with cache 
coherence holds the most 
promise for delivering scal- 
able performance to a wide 
range of applications. Here,  
we address the more de- 
tailed issues in scaling such 
a directory-based system. 
The three primary issues are 
ensuring that the systempro- 
vides  scalable  memory  
bandwidth, that the costs 
scale reasonably, and that 
mechanisms are provided to  
deal with large memory la- 
tencies. 

Scalability in a multipro- 
cessor requires  t h e  total  
memory bandwidth to  scale 
linearly with the number of 
processors. Dash provides 
scalable bandwidth to  data 

cal to  the cluster. These references avoid architecture is similar to  many scalable objects residing in local memory by dis- 
the longer latency of remote references message-passing machines. While not tributing the physical memory among 
and reduce the bandwidth demands on optimized to  do  so, Dash could emulate the clusters. For data accesses that must 
the global interconnect. Except for the such machines with reasonable effi- be  serviced remotely, Dash uses a scal- 
directory memory, the resulting system ciency. able interconnection network. Support 
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Figure 2. Cache invalidation patterns for MP3D (a) and PThor (b). MP3D uses a particle-based simulation technique to 
determine the structure of shock waves caused by objects flying at high speed in the upper atmosphere. PThor is a paral- 
lel logic simulator based on the Chandy-Misra algorithm. 
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of coherent caches could potentially 
compromise the scalability of the net- 
work by requiring frequent broadcast 
messages. The use of directories, how- 
ever, removes the need for such broad- 
casts and the coherence traffic consists 
only of point-to-point messages to  clus- 
ters that are caching that location. Since 
these clusters must have originally 
fetched the data, the coherence traffic 
will be within some small constant fac- 
tor of the original data traffic. In fact, 
since each cached block is usually ref- 
erenced several times before being in- 
validated, caching normally reduces 
overall global traffic significantly. 

This discussion of scalability assumes 
that the accesses are uniformly distrib- 
uted across the machine. Unfortunate- 
ly, the uniform access assumption does 
not always hold for highly contended 
synchronization objects and for heavily 
shared data objects. The  resulting hot 
spots - concentrated accesses to data 
from the memory of a single cluster 
over a short duration of time - can 
significantly reduce the memory and 
network throughput. The  reduction oc- 
curs because the distribution of resourc- 
es is not exploited as it is under uniform 
access patterns. 

To address hot spots, Dash relies on 
a combination of hardware and soft- 
ware techniques. For example, Dash 
provides special extensions to  the di- 
rectory-based protocol to handle syn- 
chronization references such as queue- 
based locks (discussed further in the 
section, “Support for synchronization”). 
Furthermore, since Dash allows cach- 
ing of shared writable data, it avoids 
many of the data hot spots that occur in 
other parallel machines that do  notper- 
mit such caching. For hot spots that 
cannot be mitigated by caching, some 
can be removed by the coherence pro- 
tocol extensions discussed in the sec- 
tion, “Update and deliver operations,” 
while others can only be removed by 
restructuring at the software level. For 
example, when using a primitive such 
as a barrier, it is possible for software to 
avoid hot spots by gathering and releas- 
ing processors through a tree of memo- 
ry locations. 

Regarding system costs, a major scal- 
ability concern unique to Dash-like ma- 
chines is the amount of directory mem- 
ory required. If the physical memory in 
the machine grows proportionally with 
the number of processing nodes, then 
using a bit-vector to keep track of all 

clusters caching a memory block does 
not scale well. The total amount of di- 
rectory memory needed is P’ x M I L  
megabits, where P is the number of 
clusters, M is the megabits of memory 
per cluster, and I ,  is the cache-line size 
in bits. Thus, the fraction of memory 
devoted to keeping directory informa- 
tion grows as PIL. Depending on the 
machine size, this growth may or may 
not be tolerable. For example, consider 
a machine that contains up to 32 clus- 
ters of eight processors each and has a 
cache (memory) line size of 32 bytes. 
For this machine, the overhead for di- 
rectory memory is only 12.5 percent of 
physical memory as the system scales 
from eight to 256 processors. This is 
comparable with the overhead of sup- 
porting an  error-correcting code on 
memory. 

For larger machines. where the over- 
head would become intolerable, sever- 
al alternatives exist. First, we can take 
advantage of the fact that at any given 
time a memory block is usually cached 
by a very small number of processors. 
For example, Figure 2 shows the num- 
ber of invalidations generated by two 
applications run on a simulated 32-pro- 
cessor machine. These graphs show that 
most writes cause invalidations to only 
a few caches. (We have obtained similar 
results for a large number of applica- 
tions.) Consequently, it is possible to 
replace the complete directory bit-vec- 
tor by a small number of pointers and to 
use a limited broadcast of invalidations 
in the unusual case when the number of 
pointers is too small. Second, we can 
take advantage of the fact that most 
main memory blocks will not be present 
in any processor’s cache, and thus there 
is no need to provide a dedicated direc- 
tory entry for every memory block. Stud- 
ies’ have shown that a small directory 
cache performs almost as well as a full 
directory. These two techniques can be 
combined to support machines with 
thousands of processors without undue 
overhead from directory memory. 

The  issue of memory access latency 
also becomes more prominent as an  
architecture is scaled to a larger num- 
ber of nodes. There are two comple- 
mentary approaches for managing la- 
tency: methods that reduce latency and 
mechanisms that help tolerate it. Dash 
uses both approaches, though our main 
focus has been to reduce latency as much 
as possible. Although latency tolerating 
techniques are important. they often 

require additional application parallel- 
ism to be effective. 

Hardware-coherent caches provide the 
primary latency reduction mechanism 
in Dash. Caching shared data signifi- 
cantly reduces the average latency for 
remote accesses because of the spatial 
and temporal locality of memory ac- 
cesses. For references not satisfied by 
the cache, the coherence protocol at- 
tempts to minimize latency, as shown in 
the next section. Furthermore, as previ- 
ously mentioned, we can reduce latency 
by allocating data to memory close to  
the processors that use it. While average 
memory latency is reduced, references 
that correspond to interprocessor com- 
munication cannot avoid the inherent 
latencies of a large machine. In Dash, 
the latency for these accesses is addressed 
by a variety of latency hiding mecha- 
nisms. These mechanisms range from 
support of a relaxed memory consisten- 
cy model to support of nonblocking 
prefetch operations. These operations 
are detailed in the sections on “Mem- 
ory consistency“ and “Prefetch opera- 
tions.” 

We also expect software to play a 
critical role in achieving good perfor- 
mance on a highly parallel machine. Ob- 
viously, applications need to exhibit good 
parallelism to exploit the rich computa- 
tional resources of a large machine. In 
addition, applications, compilers, and 
operating systems need to exploit cache 
and memory locality together with la- 
tency hiding techniques to achieve high 
processor utilization. Applications still 
benefit from the single address space, 
however, because only performance-crit- 
ical code needs to be tuned to the sys- 
tem. Other code can assume a simple 
uniform memory model. 

The Dash cache- 
coherence protocol 

Within the Dash system organization, 
there is still a great deal of freedom in 
selecting the specific cache-coherence 
protocol. This section explains the basic 
coherence protocol that Dash uses for 
normal read and write operations, then 
outlines the resulting memory con- 
sistency model visible to the program- 
mer and compiler. Finally, it details ex- 
tensions to the protocol that support 
latency hiding and efficient synchroni- 
zation. 
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Memory hierarchy. Dash implements 
an invalidation-based cache-coherence 
protocol. A memory location may be in 
one of three states: 

uncached - not cached by any clus- 
ter; 

*shared  - in an unmodified state in 
the caches of one or  more clusters; 
o r  
dirty - modified in a single cache of 
some cluster. 

The directory keeps the summary infor- 
mation for each memory block, specify- 
ing its state and the clusters that are 
caching it. 

The  Dash memory system can be log- 
ically broken into four levels of hierar- 
chy, as illustrated in Figure 3. The first 
level is the processor’s cache. This cache 
is designed to  match the processor speed 
and support snooping from the bus. A 
request that cannot be  serviced by the 
processor’s cache is sent to  the second 
level in the hierarchy. the local cluster. 
This level includes the other proces- 
sors’ caches within the requesting pro- 
cessor’s cluster. If the data is locally 
cached, the request can be serviced with- 
in the cluster. Otherwise, the request is 
sent to  the h o m e  cluster level. The  home 
level consists of the cluster that con- 
tains the directory and physical memo- 
ry for a given memory address. For many 
accesses (for example, most private data 
references). the local and home cluster 
are  the same, and the hierarchy collaps- 
es to  three levels. In general, however, a 
request will travel through the inter- 
connection network to  the home clus- 
ter. The home cluster can usually satisfy 
the request immediately, but if the di- 
rectory entry is in a dirty state, o r  in 
shared state when the requesting pro- 
cessor requests exclusive access, the 
fourth level must also be accessed. The 
remote cluster level for a memory block 
consists of the clusters marked by the 
directory as holding a copy of the block. 

To illustrate the directory protocol, 
first consider how a processor read 
traverses the memory hierarchy: 

Processor level - If the requested 
location is present in the processor’s 
cache, the cache simply supplies the 
data. Otherwise, the request goes to  the 
local cluster level. 

* L o c a l  cluster level - If the data 
resides within one of the other caches 
within the local cluster, the data is sup- 

Processor level 

Processor cache 

Local cluster level 

Other processor caches 
within local cluster 

Home cluster level I 
I Directory and main memory 

associated with a given address I 
Remote cluster level 

Processor caches in 1 remote clusters 

Figure 3. Memory hierarchy of Dash. 

plied by that cache and no state change 
is required at  the directory level. If the 
request must be sent beyond the local 
cluster level, it goes first t o  the home 
cluster corresponding to that address. 

H o m e  cluster level - The home clus- 
ter examines the directory state of the 
memory location while simultaneously 
fetching the block from main memory. 
If the block is clean, the data  is sent to  
the requester and the directory is up- 
dated to  show sharing by the requester. 
If the location is dirty, the request is 
forwarded to  the remote cluster indi- 
cated by the directory. 

R e m o t e  cluster level - The dirty 
cluster replies with a shared copy of the 
data, which is sent directly to the re- 
quester. In addition, a sharing write- 
back message is sent to  the home level 
to  update main memory and change the 
directory state t o  indicate that the re- 
questing and remote cluster now have 
shared copies of the data. Having the 
dirty cluster respond directly to  the re- 
quester, as opposed to  routing it through 
the home. reduces the latency seen by 
the requesting processor. 

Now consider the sequence of opera- 
tions that occurs when a location is writ- 
ten: 

Processor level - If the location is 
dirty in the writing processor’s cache, 
the write can complete immediately. 
Otherwise, a read-exclusive request is 

issued on the local cluster’s bus to  ob- 
tain exclusive ownership of the line and 
retrieve the remaining portion of the 
cache line. 

Loca l  cluster level - If one of the 
caches within the cluster already owns 
the cache line, then the read-exclusive 
request is serviced at  the local level by a 
cache-to-cache transfer. This allows pro- 
cessors within a cluster to  alternately 
modify the same memory block without 
any intercluster interaction. If no local 
cache owns the block, then a read-ex- 
clusive request is sent t o  the home clus- 
ter. 

H o m e  cluster level -The home clus- 
ter can immediately satisfy an owner- 
ship request for a location that is in the 
uncached or  shared state. In addition, if 
a block is in the shared state, then all 
cached copies must be  invalidated. The 
directory indicates the clusters that have 
the block cached. Invalidation requests 
a re  sent to  these clusters while the home 
concurrently sends an exclusive data 
reply to  the requesting cluster. If the 
directory indicates that the block is dirty, 
then the read-exclusive request must be 
forwarded to  the dirty cluster, as in the 
case of a read. 

Remote  cluster level - If the direc- 
tory had indicated that the memory block 
was shared, then the remote clusters 
receive an invalidation request to  elim- 
inate their shared copy. Upon receiving 
the invalidation, the remote clusters send 
an acknowledgment to  the requesting 
cluster. If the directory had indicated a 
dirty state, then the dirty cluster re- 
ceives a read-exclusive request. As in 
the case of the read, the remote cluster 
responds directly to  the requesting clus- 
ter and sends a dirty-transfer message 
to  the home indicating that the request- 
ing cluster now holds the block exclu- 
sively. 

When the writing cluster receives all 
the invalidation acknowledgments o r  
the reply from the home or  dirty cluster, 
it is guaranteed that all copies of the old 
data have been purged from the system. 
If  the processor delays completing the 
write until all acknowledgments are re- 
ceived, then the new write value will 
become available to  all other proces- 
sors at the same time. However, invali- 
dations involve round-trip messages t o  
multiple clusters, resulting in potential- 
ly long delays. Higher processor utiliza- 
tion can be obtained by allowing the 
write t o  proceed immediately after the 
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ownership reply is received from the 
home. Unfortunately, this may lead to  

Release consistency 
provides a 10- to 40- 

inconsistencies with the memory model 
assumed by the programmer. The next 
section describes how Dash relaxes the 
constraints on memory request order- percent increase in 
ing, while still providing a reasonable performance over 

sequential consistency. programming model to  the user. 

Memory consistency. The memory 
consistency model supported by an ar- 
chitecture directly affects the amount 
of bufferingandpipelining that can take 
place among memory requests. In addi- 
tion, it has a direct effect on the com- 
plexity of the programming model pre- 
sented to  the user. The goal in Dash is to  
provide substantial freedom in the or- 
dering among memory requests, while 
still providing a reasonable program- 
ming model to  the user. 

At  one end of the consistency spec- 
trum is the sequential consistency mod- 
e1,’which requires execution of the par- 
allel program to appear as an interleaving 
of the execution of the parallel process- 
es on a sequential machine. Sequential 
consistency can be guaranteed by re- 
quiring a processor to  complete one 
memory request before it issues the next 
request.4 Sequential consistency, while 
conceptually appealing, imposes a large 
performance penalty on memory ac- 
cesses. For  many applications, such a 
model is too strict, and one can make do  
with a weaker notion of consistency. 

As  an example, consider the case of a 
processor updating a data structure with- 
in acritical section. If updating the struc- 
ture requires several writes, each write 
in a sequentially consistent system will 
stall the processor until all other cached 
copies of that location have been inval- 
idated. But these stalls are  unnecessary 
as the programmer has already made 
sure that no  other process can rely on 
the consistency of that data structure 
until the  critical section is exited. If the 
synchronization points can be identi- 
fied, then the memory need only be 
consistent a t  those points. In particular, 
Dash supports the use of the release 
consistency model,’ which only requires 
the operations to  have completed be- 
fore a critical section is released (that is, 
a lock is unlocked). 

Such a scheme has two advantages. 
First, it provides the user with a reason- 
able programming model, since the pro- 
grammer is assured that when the criti- 
cal section is exited, all other processors 
will have a consistent view of the mod- 

ified data structure. Second, it permits 
reads to  bypass writes and the invalida- 
tions of different write operations to  
overlap, resulting in lower latencies for 
accesses and higher overall performance. 
Detailed simulation studies for proces- 
sors with blocking reads have shown 
that release consistency provides a 10- 
to  40-percent increase in performance 
over sequential consistency.’ The dis- 
advantage of the model is that the pro- 
grammer or compiler must identify all 
synchronization accesses. 

The  Dash prototype supports the re- 
lease consistency model in hardware. 
Since we use commercial microproces- 
sors, the processor stalls on  read opera- 
tions until the read data is returned 
from the cache or  lower levels of the 
memory hierarchy. Write operations, 
however, are  nonblocking. There is a 
write buffer between the first- and sec- 
ond-level caches. T h e  write buffer 
queues up the write requests and issues 
them in order. Furthermore, the servic- 
ing of write requests is overlapped. As 
soon as the cache receives the owner- 
ship and data for the requested cache 
line, the write data is removed from the 
write buffer and written into the cache 
line. The  next write request can be ser- 
viced while the invalidation acknowl- 
edgments for the previous write opera- 
tions filter in. Thus, parallelism exists a t  
two levels: the processor executes other 
instructions and accesses its first-level 
cache while write operations are  pend- 
ing, and invalidations of multiple write 
operations are  overlapped. 

The  Dash prototype also provides 
fence operations that stall the processor 
or  write-buffer until previous opera- 
tions complete. These fence operations 
allow software to  emulate more strin- 
gent consistency models. 

Memory access optimizations. The use 
of release consistency helps hide the 
latency of write operations. However, 

since the processor stalls on read oper- 
ations, it sees the entire duration of all 
read accesses. For  applications that ex- 
hibit poor cache behavior or  extensive 
read/write sharing, this can lead to  sig- 
nificant delays while the processor waits 
for remote cache misses to  be  filled. T o  
help with these problems Dash provides 
a variety of prefetch and pipelining op- 
erations. 

Prefetch operat ions.  A prefetch oper- 
ation is an explicit nonblocking request 
to  fetch data before the actual memory 
operation is issued. Hopefully, by the 
time the process needs the data, its val- 
ue has been brought closer to  the pro- 
cessor, hiding the latency of the regular 
blocking read. In addition, nonblocking 
prefetch allows the pipelining of read 
misses when multiple cache blocks are 
prefetched. As  a simple example of its 
use, a process wanting t o  access a row of 
a matrix store d in  another cluster’s mem- 
ory can do  so efficiently by first issuing 
prefetch reads for all cache blocks cor- 
responding to that row. 

Dash’s prefetch operations are  non- 
binding and software controlled. The 
processor issues explicit prefetch oper- 
ations that bring a shared or exclusive 
copy of the memory block into the pro- 
cessor’s cache. Not binding the value at 
the time of the prefetch is important in 
that issuing the prefetch does not affect 
the consistency model or  force the com- 
piler to  d o  a conservative static depen- 
dency analysis. The  coherence protocol 
keeps the prefetched cache line coher- 
ent. If another processor happens to  
write to  the location before the prefetch- 
ingprocessor accesses the data, the data 
will simply be invalidated. The  prefetch 
will be rendered ineffective, but the pro- 
gram will execute correctly. Support for 
an exclusive prefetch operation aids 
cases where the block is first read and 
then updated. By first issuing the exclu- 
sive prefetch, the processor avoids first 
obtaining a shared copy and then hav- 
ing t o  rerequest an exclusive copy of the 
block. Studies have shown that, for cer- 
tain applications, the addition of a small 
number of prefetch instructions can in- 
crease processor utilization by more than 
a factor of two.‘ 

Update and deliver operations. In some 
applications, it may not be possible for 
the consumer process to  issue a prefetch 
early enough to effectively hide the la- 
tency of memory. Likewise, if multiple 
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consumers need the same item of data, 
the communication traffic can be  re- 
duced if data is multicast to  all the con- 
sumers simultaneously. Therefore, Dash 
provides operations that allow the pro- 
ducer to  send data directly to  consum- 
ers. There are  two ways for the produc- 
ing processor to  specify the consuming 
processors. The update-write operation 
sends the new data directly t o  allproces- 
sors that have cached the data, while the 
deliver operation sends the data to  spec- 
ified clusters. 

The update-write primitive updates the 
value of all existing copies of a data 
word. Using this primitive, a processor 
does not need to  first acquire an exclu- 
sive copy of the cache line, which would 
result in invalidating all other copies. 
Rather, data is directly written into the 
home memory and all other caches hold- 
ing a copy of the line. These semantics 
are  particularly useful for event synchro- 
nization, such as the release event for a 
barrier. 

The deliver instruction explicitly spec- 
ifies the destination clusters of the trans- 
fer. To  use this primitive, the producer 
first writes into its cache using normal, 
invalidating write operations. The  pro- 
ducer then issues a deliver instruction, 
giving the destination clusters as a bit 
vector. A copy of the cache line is then 
sent t o  the specified clusters, and the 
directory is updated t o  indicate that the 
various clusters now share the data. This 
operation is useful in cases when the 
producer makes multiple writes to a block 
before the consumers will want it or 
when the consumers are  unlikely to  be 
caching the item at  the time of the write. 

Support for synchronization. The ac- 
cess patterns to  locations used for syn- 
chronization are  often different from 
those for other shared data. For exam- 
ple, whenever a highly contended lock is 
released, waiting nodes rush t o  grab the 
lock. In the case of barriers, many pro- 
cessors must be  synchronized and then 
released. Such activity often causes hot 
spotsin the memorysystem. Consequent- 
ly, synchronization variables often war- 
rant special treatment. In addition to 
update writes, Dash provides two exten- 
sions to  the coherence protocol that di- 
rectly support synchronization objects. 
The first is queue-based locks, and the 
second is fetch-and-increment opera- 
tions. 

Most cache-coherent architectures 
handle locks by providing an atomic 

test&set instruction and a cached test- 
and-test&set scheme for spin waiting. 
Ideally, these spin locks should meet 
the following criteria: 

minimum amount of traffic gener- 

low latency release of a waiting pro- 

low latency acquisition of a free lock. 

ated while waiting, 

cessor, and 

Cached test&set schemes are  moder- 
ately successful in satisfying these crite- 
ria for low-contention locks, but fail for 
high-contention locks. For example, 
assume there are  N processors spinning 
on a lock value in their caches. When 
the lock is released, all N cache values 
are  invalidated, and N reads are  gener- 
ated to  the memory system. Depending 
on the timing, it is possible that all N 
processors come back to  do  the test&set 
on  the location once they realize the 
lock is free, resulting in further invali- 
dations and rereads. Such a scenario 
produces unnecessary traffic and increas- 
es the latency in acquiring and releasing 
a lock. 

The  queue-based locks  in Dash ad- 
dress this problem by using the directo- 
ry to  indicate which processors are spin- 
ning on the lock. When the lock is 
released, one of the waiting clusters is 
chosen at  random and is granted the 
lock. The grant request invalidates only 
that cluster's caches and allows one pro- 
cessor within that cluster to  acquire the 
lock with a local operation. This scheme 
lowers both the traffic and the latency 
involved in releasing a processor wait- 
ing on a lock. Informing only one clus- 
ter of the release also eliminates unnec- 
essary traffic and latency that would be 
incurred if all waiting processors were 
allowed to  contend. A time-out mecha- 
nism on the lock grant allows the grant 
to  be sent to  another cluster if the spin- 
ning process has been swapped out or  
migrated.  T h e  queued-on-lock-bi t  
primitive described in Goodman et al.' 
is similar to  Dash's queue-based locks, 
but uses pointers in the processor cach- 
es to  maintain the list of the waiting 
processors. 

The f e tch-and- increment  and fetch- 
und-decrement primitives provide atomic 
increment and decrement operations on 
uncached memory locations. The value 
returned by the operations is the value 
before the increment o r  decrement. 
These operations have low serialization 
and are  useful for implementing several 

synchronization primitives such as bar- 
riers, distributed loops, and work queues. 
The serialization of these operations is 
small because they are  done directly at 
the memory site. The low serialization 
provided by the fetch-and-increment 
operation is especially important when 
many processors want to  increment a 
location, as happens when getting the 
next index in a distributed loop. The 
benefits of the proposed operations 
become apparent when contrasted with 
the alternative of using a normal vari- 
able protected by a lock to  achieve the 
atomic increment and decrement. The  
alternative results in significantly more 
traffic, longer latency, and increased 
serialization. 

The Dash 
implementation 

A hardware prototype of the Dash 
architecture is currently under construc- 
tion. While we have developed a de- 
tailed software simulator of the system, 
we feel that a hardware implementation 
is needed t o  fully understand the issues 
in the design of scalable cache-coherent 
machines, to  verify the feasibility of 
such designs, and to  provide a platform 
for studying real applications and soft- 
ware running on a large ensemble of 
processors. 

T o  focus our effort on the novel as- 
pects of the design and to  speed the 
completion of a usable system, the base 
cluster hardware used in the prototype 
is a commercially available bus-based 
multiprocessor. While there are some 
constraints imposed by the given hard- 
ware, the prototype satisfies our prima- 
ry goals of scalable memory bandwidth 
and high performance. The prototype 
includes most of Dash's architectural 
features since many of them can only be 
fully evaluated on the actual hardware. 
The system also includes dedicated per- 
formance monitoring logic to  aid in the 
evaluation. 

Dash prototype cluster. The proto- 
type system uses a Silicon Graphics 
Power Station 4D1340 as the base clus- 
ter. The 4D1340 system consists of four 
Mips R3000 processors and R3010 float- 
ing-point coprocessors running at 33 
megahertz. Each R30001R3010 combi- 
nation can reach execution rates up to  
25 VAX MIPS and 10 Mflops. Each 
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Figure 4. Block diagram of a 2 x 2 Dash system. 

CPU contains a 64-kilobyte instruction 
cache and a64-Kbytewrite-throughdata 
cache. The  64-Kbyte data cache inter- 
faces to  a 256-Kbyte second-level write- 
back cache. The  interface consists of a 
read buffer and a four-word-deep write 
buffer. Both the first- and second-level 
caches are  direct-mapped and support 
16-byte lines. The  first level caches run 
synchronously to  their associated 33- 
MHz processors while the second level 
caches run synchronous to  the 16-MHz 
memory bus. 

The second-level processor caches are 
responsible for bus snooping and main- 
taining coherence among the caches in 
the cluster. Coherence is maintained 
using an Illinois, or MESI (modified, 
exclusive, shared, invalid), protocol. The 
main advantage of using the Illinois pro- 
tocol in Dash is the cache-to-cache trans- 
fers specified in it. While they do  little 

to  reduce the latency for misses scr- 
viced by local memory. local cache-to- 
cache transfers can greatly reduce the 
penalty for remote memory misses. The 
set of processor caches acts as a cluster 
cache for remote memory. The memory 
bus (MPbus) of the 4D1340 is a synchro- 
nous bus and consists of separate 32-bit 
address and 64-bit data buses. The MP- 
bus is pipelined and supports memory- 
to-cache and cache-to-cache transfers 
of 16 bytes every four bus clocks with a 
latency of six bus clocks. This results in 
a maximum bandwidth of 64 Mbytes 
per second. While the MPbus is pipe- 
lined, it is not a split-transaction bus. 

T o  use the 4D1340 in Dash, we have 
had to  make minor modifications to  the 
existing system boards and design a pair 
of new boards to  support the directory 
memory and intercluster interface. The 
main modification to the existing boards 

is to add a bus retry signal that is used 
when a request requires service from a 
remote cluster. The  central bus arbiter 
has also been modified to  accept a mask 
from the directory. The  mask holds off 
a processor’s retry until the remote re- 
quest has been serviced. This effective- 
ly creates a split-transaction bus proto- 
col for requests requiringremote service. 
The new directory controller boards 
contain the directory memory, the in- 
tercluster coherence state machines and 
buffers, and a local section of the global 
interconnection network. The intercon- 
nection network consists of a pair of 
wormhole routed meshes, each with 16- 
bit wide channels. One  mesh is dedicat- 
ed to  the request messages while the 
other handles replies. Figure 4 shows a 
block diagram of four clusters connect- 
ed to form a 2 x 2 Dash system. Such a 
system could scale to  support hundreds 
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Figure 6. Flow of a read request to remote memory that is dirty in a remote 
cluster. 

of processors. but the prototype will be 
limited to a maximum configuration of 
16 clusters. This limit was dictated pri- 
marily by the physical memory addres- 
sability (256 Mbytes) of the 4DI340sys- 
tem. but still allows for systems up to 64 
processors that are  capable of 1.6 GIPS 
and 600 scalar Mflops. 

Dash directory logic. The directory 
logic implements the directory-based 
coherence protocol and connects the 
clusters within the system. Figure 5 shows 
a block diagram of the directory boards. 
The directory logic is split between the 
two logic boards along the lines of the 
logic used for outbound and inbound 
portions of intercluster transactions. 

The directory controller (DC) board 
contains three major sections. The first 
is the directory controller itself, which 
includes the directory memory associ- 
ated with the cachable main memory 
contained within the cluster. The D C  
logic initiates all outbound network re- 
quests and replies. The  second section 
is the performance monitor. which can 
count and trace a variety of intra- and 
intercluster events. The third major sec- 
tion is the request and reply outbound 
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network logic together with the X-di- 
mension of the network itself. 

Each bus transaction accesses direc- 
tory memory. The directory informa- 
tion is combined with the type of bus 
operation, the address, and the result of 
snooping on the caches to determine 
what network messages and bus con- 
trols the D C  will generate. The directo- 
ry memory itself is implemented as a bit 
vector with one bit for each of the 16 
clusters. While a full-bit vector has lim- 
ited scalability, it was chosen because it 
requires roughly the same amount of 
memory as a limited pointer directory 
given the size of the prototype, and it  
allows for more direct measurements of 
the machine's caching behavior. Each 
directory entry contains a single state 
bit that indicates whether the clusters 
have a shared or dirty copy of the data. 
The  directory is implemented using dy- 
namic RAM technology, but performs 
all necessary actions within a single bus 
transaction. 

The second board is the reply con- 
troller (RC) board, which also contains 
three major sections. The first section is 
the reply controller, which tracks out- 
standing requests made by the local pro- 
cessors and receives and buffers replies 
from remote clusters using the remote 
access cache (RAC). The  second sec- 
tion is the pseudo-CPU (PCPU), which 
buffers incoming requests and issues 
them to the cluster bus. The PCPU mim- 
ics a CPU on this bus on behalf of re- 
mote processors except that responses 
from the bus are sent out by the directo- 
ry controller. The  final section is the 
inbound network logic and the Y-di- 
mension of the mesh routing networks. 

The reply controller stores the state 
of ongoing requests in the remote ac- 
cess cache. The RAC's primary role is 
the coordination of replies to interclus- 
ter transactions. This ranges from the 
simple buffering of reply data between 
the network and bus to the accumula- 
tion of invalidation acknowledgments 
and the enforcement of release consis- 
tency. The RAC is organized as a 128- 
Kbyte direct-mapped snoopy cache with 
16-byte cache lines. 

One  port of the R A C  services the 
inbound reply network while the other 
snoops on bus transactions. The R A C  is 
lockup-free in that it can handle several 
outstanding remote requests from each 
of the local processors. R A C  entries are 
allocated when a local processor ini- 
tiates a remote request, and they persist 

until all intercluster transactions rela- 
tive to that request have completed. 
The snoopy nature of the R A C  natural- 
ly lends itself to merging requests made 
to the same cache block by different 
processors and takes advantage of the 
cache-to-cache transfer protocol sup- 
ported between the local processors. 
The  snoopy structure also allows the 
R A C  to supplement the function of the 
processor caches. This includes support 
for a dirty-sharing state for a cluster 
(normally the Illinois protocol would 
force a write-back) and operations such 
as prefetch. 

Interconnection network. As stated 
in the architecture section, the Dash 
coherence protocol does not rely on a 
particular interconnection network to- 
pology. However, for the architecture 
to be scalable, the network itself must 
provide scalable bandwidth. It should 
also provide low-latency communica- 
tion. The  prototype system uses a pair 
of wormhole routed meshes to imple- 
ment the interconnection network. One  
mesh handles request messages while 
the other is dedicated to replies. The  
networks are based on variants of the 
mesh routing chips developed at the 
California Insti tute of Technology, 
where the data paths have been extend- 
ed from 8 to 16 bits. Wormhole routing 
allows a cluster to forward a message 
after receiving only the first flit (flow 
unit) of the packet, greatly reducing the 
latency through each node. The aver- 
age latency for each hop in the network 
is approximately 50 nanoseconds. The  
networks are asynchronous and self- 
timed. The bandwidth of each link is 
limited by the round-trip delay of the 
request-acknowledge signals. The pro- 
totype transfers flits at approximately 
30 MHz, resulting in a total bandwidth 
of 120 Mbytedsecond in and out of each 
cluster. 

An important constraint on the net- 
work is that it must deliver request and 
reply messages without deadlocking. 
Most networks, including the meshes 
used in Dash, are guaranteed to be dead- 
lock-free if messages are consumed at 
the receiving cluster. Unfortunately, the 
Dash prototype cannot guarantee this 
due. first, to the limited bufferingon the 
directory boards and also to the fact 
that a cluster may need to generate an 
outgoing message before it can con- 
sume an incoming message. For exam- 
ple. to service a read request, the home 

cluster must generate a reply message 
containing the data. Similarly, to pro- 
cess a request for a dirty location in a 
remote cluster, the home cluster needs 
to generate a forwarding request to that 
cluster. This requirement adds the po- 
tential for deadlocks that consist of a 
sequence of messages having circular 
dependencies through a node. 

Dash avoids these deadlocks through 
three mechanisms. First, reply messag- 
es can always be consumed because they 
are allocated a dedicated reply buffer in 
the RAC. Second, the independent re- 
quest and reply meshes eliminate re- 
quest-reply deadlocks. Finally, a back- 
off mechanism breaks  poten t ia l  
deadlocks due to request-request de- 
pendencies. If inbound requests cannot 
be forwarded because of blockages on 
the outbound request port, the requests 
are rejected by sending negative ac- 
knowledgment reply messages. Reject- 
ed requests are then retried by the issu- 
ing processor. 

Coherence examples. The following 
examples illustrate how the various struc- 
tures described in the previous sections 
interact to carry out the coherence pro- 
tocol. For a more detailed discussion of 
the protocol, see Lenoski et al.' 

Figure 6 shows a simple read of a 
memory location whose home is in a 
remote cluster and whose directory state 
is dirty in another cluster. The read 
request is not satisfied on the local clus- 
ter bus, so a Read-Req (message 1) is 
sent to the home. A t  this time the pro- 
cessor is told to  retry, and its arbitration 
is masked. A R A C  entry is allocated to 
track this message and assign owner- 
ship of the reply. The PCPU at the home 
receives the Read-Req and issues a cache 
read on the bus. The directory memory 
is accessed and indicates that the cache 
block is dirty in another cluster. The 
directory controller in the home for- 
wards the Read-Req (message 2) to the 
dirty remote cluster. The  PCPU in the 
dirty cluster issues the read on the dirty 
cluster's bus and the dirty processor's 
cache responds. The D C  in the dirty 
cluster sends a Read-Rply (message 3a) 
to the local cluster and a Sharing-Write- 
back (message 3b) request to the home 
to update the directory and main mem- 
ory. The R C  in the local cluster receives 
the reply into the RAC,  releases the 
requesting CPU for arbitration, and then 
sources the data onto the bus when the 
processor retries the read. In parallel, 
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Read-Ex Rply message is received in 
the local cluster by the RC, which can 
then satisfy the read-exclusive request. 
To assure consistency at  release points, 
however, the R A C  entry persists even 
after the write-buffer’s request is satis- 
fied. The R A C  entry is only deallocated 
when it receives the number of invali- 
date  acknowledgments (Inv-Ack, mes- 
sage 3 )  equal t o  a n  invalidation count 
sent in the original reply message. The 
R C  maintains per-processor R A C  allo- 
cation counters t o  allow the hardware 
to  stall releasing synchronization oper- 
ations until all earlier writes issued by 
the given processor have completed sys- 
temwide. 

An important feature of the coher- 
ence protocol is its forwarding strategy. 
If a cluster cannot reply directly to  a 
given request, it forwards responsibility 
for the request to  a cluster that should 
be able to  respond. This technique min- 
imizes the latency for a request, as it 
always forwards the request to  where 
the data is thought to  be and allows a 
reply to  be  sent directly to  the request- 
ing cluster. This technique also mini- 
mizes the serialization of requests since 
no cluster resources are  blocked while 
intercluster messages are  being sent. 
Forwarding allows the directory con- 
troller to  work on multiple requests con- 
currently (that is, makes it multithread- 
e d )  wi thout  having t o  re ta in  a n y  
additional state about forwarded re- 
quests. 

Software support 

A comprehensive software develop- 
ment environment is essential to  make 
effective use of large-scale multiproces- 
sors. For  Dash, our efforts have focused 
on four major areas: operating systems, 
compilers, programming languages, and 
performance debugging tools. 

Dash supports a full-function Unix 
operating system. In contrast, many oth- 
e r  highly parallel machines (for exam- 
ple, Intel iPSC2, Ncube, iWarp) sup- 
port only a primitive kernel on the node 
processors and rely on a separate host 
system for program development. Dash 
avoids the complications and inefficien- 
cies of a host system. Furthermore. the 
resident operating system can efficient- 
ly support multiprogramming and mul- 
tiple users on the system. Developed in 
cooperation with Silicon Graphics, the 
Dash OS is a modified version of the 

existing operating system on the 4Di 
340 (Irix. a variation of Unix System 
V.3). Since Irix was already multithread- 
ed and worked with multiple proces- 
sors, many of our changes have been 
made t o  accommodate the hierarchical 
nature of Dash, where processors. main 
memory, and IiO devices are  all parti- 
tioned across the clusters. We have also 
adapted the Irix kernel to  provide ac- 
cess to  the special hardware features of 
Dash such as prefetch. update write, 
and queue-based locks. Currently, the 
modified OS is running on a four- 
cluster Dash system, and we are  explor- 
ing several new algorithms for process 
scheduling and memory allocation that 
will exploit the Dash memory hierar- 
chy. 

At  the user level, we are working on 
several tools to aid the development of 
parallel programs for Dash. At  the most 
primitive level, a parallel macro library 
provides structured access to  the under- 
lying hardware and operating-system 
functions. This library permits the de-  
velopment and porting of parallel ap- 
plications to  Dash using standard lan- 
guagesand tools. We are also developing 
a parallelizing compiler that extracts 
parallelism from programs written for 
sequential machines and tries to im- 
prove data locality. Locality is enhanced 
by increasing cache utilization through 
blocking and by reducing remote ac- 
cesses through staticpartitionirzg of com- 
putation and data. Finally. preferclring 
is used to hide latency for remote ac- 
cesses that arc  unavoidable. 

Because we are interested in using 
Dash for a wide variety of applications, 
we must also find parallelism beyond 
the loop level. T o  attack this problem 
we have developed a new parallel lan- 
guage called Jade, which allows a pro- 
grammer t o  easily express dynamic 
coarse-grain parallelism. Starting with 
a sequential program, a programmer 
simply augments those sections of code 
to  be parallelized with side-effect infor- 
mation. The compiler and runtime sys- 
tem use this information to  execute the 
program concurrently while respecting 
the program’s data dependence con- 
straints. Using Jade can significantly 
reduce the time and effort required to  
develop a parallel version of a serial 
application. A prototype of Jade is op- 
erational, and applications developed 
with J a d e  include sparse-matr ix  
Cholesky factorization. Locus Route (a 
pr inted-circui t -board rout ing algo- 

rithm), and MDG (a water simulation 
code). 

T o  complement our compiler and lan- 
guage efforts, we are  developing a suite 
of performance monitoring and analy- 
sis tools. O u r  high-level tools can iden- 
tify portions of code where the concur- 
rency is smallest or where the most 
execution time is spent. The high-level 
tools also provide information about 
synchronization bottlenecks and load- 
balancing problems. Our  low-level tools 
will couple with the built-in hardware 
monitors in Dash. As an example, they 
will be able to  identify portions of code 
where most cache misses are  occurring 
and will frequently provide the reasons 
for such misses. We expect such nonin- 
vasive monitoring and profiling tools to  
be invaluable in pinpointing critical 
regions for optimization to the program- 
mer. 

Dash performance 

This section presents performance 
data from the Dash prototype system. 
First. we summarize the latency for 
memory accesses serviced by the three 
lower levels of the memory hierarchy. 
Second, we present speedup for three 
parallel applications running on a simu- 
lation of the prototype using one to 64 
processors. Finally, we present the ac- 
tual speedups for these applications 
measured on the initial 16-processor 
Dash system. 

While caches reduce the effective ac- 
cess time of memory, the latency of 
main memory determines the sensitivi- 
ty of processor utilization to  cache and 
cluster locality and indicates the costs 
of interprocessor communication. Fig- 
ure 8 shows the unloaded latencies for 
read misses that are satisfied within the 
local cluster, within the home cluster, 
and by a remote (that is, dirty) cluster. 
Latencies for read-exclusive requests 
issued by the write buffer are  similar. A 
read miss to the local cluster takes 29 
processor clocks (870 ns), while a re- 
mote miss taker roughly 3.5 times as 
long. The delays arise primarily from 
the relatively slow bus in the 3Di340 
and from our implementation’s conser- 
vative technology and packaging. De-  
tailed simulation has shown that queu- 
ing delays can add 20 t o  120 percent to  
these delays. While higher levels of in- 
tegration could reduce the absolute time 
of the prototype latencies, we believe 
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processor simulator and a detailed mem- 
ory simulator for the Dash prototype. 
Tango allows a parallel application to 
run on a uniprocessor and generates a 
parallel memory-reference stream. The 
detailed memory simulator is tightly 
coupled with Tango and provides feed- 
back on the latency of individual mem- 
ory operations. 

O n  the Dash simulator, Water and 
Mincut achieve reasonable speedup 
through 64 processors. For Water, the 
reason is that the application exhibits 
good locality. As the number of clusters 
increases from two to 16, cache hit rates 
are relatively constant, and the percent 
of cache misses handled by the local 
cluster only decreases from 60 to 64 
percent. Thus, miss penalties increase 
only slightly with system size and do  not 
adversely affect processor utilizations. 
For Mincut, good speedup results from 
very good cache hit rates (98 percent for 
shared references). The speedup falls 
off for 64 processors due to lock conten- 
tion in the application. 

MP3D obviously does not exhibit good 
speedup on the Dash prototype. This 
particular encoding of the MP3D appli- 
cation requires frequent interprocessor 
communication, thus resulting in fre- 
quent cache misses. On average, about 
4 percent of the instructions executed in 
MP3D generate a read miss for a shared 
data item. When only one cluster is 
being used, all these misses are serviced 
locally. However, when we go to two 
clusters, a large fraction of the cache 
misses are serviced remotely. This more 
than doubles the average miss latency, 
thus nullifying the potential gain from 
the added processors. Likewise, when 
four clusters are used, the full benefit is 
not realized because most misses are 
now serviced by a remote dirty cache, 
requiring a three-hop access. 

Reasonable  s p e e d u p  is finally 
achieved when going from 16 to 32 and 
64 processors (77 percent and 86 per- 
cent marginal efficiency, respectively), 
but overall speedup is limited to 14.2. 
Even on MP3D, however, caching is 
beneficial. A 64-processor system with 
the timing of Dash, but without the 
caching of shared data, achieves only a 
4.1 speedup over the cached uniproces- 
sor. For Water and Mincut the improve- 
ments from caching are  even larger. 

Figure 10 shows the speedup for the 
three applications on the real Dash hard- 
ware using one to 16 processors. The 
applications were run under an early 

version of the Dash OS. The results for 
Water and Mincut correlate well with 
the simulation results, but the MP3D 
speedups are somewhat lower. The prob- 
lem with MP3D appears to be that sim- 
ulation results did not include private 
data references. Since MPSD puts a 
heavy load on the memory system, the 
extra load of private misses adds to the 
queuing delays and reduces the multi- 
processor speedups. 

We have run several other applica- 
tions on our 16-processor prototype. 
These include two hierarchical n-body 
applications (using Barnes-Hut and 
Greengard-Rokhlin algorithms), a ra- 
diosity application from computer graph- 
ics, a standard-cell routing application 
from very large scale integration com- 
puter-aided design, and several matrix- 
oriented applications, including one  
performing sparse Cholesky factoriza- 
tion. There is also an improved version 
of the MP3D application that exhibits 
better locality and achieves almost lin- 
ear speedup on the prototype. 

Over this initial set of 10 parallel ap- 
plications, the harmonic mean of the 
speedup on 16 processors in 10.5 Fur- 
thermore, if old MP3D is left out, the 
harmonic mean rises to over 12.8. Over- 
all, our experience with the 16-proces- 
sor machine has been very promising 
and indicates that many applications 
should be able to achieve over 40 times 
speedup on the 64-processor system. 

Related work 

There are other proposed scalable 
architectures that support a single ad- 
dress space with coherent caches. A 
comprehensive comparison of these 
machines with Dash is not possible at 
this time, because of the limited experi- 
ence with this class of machines and the 
lack of details on many of the critical 
machine parameters. Nevertheless, a 
general comparison illustrates some of 
the design trade-offs that are possible. 

Encore GigaMax and Stanford Para- 
digm. The Encore GigaMax architec- 
ture'and the Stanford Paradigm project lo 

both use a hierarchy-of-buses approach 
to  achieve scalability. A t  the top level, 
the Encore GigaMax is composed of 
several clusters on a global bus. Each 
cluster consists of several processor 
modules, main memory, and a cluster 
cache. The  cluster cache holds a copy of 

all remote locations cached locally and 
also all local locations cached remote- 
ly. Each processing module consists of 
several processors with private caches 
and a large, shared, second-level cache. 
A hierarchical snoopy protocol keeps 
the processor and cluster caches co- 
herent. 

The  Paradigm machine is similar t o  
the GigaMax in its hierarchy of proces- 
sors, caches, and buses. It is different, 
however, in that the physical memory is 
all located at the global level, and it 
uses a hierarchical directory-based co- 
herence protocol. The  clusters contain- 
ing cached data are identified by a bit- 
vector directory at every level, instead 
of using snooping cluster caches. Para- 
digm also provides a lock bit per mem- 
ory block that enhances performance 
for synchronization and explicit com- 
munication. 

The  hierarchical structure of these 
machines is appealing in that they can 
theoretically be extended indefinitely 
by increasing the depth of the hierar- 
chy. Unfortunately, the higher levels of 
the tree cannot grow indefinitely in 
bandwidth. If a single global bus is used, 
it becomes a critical link. If multiple 
buses are used at the top, the protocols 
become significantly more complex. Un- 
less an  application's communication re- 
quirements match the bus hierarchy or 
its traffic-sharing requirements a re  
small, the global bus will be a bottle- 
neck. Both requirements are restrictive 
and limit the classes of applications that 
can be efficiently run on these machines. 

IEEE Scalable Coherent Interface. 
The I E E E  P1596 Scalable Coherent In- 
terface (SCI) is an interface standard 
that also strives to provide a scalable 
system model based on distributed di- 
rectory-based cache coherence." It dif- 
fers from Dash in that it is an interface 
standard, not a complete system de- 
sign. SCI only specifies the interfaces 
that each processing node should im- 
plement, leaving open the actual node 
design and exact interconnection net- 
work. SCI's role as an interface stan- 
dard gives it somewhat different goals 
from those of Dash, but systems based 
on SCI are likely to have a system orga- 
nization similar to Dash. 

The major difference between SCI 
and Dash lies in how and where the 
directory information is maintained. In 
SCI, the directory is a distributed sharing 
list maintained by the processor caches 
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themselves. For  example, if processors 
A ,  B,  and C are  caching some location, 
then the cache entries storing this loca- 
tion include pointers that form a doubly 
linked list. At  main memory, only a 
pointer to  the processor a t  the head of 
the linked list is maintained. In con- 
trast, Dash places all the  directory in- 
formation with main memory. 

The main advantage of the SCI scheme 
is that the amount of directory pointer 
storage grows naturally as new process- 
ing nodes are  added to the system. Dash- 
type systems generally require more di- 
rectory memory than SCI systems and 
must use a limited directory scheme to 
scale to  a large configuration. On the 
other hand, SCI directories would typi- 
cally use the same static R A M  technol- 
ogy as the processor caches while the 
Dash directories are  implemented in 
main memory D R A M  technology. This 
difference tends t o  offset the potential 
storage efficiency gains of the  SCI 
scheme. 

The  primary disadvantage of the SCI 
scheme is that the distribution of indi- 
vidual directory entries increases the 
latency and complexity of the memory 
references, since additional directory- 
update messages must be  sent between 
processor caches. For  example, on a 
write to  a shared block cached by N 
processors (including the writing pro- 
cessor), the writer must perform the 
following actions: 

odetach itself from the sharing list, 
interrogate memory t o  determine 
the head of the sharing list, 
acquire head status from the cur- 
rent head, and 
serially purge the other processor 
caches by issuing invalidation re- 
quests and receiving replies that in- 
dicate the next processor in the list. 

Altogether, this amounts to  2N + 6 
messages and, more importantly, N + 1 
serial directory lookups. In contrast, 
Dash can locate all sharing processors 
in a single directory lookup, and invali- 
dation messages are  serialized only by 
the network transmission rate. 

The  SCI working committee has pro- 
posed several extensions to the base 
protocol t o  reduce latency and support 
additional functions. In particular, the 
committee has proposed the addition of 
directory pointers that allow sharing 
lists t o  become sharing trees, support 
for request forwarding, use of a clean 
cached state, and support for queue- 

based locks. While these extensions re- 
duce the differences between the two 
protocols, they also significantly increase 
the complexity of SCI. 

MIT Alewife. The Alewife machine” 
is similar to Dash in that it uses main 
memory directories and connects the pro- 
cessing nodes with mesh network. There 
are  three main differences between the 
two machines: 

*Alewife does not have a notion of 
clusters - each node is a single proces- 
sor. 

Alewife uses software to  handle di- 
rectory pointer overflow. 

Alewife uses multicontext processors 
as its primary latency-hiding mechanism. 

The  size of clusters (one processor, 
four processors, o r  more) is dictated pri- 
marily by the engineering trade-offs be- 
tween the overhead of hardware for each 
node (memory, network interface, and 
directory) and the bandwidth available 
within and between clusters. Techniques 
for scaling directories efficiently are  a 
more critical issue. Whether hardware 
techniques, such as proposed in O’Krafka 
and Newton’ and Gupta et  al.,’ o r  the 
software techniques of Alewife will be 
more effective remains an open ques- 
tion, though we expect the practical dif- 
ferences to  be small. Multiple contexts 
constitute a mechanism that helps hide 
memory latency, but one that clearly 
requires additional application parallel- 
ism t o  b e  effective. Overa l l ,  
while we believe that support for multi- 
ple contexts is useful and can comple- 
ment other techniques, we do  not feel 
that its role will be larger than other 
latency-hiding mechanisms such as re- 
lease  consis tency a n d  nonbinding  
prefetch.” 

W e have described the design 
and  implementat ion deci- 
sions for Dash, a multipro- 

cessor that combines the programmabil- 
ity of single-address-space machines with 
the scalability of message-passing ma- 
chines. The key means to  this scalability 
are  a directory-based cache-coherence 
protocol, distributed memories and di- 
rectories. and a scalable interconnection 
network. The  design focuses on reducing 
memory latency to  keep processor per- 
formance high, though it also provides 
la tency-hiding techniques  such a s  
prefetch and release consistency to mit- 

igate the effects of unavoidable system 
delays. 

A t  the time of this writing, the 2 x 2 
Dash prototype is stable. It is accessible 
on the Internet and used daily for re- 
search into parallel applications, tools, 
operating systems, and directory-based 
architectures. As  indicated in the per- 
formance section. results from this ini- 
tial configuration are  very promising. 
Work on extending the 2 x 2 cluster 
system t o  the larger 4 x 4 (64-processor) 
system is ongoing. All major hardware 
components are  on  hand and being de- 
bugged. By the time this article is in 
print, we expect to  have an initial ver- 
sion of the Unix kernel and parallel 
applications running on t h e  larger  
machine. W 
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