
The Stanford Dash
Multiprocessor

Daniel Lenoski, James Laudon, Kourosh Gharachorloo,

Wolf-Dietrich Weber, Anoop Gupta, John Hennessy,

Mark Horowitz, and Monica S. Lam

Stanford University

Directory-based
cache coherence gives
Dash the ease-of-use
of shared-memory
architectures while

maintaining the
scalability of

message-passing
machines.

he Computer Systems Laboratory at Stanford University is developing a
shared-memory multiprocessor called Dash (an abbreviation for Direc-
tory Architecture for Shared Memory). The fundamental premise behind

the architecture is that it is possible to build a scalable high-performance machine
with a single address space and coherent caches.

The Dash architecture is scalable in that it achieves linear or near-linear
performance growth as the number of processors increases from a few to a few
thousand. This performance results from distributing the memory among process-
ing nodes and using a network with scalable bandwidth to connect the nodes. The
architecture allows shared data to be cached, thereby significantly reducing the
latency of memory accesses and yielding higher processor utilization and higher
overall performance. A distributed directory-based protocol provides cache co-
herence without compromising scalability.

The Dash prototype system is the first operational machine to include a scalable
cache-coherence mechanism. The prototype incorporates up to 64 high-perfor-
mance RISC microprocessors to yield performance up to 1.6 billion instructions
per second and 600 million scalar floating point operations per second. The design
of the prototype has provided deeper insight into the architectural and implemen-
tation challenges that arise in a large-scale machine with a single address space.
The prototype will also serve as a platform for studying real applications and
software on a large parallel system.

This article begins by describing the overall goals for Dash, the major features
of the architecture, and the methods for achievingscalability. Next, we describe the
directory-based coherence protocol in detail. We then provide an overview of the
prototype machine and the corresponding software support, followed by some

March 1992

preliminary performance numbers. The
article concludes with a discussion of
related work and the current status of
the Dash hardware and software.

The Dash team
Many graduate students and fac-

ultv members contributed to the
Dash project. The PhD students
are Daniel Lenoski and James Lau- Dash project Overview

The overall goal of the Dash project
is to investigate highly parallel architec-
tures. For these architectures to achieve
widespread use, they must run a variety
of applications efficiently without im-
posing excessive programming difficul-
ty. T o achieve both high performance
and wide applicability, we believe a par-
allel architecture must provide scalabil-
ity to support hundreds to thousands of
processors. high-performance individ-
ual processors, and a single shared ad-
dress space.

The gap between the computingpow-
er of microprocessors and that of the
largest supercomputers is shrinking.
while the priceiperformance advantage
of microprocessors is increasing. This
clearly points to using microprocessors
as the compute engines in a multipro-
cessor. The challenge lies in building a
machine that can scale up its perfor-
mance while maintaining the initial price/
performance advantage of the individu-
al processors. Scalability allows a paral-
lel architecture to leverage commodity
microprocessors and small-scale multi-
processors to build larger scale machines.
These larger machines offer substan-
tially higher performance, which pro-
vides the impetus for programmers to
port their sequential applications to par-
allel architectures instead of waiting for
the next higher performance uniproces-
sor.

High-performance processors a r e
important to achieve both high total
system performance and general appli-
cability. Using the fastest microproces-
sors reduces the impact of limited or
uneven parallelism inherent in some
applications. It also allows a wider set of
applications to exhibit acceptable per-
formance with less effort from the pro-
grammer.

A single address space enhances the
programmability of a parallel machine
by reducing the problems of data parti-
tioning and dynamic load distribution,
two of the toughest problems in pro-
grammingparallel machines. The shared
address space also improves support for
automatically parallelizing compilers,
standard operating systems, multipro-

don (Dash architecture and hard-
ware design); Kourosh Gharachor-
loo (Dash architecture and
consistency models); Wolf-Dietrich
Weber (Dash simulator and scal-
able directories); Truman Joe
(Dash hardware and protocol verifi-
cation tools); Luis Stevens (operat-
ing system); Helen Davis and Ste-
phen Goldschmidt (trace
generation tools, synchronization
patterns, locality studies); Todd
Mowry (evaluation of prefetch oper-
ations); Aaron Goldberg and Marg-
aret Martonosi (performance de-
bugging tools); Tom Chanak (mesh
routing chip design); Richard Simo-
ni (synthetic load generator and di-
rectory studies); Josep Torrellas
(sharing patterns in applications);
Edward Rothberg, Jaswinder Pal
Singh, and Larry Soule (applica-
tions and algorithm development).
Staff research engineer David Na-
kahira contributed to the hardware
design.

The faculty associated with the
project are Anoop Gupta, John
Hennessy, Mark Horowitz, and
Monica Lam.

gramming, and incremental tuning of
parallel applications - features that
make a single-address-space machine
much easier to use than a message-pass-
ing machine.

Caching of memory, including shared
writable data, allows multiprocessors
with a single address space to achieve
high performance through reduced
memory latency. Unfortunately, cach-
ing shared data introduces the problem
of cache coherence (see the sidebar and
accompanying figure).

While hardware support for cache
coherence has its costs, it also offers
many benefits. Without hardware sup-
port, the responsibility for coherence
falls to the user or the compiler. Expos-
ing the issue of coherence to the user
would lead to a complex programming
model, where users might well avoid
caching to ease the programming bur-

den. Handling the coherence problem
in the compiler is attractive. but cur-
rently cannot be done in a way that is
competitive with hardware. With hard-
ware-supported cache coherence, the
compiler can aggressively optimize pro-
grams to reduce latency without having
to rely purely on a conservative static
dependence analysis.

T h e major problem with existing
cache-coherent shared-address ma-
chines is that they have not demonstrat-
ed the ability to scale effectively be-
yond a few high-performance processors.
To date, only message-passing machines
have shown this ability. We believe that
using a directory-based coherence mech-
anism will permit single-address-space
machines to scale as well as message-
passing machines, while providing a
more flexible and general programming
model.

Dash system
organization

Most existing multiprocessors with
cache coherence rely on snooping t o
maintain coherence. Unfortunately,
snooping schemes distribute the infor-
mation about which processors are cach-
ing which data items among the caches.
Thus, straightforward snooping schemes
require that all caches see every memo-
ry request from every processor. This
inherently limits the scalability of these
machines because the common bus and
the individual processor caches eventu-
ally saturate. With today’s high-perfor-
mance RISC processors this saturation
can occur with just a few processors.

Directory structures avoid the scal-
ability problems of snoopy schemes by
removing the need to broadcast every
memory request to all processor caches.
The directory maintains pointers to the
processor caches holding a copy of each
memory block. Only the caches with
copies can be affected by an access to
the memory block, and only those cach-
es need be notified of the access. Thus,
the processor caches and interconnect
will not saturate due to coherence re-
quests. Furthermore. directory-based co-
herence is not dependent on any specif-
ic interconnection network like the bus
used by most snooping schemes. The
same scalable, low-latency networks
such as Omega networks or k-nary n-
cubes used by non-cache-coherent and

64 COMPUTER

Cache coherence
Cache-coherence problems can arise in shared-memory

multiprocessors when more than one processor cache holds
a copy of a data item (a). Upon a write, these copies must be
updated or invalidated (b). Most systems use invalidation
since this allows the writing processor to gain exclusive ac-
cess to the cache line and complete further writes into the
cache line without generating external traffic (c). This fufther
complicates coherence since this dirty cache must respond
instead of memory on subsequent accesses by other proces-
sors (d).

Small-scale multiprocessors frequently use a snoopy
cache-coherence protocol,' which relies on all caches moni-
toring the common bus that connects the processors to
memory. This monitoring allows caches to independently de-
termine when to invalidate cache lines (b), and when to in-
tervene because they contain the most up-to-date copy of a
given location (d). Snoopy schemes do not scale to a large
number of processors because the common bus or individual
processor caches eventually saturate, since they must pro-
cess every memory request from every processor.

on memory requests by keeping track of which caches hold
each memory block. A simple directory structure first pro-
posed by Censier and Feautrier* has one directory entry per
block of memory (e). Each entry contains one presence bit
per processor cache. In addition, a state bit indicates wheth-
er the block is uncached, shared in multiple caches, or held
exclusively by one cache (that IS, whether the block is dirty).
Using the state and presence bits, the memory can tell which
caches need to be invalidated when a location is written (b).
Likewise, the directory indicates whether memory's copy of
the block is up to date or which cache holds the most recent
copy (d). If the memory and directory are partitioned into in-
dependent units and connected to the processors by a scal-
able interconnect, the memory system can provide scalable
memory bandwidth.

The directory relieves the processor caches from snooping

References

1 . J. Archibald and J.-L. Baer, "Cache Coherence Protocols: Evalu-
ation Using a Multiprocessor Simulation Model," ACM Trans.
Computer Systems, Vol. 4, No. 4, Nov. 1986, pp. 273-298.

2. L. Censier and P. Feautrier, "A New Solution to Coherence
Problems in Multicache Systems," /E€€ Trans. Computers, Vol.
C-27, No. 12, Dec. 1978, pp. 1,112-1,118.

Store #3,A

Cache Cache

(4
Load A @e@r

(d)

Data State bit Presence bits

(e)

message-passing machines can be em-
ployed.

The concept of directory-based cache
coherence is not new. I t was first pro-
posed in the late 1970s. However, the

original directory structures were not
scalable because they used a central-
ized directory that quickly became a
bottleneck. The Dash architecture over-
comes this limitation by partitioning and

distributing the directory and main
memory, and by using a new coherence
protocol that can suitably exploit dis-
tributed directories. In addition, Dash
provides several other mechanisms to

March 1992 65

reduce and hide the latency
of memory operations.

Figure 1 shows Dash’s
high-level organization. The
architecture consists of a
number of processing nodes
connected through directo-
ry controllers to a low-laten-
cy interconnection network.
Each processing node, or
cluster, consists of a small
number of high-performance
processors and a portion of
the shared memory intercon-
nected by a bus. Multipro-
cessing within the cluster can
be viewed either as increas-
ing the power of each pro-
cessing node or as reducing
the cost of the directory and
network interface by amor-
tizing it over a larger num-
ber of processors.

Distributing memory with
the processors is essential be-
cause it allows the system t o
exploit locality. All private
data and code references,
along with some of the shared
references, can be made lo-

o
0
0

Figure 1. The Dash architecture consists of a set of clus-
ters connected by a general interconnection network. Di-
rectory memory contains pointers to the clusters currently
caching each memory line.

Scalability
of the Dash
approach

We have outlined why we
believe a single-address-
space machine with cache
coherence holds the most
promise for delivering scal-
able performance to a wide
range of applications. Here,
we address the more de-
tailed issues in scaling such
a directory-based system.
The three primary issues are
ensuring that the systempro-
vides scalable memory
bandwidth, that the costs
scale reasonably, and that
mechanisms are provided to
deal with large memory la-
tencies.

Scalability in a multipro-
cessor requires t h e total
memory bandwidth to scale
linearly with the number of
processors. Dash provides
scalable bandwidth to data

cal to the cluster. These references avoid architecture is similar to many scalable objects residing in local memory by dis-
the longer latency of remote references message-passing machines. While not tributing the physical memory among
and reduce the bandwidth demands on optimized to do so, Dash could emulate the clusters. For data accesses that must
the global interconnect. Except for the such machines with reasonable effi- be serviced remotely, Dash uses a scal-
directory memory, the resulting system ciency. able interconnection network. Support

100

go]
Average invalidations per shared write: 0.71 Average invalidations per shared write: 0.39

loo]
M 80- 79

2 70-
E 2 60-

5 50-

8 40-

5 30- 16

.-

E 60 2 60-
v) v)

5 50-
- -
c L

m c

.6 .3 .1 .1 .1 .1 .O .O .1 .3 .2 .1 .1 .1 .o .o .4
0 1 2 3 4 5 6 7 8 9 1 0 > 1 0 0 1 2 3 4 5 6 7 8 9 1 0 2 1 0

Invalidations Invalidations

Figure 2. Cache invalidation patterns for MP3D (a) and PThor (b). MP3D uses a particle-based simulation technique to
determine the structure of shock waves caused by objects flying at high speed in the upper atmosphere. PThor is a paral-
lel logic simulator based on the Chandy-Misra algorithm.

66 COMPUTER

of coherent caches could potentially
compromise the scalability of the net-
work by requiring frequent broadcast
messages. The use of directories, how-
ever, removes the need for such broad-
casts and the coherence traffic consists
only of point-to-point messages to clus-
ters that are caching that location. Since
these clusters must have originally
fetched the data, the coherence traffic
will be within some small constant fac-
tor of the original data traffic. In fact,
since each cached block is usually ref-
erenced several times before being in-
validated, caching normally reduces
overall global traffic significantly.

This discussion of scalability assumes
that the accesses are uniformly distrib-
uted across the machine. Unfortunate-
ly, the uniform access assumption does
not always hold for highly contended
synchronization objects and for heavily
shared data objects. The resulting hot
spots - concentrated accesses to data
from the memory of a single cluster
over a short duration of time - can
significantly reduce the memory and
network throughput. The reduction oc-
curs because the distribution of resourc-
es is not exploited as it is under uniform
access patterns.

To address hot spots, Dash relies on
a combination of hardware and soft-
ware techniques. For example, Dash
provides special extensions to the di-
rectory-based protocol to handle syn-
chronization references such as queue-
based locks (discussed further in the
section, “Support for synchronization”).
Furthermore, since Dash allows cach-
ing of shared writable data, it avoids
many of the data hot spots that occur in
other parallel machines that do notper-
mit such caching. For hot spots that
cannot be mitigated by caching, some
can be removed by the coherence pro-
tocol extensions discussed in the sec-
tion, “Update and deliver operations,”
while others can only be removed by
restructuring at the software level. For
example, when using a primitive such
as a barrier, it is possible for software to
avoid hot spots by gathering and releas-
ing processors through a tree of memo-
ry locations.

Regarding system costs, a major scal-
ability concern unique to Dash-like ma-
chines is the amount of directory mem-
ory required. If the physical memory in
the machine grows proportionally with
the number of processing nodes, then
using a bit-vector to keep track of all

clusters caching a memory block does
not scale well. The total amount of di-
rectory memory needed is P’ x M I L
megabits, where P is the number of
clusters, M is the megabits of memory
per cluster, and I , is the cache-line size
in bits. Thus, the fraction of memory
devoted to keeping directory informa-
tion grows as PIL. Depending on the
machine size, this growth may or may
not be tolerable. For example, consider
a machine that contains up to 32 clus-
ters of eight processors each and has a
cache (memory) line size of 32 bytes.
For this machine, the overhead for di-
rectory memory is only 12.5 percent of
physical memory as the system scales
from eight to 256 processors. This is
comparable with the overhead of sup-
porting an error-correcting code on
memory.

For larger machines. where the over-
head would become intolerable, sever-
al alternatives exist. First, we can take
advantage of the fact that at any given
time a memory block is usually cached
by a very small number of processors.
For example, Figure 2 shows the num-
ber of invalidations generated by two
applications run on a simulated 32-pro-
cessor machine. These graphs show that
most writes cause invalidations to only
a few caches. (We have obtained similar
results for a large number of applica-
tions.) Consequently, it is possible to
replace the complete directory bit-vec-
tor by a small number of pointers and to
use a limited broadcast of invalidations
in the unusual case when the number of
pointers is too small. Second, we can
take advantage of the fact that most
main memory blocks will not be present
in any processor’s cache, and thus there
is no need to provide a dedicated direc-
tory entry for every memory block. Stud-
ies’ have shown that a small directory
cache performs almost as well as a full
directory. These two techniques can be
combined to support machines with
thousands of processors without undue
overhead from directory memory.

The issue of memory access latency
also becomes more prominent as an
architecture is scaled to a larger num-
ber of nodes. There are two comple-
mentary approaches for managing la-
tency: methods that reduce latency and
mechanisms that help tolerate it. Dash
uses both approaches, though our main
focus has been to reduce latency as much
as possible. Although latency tolerating
techniques are important. they often

require additional application parallel-
ism to be effective.

Hardware-coherent caches provide the
primary latency reduction mechanism
in Dash. Caching shared data signifi-
cantly reduces the average latency for
remote accesses because of the spatial
and temporal locality of memory ac-
cesses. For references not satisfied by
the cache, the coherence protocol at-
tempts to minimize latency, as shown in
the next section. Furthermore, as previ-
ously mentioned, we can reduce latency
by allocating data to memory close to
the processors that use it. While average
memory latency is reduced, references
that correspond to interprocessor com-
munication cannot avoid the inherent
latencies of a large machine. In Dash,
the latency for these accesses is addressed
by a variety of latency hiding mecha-
nisms. These mechanisms range from
support of a relaxed memory consisten-
cy model to support of nonblocking
prefetch operations. These operations
are detailed in the sections on “Mem-
ory consistency“ and “Prefetch opera-
tions.”

We also expect software to play a
critical role in achieving good perfor-
mance on a highly parallel machine. Ob-
viously, applications need to exhibit good
parallelism to exploit the rich computa-
tional resources of a large machine. In
addition, applications, compilers, and
operating systems need to exploit cache
and memory locality together with la-
tency hiding techniques to achieve high
processor utilization. Applications still
benefit from the single address space,
however, because only performance-crit-
ical code needs to be tuned to the sys-
tem. Other code can assume a simple
uniform memory model.

The Dash cache-
coherence protocol

Within the Dash system organization,
there is still a great deal of freedom in
selecting the specific cache-coherence
protocol. This section explains the basic
coherence protocol that Dash uses for
normal read and write operations, then
outlines the resulting memory con-
sistency model visible to the program-
mer and compiler. Finally, it details ex-
tensions to the protocol that support
latency hiding and efficient synchroni-
zation.

March 1992 61

Memory hierarchy. Dash implements
an invalidation-based cache-coherence
protocol. A memory location may be in
one of three states:

uncached - not cached by any clus-
ter;

*shared - in an unmodified state in
the caches of one or more clusters;
o r
dirty - modified in a single cache of
some cluster.

The directory keeps the summary infor-
mation for each memory block, specify-
ing its state and the clusters that are
caching it.

The Dash memory system can be log-
ically broken into four levels of hierar-
chy, as illustrated in Figure 3. The first
level is the processor’s cache. This cache
is designed to match the processor speed
and support snooping from the bus. A
request that cannot be serviced by the
processor’s cache is sent to the second
level in the hierarchy. the local cluster.
This level includes the other proces-
sors’ caches within the requesting pro-
cessor’s cluster. If the data is locally
cached, the request can be serviced with-
in the cluster. Otherwise, the request is
sent to the h o m e cluster level. The home
level consists of the cluster that con-
tains the directory and physical memo-
ry for a given memory address. For many
accesses (for example, most private data
references). the local and home cluster
are the same, and the hierarchy collaps-
es to three levels. In general, however, a
request will travel through the inter-
connection network to the home clus-
ter. The home cluster can usually satisfy
the request immediately, but if the di-
rectory entry is in a dirty state, o r in
shared state when the requesting pro-
cessor requests exclusive access, the
fourth level must also be accessed. The
remote cluster level for a memory block
consists of the clusters marked by the
directory as holding a copy of the block.

To illustrate the directory protocol,
first consider how a processor read
traverses the memory hierarchy:

Processor level - If the requested
location is present in the processor’s
cache, the cache simply supplies the
data. Otherwise, the request goes to the
local cluster level.

* L o c a l cluster level - If the data
resides within one of the other caches
within the local cluster, the data is sup-

Processor level

Processor cache

Local cluster level

Other processor caches
within local cluster

Home cluster level I
I Directory and main memory

associated with a given address I
Remote cluster level

Processor caches in 1 remote clusters

Figure 3. Memory hierarchy of Dash.

plied by that cache and no state change
is required at the directory level. If the
request must be sent beyond the local
cluster level, it goes first t o the home
cluster corresponding to that address.

H o m e cluster level - The home clus-
ter examines the directory state of the
memory location while simultaneously
fetching the block from main memory.
If the block is clean, the data is sent to
the requester and the directory is up-
dated to show sharing by the requester.
If the location is dirty, the request is
forwarded to the remote cluster indi-
cated by the directory.

R e m o t e cluster level - The dirty
cluster replies with a shared copy of the
data, which is sent directly to the re-
quester. In addition, a sharing write-
back message is sent to the home level
to update main memory and change the
directory state t o indicate that the re-
questing and remote cluster now have
shared copies of the data. Having the
dirty cluster respond directly to the re-
quester, as opposed to routing it through
the home. reduces the latency seen by
the requesting processor.

Now consider the sequence of opera-
tions that occurs when a location is writ-
ten:

Processor level - If the location is
dirty in the writing processor’s cache,
the write can complete immediately.
Otherwise, a read-exclusive request is

issued on the local cluster’s bus to ob-
tain exclusive ownership of the line and
retrieve the remaining portion of the
cache line.

Loca l cluster level - If one of the
caches within the cluster already owns
the cache line, then the read-exclusive
request is serviced at the local level by a
cache-to-cache transfer. This allows pro-
cessors within a cluster to alternately
modify the same memory block without
any intercluster interaction. If no local
cache owns the block, then a read-ex-
clusive request is sent t o the home clus-
ter.

H o m e cluster level -The home clus-
ter can immediately satisfy an owner-
ship request for a location that is in the
uncached or shared state. In addition, if
a block is in the shared state, then all
cached copies must be invalidated. The
directory indicates the clusters that have
the block cached. Invalidation requests
a re sent to these clusters while the home
concurrently sends an exclusive data
reply to the requesting cluster. If the
directory indicates that the block is dirty,
then the read-exclusive request must be
forwarded to the dirty cluster, as in the
case of a read.

Remote cluster level - If the direc-
tory had indicated that the memory block
was shared, then the remote clusters
receive an invalidation request to elim-
inate their shared copy. Upon receiving
the invalidation, the remote clusters send
an acknowledgment to the requesting
cluster. If the directory had indicated a
dirty state, then the dirty cluster re-
ceives a read-exclusive request. As in
the case of the read, the remote cluster
responds directly to the requesting clus-
ter and sends a dirty-transfer message
to the home indicating that the request-
ing cluster now holds the block exclu-
sively.

When the writing cluster receives all
the invalidation acknowledgments o r
the reply from the home or dirty cluster,
it is guaranteed that all copies of the old
data have been purged from the system.
If the processor delays completing the
write until all acknowledgments are re-
ceived, then the new write value will
become available to all other proces-
sors at the same time. However, invali-
dations involve round-trip messages t o
multiple clusters, resulting in potential-
ly long delays. Higher processor utiliza-
tion can be obtained by allowing the
write t o proceed immediately after the

68 COMPUTER

ownership reply is received from the
home. Unfortunately, this may lead to

Release consistency
provides a 10- to 40-

inconsistencies with the memory model
assumed by the programmer. The next
section describes how Dash relaxes the
constraints on memory request order- percent increase in
ing, while still providing a reasonable performance over

sequential consistency. programming model to the user.

Memory consistency. The memory
consistency model supported by an ar-
chitecture directly affects the amount
of bufferingandpipelining that can take
place among memory requests. In addi-
tion, it has a direct effect on the com-
plexity of the programming model pre-
sented to the user. The goal in Dash is to
provide substantial freedom in the or-
dering among memory requests, while
still providing a reasonable program-
ming model to the user.

At one end of the consistency spec-
trum is the sequential consistency mod-
e1,’which requires execution of the par-
allel program to appear as an interleaving
of the execution of the parallel process-
es on a sequential machine. Sequential
consistency can be guaranteed by re-
quiring a processor to complete one
memory request before it issues the next
request.4 Sequential consistency, while
conceptually appealing, imposes a large
performance penalty on memory ac-
cesses. For many applications, such a
model is too strict, and one can make do
with a weaker notion of consistency.

As an example, consider the case of a
processor updating a data structure with-
in acritical section. If updating the struc-
ture requires several writes, each write
in a sequentially consistent system will
stall the processor until all other cached
copies of that location have been inval-
idated. But these stalls are unnecessary
as the programmer has already made
sure that no other process can rely on
the consistency of that data structure
until the critical section is exited. If the
synchronization points can be identi-
fied, then the memory need only be
consistent a t those points. In particular,
Dash supports the use of the release
consistency model,’ which only requires
the operations to have completed be-
fore a critical section is released (that is,
a lock is unlocked).

Such a scheme has two advantages.
First, it provides the user with a reason-
able programming model, since the pro-
grammer is assured that when the criti-
cal section is exited, all other processors
will have a consistent view of the mod-

ified data structure. Second, it permits
reads to bypass writes and the invalida-
tions of different write operations to
overlap, resulting in lower latencies for
accesses and higher overall performance.
Detailed simulation studies for proces-
sors with blocking reads have shown
that release consistency provides a 10-
to 40-percent increase in performance
over sequential consistency.’ The dis-
advantage of the model is that the pro-
grammer or compiler must identify all
synchronization accesses.

The Dash prototype supports the re-
lease consistency model in hardware.
Since we use commercial microproces-
sors, the processor stalls on read opera-
tions until the read data is returned
from the cache or lower levels of the
memory hierarchy. Write operations,
however, are nonblocking. There is a
write buffer between the first- and sec-
ond-level caches. T h e write buffer
queues up the write requests and issues
them in order. Furthermore, the servic-
ing of write requests is overlapped. As
soon as the cache receives the owner-
ship and data for the requested cache
line, the write data is removed from the
write buffer and written into the cache
line. The next write request can be ser-
viced while the invalidation acknowl-
edgments for the previous write opera-
tions filter in. Thus, parallelism exists a t
two levels: the processor executes other
instructions and accesses its first-level
cache while write operations are pend-
ing, and invalidations of multiple write
operations are overlapped.

The Dash prototype also provides
fence operations that stall the processor
or write-buffer until previous opera-
tions complete. These fence operations
allow software to emulate more strin-
gent consistency models.

Memory access optimizations. The use
of release consistency helps hide the
latency of write operations. However,

since the processor stalls on read oper-
ations, it sees the entire duration of all
read accesses. For applications that ex-
hibit poor cache behavior or extensive
read/write sharing, this can lead to sig-
nificant delays while the processor waits
for remote cache misses to be filled. T o
help with these problems Dash provides
a variety of prefetch and pipelining op-
erations.

Prefetch operat ions. A prefetch oper-
ation is an explicit nonblocking request
to fetch data before the actual memory
operation is issued. Hopefully, by the
time the process needs the data, its val-
ue has been brought closer to the pro-
cessor, hiding the latency of the regular
blocking read. In addition, nonblocking
prefetch allows the pipelining of read
misses when multiple cache blocks are
prefetched. As a simple example of its
use, a process wanting t o access a row of
a matrix store d in another cluster’s mem-
ory can do so efficiently by first issuing
prefetch reads for all cache blocks cor-
responding to that row.

Dash’s prefetch operations are non-
binding and software controlled. The
processor issues explicit prefetch oper-
ations that bring a shared or exclusive
copy of the memory block into the pro-
cessor’s cache. Not binding the value at
the time of the prefetch is important in
that issuing the prefetch does not affect
the consistency model or force the com-
piler to d o a conservative static depen-
dency analysis. The coherence protocol
keeps the prefetched cache line coher-
ent. If another processor happens to
write to the location before the prefetch-
ingprocessor accesses the data, the data
will simply be invalidated. The prefetch
will be rendered ineffective, but the pro-
gram will execute correctly. Support for
an exclusive prefetch operation aids
cases where the block is first read and
then updated. By first issuing the exclu-
sive prefetch, the processor avoids first
obtaining a shared copy and then hav-
ing t o rerequest an exclusive copy of the
block. Studies have shown that, for cer-
tain applications, the addition of a small
number of prefetch instructions can in-
crease processor utilization by more than
a factor of two.‘

Update and deliver operations. In some
applications, it may not be possible for
the consumer process to issue a prefetch
early enough to effectively hide the la-
tency of memory. Likewise, if multiple

March 1992 69

consumers need the same item of data,
the communication traffic can be re-
duced if data is multicast to all the con-
sumers simultaneously. Therefore, Dash
provides operations that allow the pro-
ducer to send data directly to consum-
ers. There are two ways for the produc-
ing processor to specify the consuming
processors. The update-write operation
sends the new data directly t o allproces-
sors that have cached the data, while the
deliver operation sends the data to spec-
ified clusters.

The update-write primitive updates the
value of all existing copies of a data
word. Using this primitive, a processor
does not need to first acquire an exclu-
sive copy of the cache line, which would
result in invalidating all other copies.
Rather, data is directly written into the
home memory and all other caches hold-
ing a copy of the line. These semantics
are particularly useful for event synchro-
nization, such as the release event for a
barrier.

The deliver instruction explicitly spec-
ifies the destination clusters of the trans-
fer. To use this primitive, the producer
first writes into its cache using normal,
invalidating write operations. The pro-
ducer then issues a deliver instruction,
giving the destination clusters as a bit
vector. A copy of the cache line is then
sent t o the specified clusters, and the
directory is updated t o indicate that the
various clusters now share the data. This
operation is useful in cases when the
producer makes multiple writes to a block
before the consumers will want it or
when the consumers are unlikely to be
caching the item at the time of the write.

Support for synchronization. The ac-
cess patterns to locations used for syn-
chronization are often different from
those for other shared data. For exam-
ple, whenever a highly contended lock is
released, waiting nodes rush t o grab the
lock. In the case of barriers, many pro-
cessors must be synchronized and then
released. Such activity often causes hot
spotsin the memorysystem. Consequent-
ly, synchronization variables often war-
rant special treatment. In addition to
update writes, Dash provides two exten-
sions to the coherence protocol that di-
rectly support synchronization objects.
The first is queue-based locks, and the
second is fetch-and-increment opera-
tions.

Most cache-coherent architectures
handle locks by providing an atomic

test&set instruction and a cached test-
and-test&set scheme for spin waiting.
Ideally, these spin locks should meet
the following criteria:

minimum amount of traffic gener-

low latency release of a waiting pro-

low latency acquisition of a free lock.

ated while waiting,

cessor, and

Cached test&set schemes are moder-
ately successful in satisfying these crite-
ria for low-contention locks, but fail for
high-contention locks. For example,
assume there are N processors spinning
on a lock value in their caches. When
the lock is released, all N cache values
are invalidated, and N reads are gener-
ated to the memory system. Depending
on the timing, it is possible that all N
processors come back to do the test&set
on the location once they realize the
lock is free, resulting in further invali-
dations and rereads. Such a scenario
produces unnecessary traffic and increas-
es the latency in acquiring and releasing
a lock.

The queue-based locks in Dash ad-
dress this problem by using the directo-
ry to indicate which processors are spin-
ning on the lock. When the lock is
released, one of the waiting clusters is
chosen at random and is granted the
lock. The grant request invalidates only
that cluster's caches and allows one pro-
cessor within that cluster to acquire the
lock with a local operation. This scheme
lowers both the traffic and the latency
involved in releasing a processor wait-
ing on a lock. Informing only one clus-
ter of the release also eliminates unnec-
essary traffic and latency that would be
incurred if all waiting processors were
allowed to contend. A time-out mecha-
nism on the lock grant allows the grant
to be sent to another cluster if the spin-
ning process has been swapped out or
migrated. T h e queued-on-lock-bi t
primitive described in Goodman et al.'
is similar to Dash's queue-based locks,
but uses pointers in the processor cach-
es to maintain the list of the waiting
processors.

The f e tch-and- increment and fetch-
und-decrement primitives provide atomic
increment and decrement operations on
uncached memory locations. The value
returned by the operations is the value
before the increment o r decrement.
These operations have low serialization
and are useful for implementing several

synchronization primitives such as bar-
riers, distributed loops, and work queues.
The serialization of these operations is
small because they are done directly at
the memory site. The low serialization
provided by the fetch-and-increment
operation is especially important when
many processors want to increment a
location, as happens when getting the
next index in a distributed loop. The
benefits of the proposed operations
become apparent when contrasted with
the alternative of using a normal vari-
able protected by a lock to achieve the
atomic increment and decrement. The
alternative results in significantly more
traffic, longer latency, and increased
serialization.

The Dash
implementation

A hardware prototype of the Dash
architecture is currently under construc-
tion. While we have developed a de-
tailed software simulator of the system,
we feel that a hardware implementation
is needed t o fully understand the issues
in the design of scalable cache-coherent
machines, to verify the feasibility of
such designs, and to provide a platform
for studying real applications and soft-
ware running on a large ensemble of
processors.

T o focus our effort on the novel as-
pects of the design and to speed the
completion of a usable system, the base
cluster hardware used in the prototype
is a commercially available bus-based
multiprocessor. While there are some
constraints imposed by the given hard-
ware, the prototype satisfies our prima-
ry goals of scalable memory bandwidth
and high performance. The prototype
includes most of Dash's architectural
features since many of them can only be
fully evaluated on the actual hardware.
The system also includes dedicated per-
formance monitoring logic to aid in the
evaluation.

Dash prototype cluster. The proto-
type system uses a Silicon Graphics
Power Station 4D1340 as the base clus-
ter. The 4D1340 system consists of four
Mips R3000 processors and R3010 float-
ing-point coprocessors running at 33
megahertz. Each R30001R3010 combi-
nation can reach execution rates up to
25 VAX MIPS and 10 Mflops. Each

COMPUTER

1
r

‘L
f J

L

I I

~h interface memory

Reply mesh

I Processor
First-level

I and D cache
ISecond-level cachc

1
I T I

interface memory ~I

‘ I
\

I = Instruction
D = Data

Figure 4. Block diagram of a 2 x 2 Dash system.

CPU contains a 64-kilobyte instruction
cache and a64-Kbytewrite-throughdata
cache. The 64-Kbyte data cache inter-
faces to a 256-Kbyte second-level write-
back cache. The interface consists of a
read buffer and a four-word-deep write
buffer. Both the first- and second-level
caches are direct-mapped and support
16-byte lines. The first level caches run
synchronously to their associated 33-
MHz processors while the second level
caches run synchronous to the 16-MHz
memory bus.

The second-level processor caches are
responsible for bus snooping and main-
taining coherence among the caches in
the cluster. Coherence is maintained
using an Illinois, or MESI (modified,
exclusive, shared, invalid), protocol. The
main advantage of using the Illinois pro-
tocol in Dash is the cache-to-cache trans-
fers specified in it. While they do little

to reduce the latency for misses scr-
viced by local memory. local cache-to-
cache transfers can greatly reduce the
penalty for remote memory misses. The
set of processor caches acts as a cluster
cache for remote memory. The memory
bus (MPbus) of the 4D1340 is a synchro-
nous bus and consists of separate 32-bit
address and 64-bit data buses. The MP-
bus is pipelined and supports memory-
to-cache and cache-to-cache transfers
of 16 bytes every four bus clocks with a
latency of six bus clocks. This results in
a maximum bandwidth of 64 Mbytes
per second. While the MPbus is pipe-
lined, it is not a split-transaction bus.

T o use the 4D1340 in Dash, we have
had to make minor modifications to the
existing system boards and design a pair
of new boards to support the directory
memory and intercluster interface. The
main modification to the existing boards

is to add a bus retry signal that is used
when a request requires service from a
remote cluster. The central bus arbiter
has also been modified to accept a mask
from the directory. The mask holds off
a processor’s retry until the remote re-
quest has been serviced. This effective-
ly creates a split-transaction bus proto-
col for requests requiringremote service.
The new directory controller boards
contain the directory memory, the in-
tercluster coherence state machines and
buffers, and a local section of the global
interconnection network. The intercon-
nection network consists of a pair of
wormhole routed meshes, each with 16-
bit wide channels. One mesh is dedicat-
ed to the request messages while the
other handles replies. Figure 4 shows a
block diagram of four clusters connect-
ed to form a 2 x 2 Dash system. Such a
system could scale to support hundreds

March 1992 71

Replies to Requests to
clusters Y k 1 clusters Y k 1

t t
Reply Y-dimension Req. Y-dimension

RC &
board 9

Reply controller (RC)
Remote access cache
(RAC) stores state of on-
going memory requests
and remote replies
Per processor invalid-
ation counters
RAC snoops on bus

Arbitration
masks

MPbus address/

Pseudo-CPU (PCPU)
Forward remote requests
to local MPbus
Issue cache line invalid-
ations and lock grants

MPbus
request 1 I

<

Replies to
clusters X f 1

Requests to
clusters X f 1

t t

Directory controller (DC)
Directory DRAM
Forward local requests to
remote clusters
Reply to remote requests
Respond to MPbus with
directory information
Storage of locks and lock
queues

Remote
cache status,

bus retry

Performance monitor
Counts, distributions, and
traces of bus, network,
and internal events
Soft event selection
32K x 32 count SRAM
2M x 36 trace DRAM
Globally addressable

control I
4 t I I I)

MPbus data

Figure 5. Block diagram of directory boards.

Local cluster

is forced to retry.
RAC entry is allocated.

CPU's arbitration.
CPU retries read and RAC

a. PCPU issues read on bus.
Directory entry in dirty
state so DC forwards

b. PCPU issues Sharing-
Writeback on bus.

to shared state.
DC updates directory entry

Read-Rply
sent to local

Sharing-Writeback
request sent to home

Remote cluster

a. PCPU issues read on bus.
Cache data sourced by
dirty cache onto bus.

DC sends Read-Rply

DC sends Sharing-
Writeback to home.

Figure 6. Flow of a read request to remote memory that is dirty in a remote
cluster.

of processors. but the prototype will be
limited to a maximum configuration of
16 clusters. This limit was dictated pri-
marily by the physical memory addres-
sability (256 Mbytes) of the 4DI340sys-
tem. but still allows for systems up to 64
processors that are capable of 1.6 GIPS
and 600 scalar Mflops.

Dash directory logic. The directory
logic implements the directory-based
coherence protocol and connects the
clusters within the system. Figure 5 shows
a block diagram of the directory boards.
The directory logic is split between the
two logic boards along the lines of the
logic used for outbound and inbound
portions of intercluster transactions.

The directory controller (DC) board
contains three major sections. The first
is the directory controller itself, which
includes the directory memory associ-
ated with the cachable main memory
contained within the cluster. The D C
logic initiates all outbound network re-
quests and replies. The second section
is the performance monitor. which can
count and trace a variety of intra- and
intercluster events. The third major sec-
tion is the request and reply outbound

72 COMPUTER

network logic together with the X-di-
mension of the network itself.

Each bus transaction accesses direc-
tory memory. The directory informa-
tion is combined with the type of bus
operation, the address, and the result of
snooping on the caches to determine
what network messages and bus con-
trols the D C will generate. The directo-
ry memory itself is implemented as a bit
vector with one bit for each of the 16
clusters. While a full-bit vector has lim-
ited scalability, it was chosen because it
requires roughly the same amount of
memory as a limited pointer directory
given the size of the prototype, and it
allows for more direct measurements of
the machine's caching behavior. Each
directory entry contains a single state
bit that indicates whether the clusters
have a shared or dirty copy of the data.
The directory is implemented using dy-
namic RAM technology, but performs
all necessary actions within a single bus
transaction.

The second board is the reply con-
troller (RC) board, which also contains
three major sections. The first section is
the reply controller, which tracks out-
standing requests made by the local pro-
cessors and receives and buffers replies
from remote clusters using the remote
access cache (RAC). The second sec-
tion is the pseudo-CPU (PCPU), which
buffers incoming requests and issues
them to the cluster bus. The PCPU mim-
ics a CPU on this bus on behalf of re-
mote processors except that responses
from the bus are sent out by the directo-
ry controller. The final section is the
inbound network logic and the Y-di-
mension of the mesh routing networks.

The reply controller stores the state
of ongoing requests in the remote ac-
cess cache. The RAC's primary role is
the coordination of replies to interclus-
ter transactions. This ranges from the
simple buffering of reply data between
the network and bus to the accumula-
tion of invalidation acknowledgments
and the enforcement of release consis-
tency. The RAC is organized as a 128-
Kbyte direct-mapped snoopy cache with
16-byte cache lines.

One port of the R A C services the
inbound reply network while the other
snoops on bus transactions. The R A C is
lockup-free in that it can handle several
outstanding remote requests from each
of the local processors. R A C entries are
allocated when a local processor ini-
tiates a remote request, and they persist

until all intercluster transactions rela-
tive to that request have completed.
The snoopy nature of the R A C natural-
ly lends itself to merging requests made
to the same cache block by different
processors and takes advantage of the
cache-to-cache transfer protocol sup-
ported between the local processors.
The snoopy structure also allows the
R A C to supplement the function of the
processor caches. This includes support
for a dirty-sharing state for a cluster
(normally the Illinois protocol would
force a write-back) and operations such
as prefetch.

Interconnection network. As stated
in the architecture section, the Dash
coherence protocol does not rely on a
particular interconnection network to-
pology. However, for the architecture
to be scalable, the network itself must
provide scalable bandwidth. It should
also provide low-latency communica-
tion. The prototype system uses a pair
of wormhole routed meshes to imple-
ment the interconnection network. One
mesh handles request messages while
the other is dedicated to replies. The
networks are based on variants of the
mesh routing chips developed at the
California Insti tute of Technology,
where the data paths have been extend-
ed from 8 to 16 bits. Wormhole routing
allows a cluster to forward a message
after receiving only the first flit (flow
unit) of the packet, greatly reducing the
latency through each node. The aver-
age latency for each hop in the network
is approximately 50 nanoseconds. The
networks are asynchronous and self-
timed. The bandwidth of each link is
limited by the round-trip delay of the
request-acknowledge signals. The pro-
totype transfers flits at approximately
30 MHz, resulting in a total bandwidth
of 120 Mbytedsecond in and out of each
cluster.

An important constraint on the net-
work is that it must deliver request and
reply messages without deadlocking.
Most networks, including the meshes
used in Dash, are guaranteed to be dead-
lock-free if messages are consumed at
the receiving cluster. Unfortunately, the
Dash prototype cannot guarantee this
due. first, to the limited bufferingon the
directory boards and also to the fact
that a cluster may need to generate an
outgoing message before it can con-
sume an incoming message. For exam-
ple. to service a read request, the home

cluster must generate a reply message
containing the data. Similarly, to pro-
cess a request for a dirty location in a
remote cluster, the home cluster needs
to generate a forwarding request to that
cluster. This requirement adds the po-
tential for deadlocks that consist of a
sequence of messages having circular
dependencies through a node.

Dash avoids these deadlocks through
three mechanisms. First, reply messag-
es can always be consumed because they
are allocated a dedicated reply buffer in
the RAC. Second, the independent re-
quest and reply meshes eliminate re-
quest-reply deadlocks. Finally, a back-
off mechanism breaks poten t ia l
deadlocks due to request-request de-
pendencies. If inbound requests cannot
be forwarded because of blockages on
the outbound request port, the requests
are rejected by sending negative ac-
knowledgment reply messages. Reject-
ed requests are then retried by the issu-
ing processor.

Coherence examples. The following
examples illustrate how the various struc-
tures described in the previous sections
interact to carry out the coherence pro-
tocol. For a more detailed discussion of
the protocol, see Lenoski et al.'

Figure 6 shows a simple read of a
memory location whose home is in a
remote cluster and whose directory state
is dirty in another cluster. The read
request is not satisfied on the local clus-
ter bus, so a Read-Req (message 1) is
sent to the home. A t this time the pro-
cessor is told to retry, and its arbitration
is masked. A R A C entry is allocated to
track this message and assign owner-
ship of the reply. The PCPU at the home
receives the Read-Req and issues a cache
read on the bus. The directory memory
is accessed and indicates that the cache
block is dirty in another cluster. The
directory controller in the home for-
wards the Read-Req (message 2) to the
dirty remote cluster. The PCPU in the
dirty cluster issues the read on the dirty
cluster's bus and the dirty processor's
cache responds. The D C in the dirty
cluster sends a Read-Rply (message 3a)
to the local cluster and a Sharing-Write-
back (message 3b) request to the home
to update the directory and main mem-
ory. The R C in the local cluster receives
the reply into the RAC, releases the
requesting CPU for arbitration, and then
sources the data onto the bus when the
processor retries the read. In parallel,

March 1992 73

Read-Ex Rply message is received in
the local cluster by the RC, which can
then satisfy the read-exclusive request.
To assure consistency at release points,
however, the R A C entry persists even
after the write-buffer’s request is satis-
fied. The R A C entry is only deallocated
when it receives the number of invali-
date acknowledgments (Inv-Ack, mes-
sage 3) equal t o a n invalidation count
sent in the original reply message. The
R C maintains per-processor R A C allo-
cation counters t o allow the hardware
to stall releasing synchronization oper-
ations until all earlier writes issued by
the given processor have completed sys-
temwide.

An important feature of the coher-
ence protocol is its forwarding strategy.
If a cluster cannot reply directly to a
given request, it forwards responsibility
for the request to a cluster that should
be able to respond. This technique min-
imizes the latency for a request, as it
always forwards the request to where
the data is thought to be and allows a
reply to be sent directly to the request-
ing cluster. This technique also mini-
mizes the serialization of requests since
no cluster resources are blocked while
intercluster messages are being sent.
Forwarding allows the directory con-
troller to work on multiple requests con-
currently (that is, makes it multithread-
e d) wi thout having t o re ta in a n y
additional state about forwarded re-
quests.

Software support

A comprehensive software develop-
ment environment is essential to make
effective use of large-scale multiproces-
sors. For Dash, our efforts have focused
on four major areas: operating systems,
compilers, programming languages, and
performance debugging tools.

Dash supports a full-function Unix
operating system. In contrast, many oth-
e r highly parallel machines (for exam-
ple, Intel iPSC2, Ncube, iWarp) sup-
port only a primitive kernel on the node
processors and rely on a separate host
system for program development. Dash
avoids the complications and inefficien-
cies of a host system. Furthermore. the
resident operating system can efficient-
ly support multiprogramming and mul-
tiple users on the system. Developed in
cooperation with Silicon Graphics, the
Dash OS is a modified version of the

existing operating system on the 4Di
340 (Irix. a variation of Unix System
V.3). Since Irix was already multithread-
ed and worked with multiple proces-
sors, many of our changes have been
made t o accommodate the hierarchical
nature of Dash, where processors. main
memory, and IiO devices are all parti-
tioned across the clusters. We have also
adapted the Irix kernel to provide ac-
cess to the special hardware features of
Dash such as prefetch. update write,
and queue-based locks. Currently, the
modified OS is running on a four-
cluster Dash system, and we are explor-
ing several new algorithms for process
scheduling and memory allocation that
will exploit the Dash memory hierar-
chy.

At the user level, we are working on
several tools to aid the development of
parallel programs for Dash. At the most
primitive level, a parallel macro library
provides structured access to the under-
lying hardware and operating-system
functions. This library permits the de-
velopment and porting of parallel ap-
plications to Dash using standard lan-
guagesand tools. We are also developing
a parallelizing compiler that extracts
parallelism from programs written for
sequential machines and tries to im-
prove data locality. Locality is enhanced
by increasing cache utilization through
blocking and by reducing remote ac-
cesses through staticpartitionirzg of com-
putation and data. Finally. preferclring
is used to hide latency for remote ac-
cesses that arc unavoidable.

Because we are interested in using
Dash for a wide variety of applications,
we must also find parallelism beyond
the loop level. T o attack this problem
we have developed a new parallel lan-
guage called Jade, which allows a pro-
grammer t o easily express dynamic
coarse-grain parallelism. Starting with
a sequential program, a programmer
simply augments those sections of code
to be parallelized with side-effect infor-
mation. The compiler and runtime sys-
tem use this information to execute the
program concurrently while respecting
the program’s data dependence con-
straints. Using Jade can significantly
reduce the time and effort required to
develop a parallel version of a serial
application. A prototype of Jade is op-
erational, and applications developed
with J a d e include sparse-matr ix
Cholesky factorization. Locus Route (a
pr inted-circui t -board rout ing algo-

rithm), and MDG (a water simulation
code).

T o complement our compiler and lan-
guage efforts, we are developing a suite
of performance monitoring and analy-
sis tools. O u r high-level tools can iden-
tify portions of code where the concur-
rency is smallest or where the most
execution time is spent. The high-level
tools also provide information about
synchronization bottlenecks and load-
balancing problems. Our low-level tools
will couple with the built-in hardware
monitors in Dash. As an example, they
will be able to identify portions of code
where most cache misses are occurring
and will frequently provide the reasons
for such misses. We expect such nonin-
vasive monitoring and profiling tools to
be invaluable in pinpointing critical
regions for optimization to the program-
mer.

Dash performance

This section presents performance
data from the Dash prototype system.
First. we summarize the latency for
memory accesses serviced by the three
lower levels of the memory hierarchy.
Second, we present speedup for three
parallel applications running on a simu-
lation of the prototype using one to 64
processors. Finally, we present the ac-
tual speedups for these applications
measured on the initial 16-processor
Dash system.

While caches reduce the effective ac-
cess time of memory, the latency of
main memory determines the sensitivi-
ty of processor utilization to cache and
cluster locality and indicates the costs
of interprocessor communication. Fig-
ure 8 shows the unloaded latencies for
read misses that are satisfied within the
local cluster, within the home cluster,
and by a remote (that is, dirty) cluster.
Latencies for read-exclusive requests
issued by the write buffer are similar. A
read miss to the local cluster takes 29
processor clocks (870 ns), while a re-
mote miss taker roughly 3.5 times as
long. The delays arise primarily from
the relatively slow bus in the 3Di340
and from our implementation’s conser-
vative technology and packaging. De-
tailed simulation has shown that queu-
ing delays can add 20 t o 120 percent to
these delays. While higher levels of in-
tegration could reduce the absolute time
of the prototype latencies, we believe

March 1992 75

. ~~,~ .- ___,,-,_,_ -

processor simulator and a detailed mem-
ory simulator for the Dash prototype.
Tango allows a parallel application to
run on a uniprocessor and generates a
parallel memory-reference stream. The
detailed memory simulator is tightly
coupled with Tango and provides feed-
back on the latency of individual mem-
ory operations.

O n the Dash simulator, Water and
Mincut achieve reasonable speedup
through 64 processors. For Water, the
reason is that the application exhibits
good locality. As the number of clusters
increases from two to 16, cache hit rates
are relatively constant, and the percent
of cache misses handled by the local
cluster only decreases from 60 to 64
percent. Thus, miss penalties increase
only slightly with system size and do not
adversely affect processor utilizations.
For Mincut, good speedup results from
very good cache hit rates (98 percent for
shared references). The speedup falls
off for 64 processors due to lock conten-
tion in the application.

MP3D obviously does not exhibit good
speedup on the Dash prototype. This
particular encoding of the MP3D appli-
cation requires frequent interprocessor
communication, thus resulting in fre-
quent cache misses. On average, about
4 percent of the instructions executed in
MP3D generate a read miss for a shared
data item. When only one cluster is
being used, all these misses are serviced
locally. However, when we go to two
clusters, a large fraction of the cache
misses are serviced remotely. This more
than doubles the average miss latency,
thus nullifying the potential gain from
the added processors. Likewise, when
four clusters are used, the full benefit is
not realized because most misses are
now serviced by a remote dirty cache,
requiring a three-hop access.

Reasonable s p e e d u p is finally
achieved when going from 16 to 32 and
64 processors (77 percent and 86 per-
cent marginal efficiency, respectively),
but overall speedup is limited to 14.2.
Even on MP3D, however, caching is
beneficial. A 64-processor system with
the timing of Dash, but without the
caching of shared data, achieves only a
4.1 speedup over the cached uniproces-
sor. For Water and Mincut the improve-
ments from caching are even larger.

Figure 10 shows the speedup for the
three applications on the real Dash hard-
ware using one to 16 processors. The
applications were run under an early

version of the Dash OS. The results for
Water and Mincut correlate well with
the simulation results, but the MP3D
speedups are somewhat lower. The prob-
lem with MP3D appears to be that sim-
ulation results did not include private
data references. Since MPSD puts a
heavy load on the memory system, the
extra load of private misses adds to the
queuing delays and reduces the multi-
processor speedups.

We have run several other applica-
tions on our 16-processor prototype.
These include two hierarchical n-body
applications (using Barnes-Hut and
Greengard-Rokhlin algorithms), a ra-
diosity application from computer graph-
ics, a standard-cell routing application
from very large scale integration com-
puter-aided design, and several matrix-
oriented applications, including one
performing sparse Cholesky factoriza-
tion. There is also an improved version
of the MP3D application that exhibits
better locality and achieves almost lin-
ear speedup on the prototype.

Over this initial set of 10 parallel ap-
plications, the harmonic mean of the
speedup on 16 processors in 10.5 Fur-
thermore, if old MP3D is left out, the
harmonic mean rises to over 12.8. Over-
all, our experience with the 16-proces-
sor machine has been very promising
and indicates that many applications
should be able to achieve over 40 times
speedup on the 64-processor system.

Related work

There are other proposed scalable
architectures that support a single ad-
dress space with coherent caches. A
comprehensive comparison of these
machines with Dash is not possible at
this time, because of the limited experi-
ence with this class of machines and the
lack of details on many of the critical
machine parameters. Nevertheless, a
general comparison illustrates some of
the design trade-offs that are possible.

Encore GigaMax and Stanford Para-
digm. The Encore GigaMax architec-
ture'and the Stanford Paradigm project lo

both use a hierarchy-of-buses approach
to achieve scalability. A t the top level,
the Encore GigaMax is composed of
several clusters on a global bus. Each
cluster consists of several processor
modules, main memory, and a cluster
cache. The cluster cache holds a copy of

all remote locations cached locally and
also all local locations cached remote-
ly. Each processing module consists of
several processors with private caches
and a large, shared, second-level cache.
A hierarchical snoopy protocol keeps
the processor and cluster caches co-
herent.

The Paradigm machine is similar t o
the GigaMax in its hierarchy of proces-
sors, caches, and buses. It is different,
however, in that the physical memory is
all located at the global level, and it
uses a hierarchical directory-based co-
herence protocol. The clusters contain-
ing cached data are identified by a bit-
vector directory at every level, instead
of using snooping cluster caches. Para-
digm also provides a lock bit per mem-
ory block that enhances performance
for synchronization and explicit com-
munication.

The hierarchical structure of these
machines is appealing in that they can
theoretically be extended indefinitely
by increasing the depth of the hierar-
chy. Unfortunately, the higher levels of
the tree cannot grow indefinitely in
bandwidth. If a single global bus is used,
it becomes a critical link. If multiple
buses are used at the top, the protocols
become significantly more complex. Un-
less an application's communication re-
quirements match the bus hierarchy or
its traffic-sharing requirements a re
small, the global bus will be a bottle-
neck. Both requirements are restrictive
and limit the classes of applications that
can be efficiently run on these machines.

IEEE Scalable Coherent Interface.
The I E E E P1596 Scalable Coherent In-
terface (SCI) is an interface standard
that also strives to provide a scalable
system model based on distributed di-
rectory-based cache coherence." It dif-
fers from Dash in that it is an interface
standard, not a complete system de-
sign. SCI only specifies the interfaces
that each processing node should im-
plement, leaving open the actual node
design and exact interconnection net-
work. SCI's role as an interface stan-
dard gives it somewhat different goals
from those of Dash, but systems based
on SCI are likely to have a system orga-
nization similar to Dash.

The major difference between SCI
and Dash lies in how and where the
directory information is maintained. In
SCI, the directory is a distributed sharing
list maintained by the processor caches

March 1992 77

themselves. For example, if processors
A , B, and C are caching some location,
then the cache entries storing this loca-
tion include pointers that form a doubly
linked list. At main memory, only a
pointer to the processor a t the head of
the linked list is maintained. In con-
trast, Dash places all the directory in-
formation with main memory.

The main advantage of the SCI scheme
is that the amount of directory pointer
storage grows naturally as new process-
ing nodes are added to the system. Dash-
type systems generally require more di-
rectory memory than SCI systems and
must use a limited directory scheme to
scale to a large configuration. On the
other hand, SCI directories would typi-
cally use the same static R A M technol-
ogy as the processor caches while the
Dash directories are implemented in
main memory D R A M technology. This
difference tends t o offset the potential
storage efficiency gains of the SCI
scheme.

The primary disadvantage of the SCI
scheme is that the distribution of indi-
vidual directory entries increases the
latency and complexity of the memory
references, since additional directory-
update messages must be sent between
processor caches. For example, on a
write to a shared block cached by N
processors (including the writing pro-
cessor), the writer must perform the
following actions:

odetach itself from the sharing list,
interrogate memory t o determine
the head of the sharing list,
acquire head status from the cur-
rent head, and
serially purge the other processor
caches by issuing invalidation re-
quests and receiving replies that in-
dicate the next processor in the list.

Altogether, this amounts to 2N + 6
messages and, more importantly, N + 1
serial directory lookups. In contrast,
Dash can locate all sharing processors
in a single directory lookup, and invali-
dation messages are serialized only by
the network transmission rate.

The SCI working committee has pro-
posed several extensions to the base
protocol t o reduce latency and support
additional functions. In particular, the
committee has proposed the addition of
directory pointers that allow sharing
lists t o become sharing trees, support
for request forwarding, use of a clean
cached state, and support for queue-

based locks. While these extensions re-
duce the differences between the two
protocols, they also significantly increase
the complexity of SCI.

MIT Alewife. The Alewife machine”
is similar to Dash in that it uses main
memory directories and connects the pro-
cessing nodes with mesh network. There
are three main differences between the
two machines:

*Alewife does not have a notion of
clusters - each node is a single proces-
sor.

Alewife uses software to handle di-
rectory pointer overflow.

Alewife uses multicontext processors
as its primary latency-hiding mechanism.

The size of clusters (one processor,
four processors, o r more) is dictated pri-
marily by the engineering trade-offs be-
tween the overhead of hardware for each
node (memory, network interface, and
directory) and the bandwidth available
within and between clusters. Techniques
for scaling directories efficiently are a
more critical issue. Whether hardware
techniques, such as proposed in O’Krafka
and Newton’ and Gupta et al.,’ o r the
software techniques of Alewife will be
more effective remains an open ques-
tion, though we expect the practical dif-
ferences to be small. Multiple contexts
constitute a mechanism that helps hide
memory latency, but one that clearly
requires additional application parallel-
ism t o b e effective. Overa l l ,
while we believe that support for multi-
ple contexts is useful and can comple-
ment other techniques, we do not feel
that its role will be larger than other
latency-hiding mechanisms such as re-
lease consis tency a n d nonbinding
prefetch.”

W e have described the design
and implementat ion deci-
sions for Dash, a multipro-

cessor that combines the programmabil-
ity of single-address-space machines with
the scalability of message-passing ma-
chines. The key means to this scalability
are a directory-based cache-coherence
protocol, distributed memories and di-
rectories. and a scalable interconnection
network. The design focuses on reducing
memory latency to keep processor per-
formance high, though it also provides
la tency-hiding techniques such a s
prefetch and release consistency to mit-

igate the effects of unavoidable system
delays.

A t the time of this writing, the 2 x 2
Dash prototype is stable. It is accessible
on the Internet and used daily for re-
search into parallel applications, tools,
operating systems, and directory-based
architectures. As indicated in the per-
formance section. results from this ini-
tial configuration are very promising.
Work on extending the 2 x 2 cluster
system t o the larger 4 x 4 (64-processor)
system is ongoing. All major hardware
components are on hand and being de-
bugged. By the time this article is in
print, we expect to have an initial ver-
sion of the Unix kernel and parallel
applications running on t h e larger
machine. W

Acknowledgments
This research was supported by D A R P A

contracts N00014-87-K-0828 and N00039-91-
C-0138. In addition. Daniel Lenoski is sup-
ported by Tandem Computers, James Laud-
on and Wolf-Dietrich Weber are supported
by IBM, and Kourosh Gharachorloo is sup-
ported by Texas Instruments. Anoop Gupta
is partly supported by a National Science
Foundation Presidential Young Investigator
Award.

We also thank Silicon Graphics for their
technical and logistical support and Valid
Logic Systems for their grant of computer-
aided engineering tools.

References
A. Gupta, W.-D. Weber, and T. Mowry,
“Reducing Memory and Traffic Require-
ments for Scalable Directory-Based
Cache Coherence Schemes,” Proc. 1990
Int’l Conf. Parallel Processing, I E E E
Computer Society Press, Los Alamitos,
Calif., Order No. 2101, pp. 312-321.

B.W. O’Krafka and A.R. Newton, “An
Empirical Evaluation of Two Memory-
Efficient Directory Methods,” Proc. I7th
Int’l Symp. Computer Architecture, I E E E
CS Press, Los Alamitos, Calif., Order
No. 2047. 1990, pp. 138-147.

L. Lamport, “How t o Make a Multipro-
cessor Computer That Correctly Exe-
cutes Multiprocess Programs,” IEEE
Trans. Computers, Sept. 1979, Vol. C-28,
No. 9. pp. 241-248.

C. Scheurich and M. Dubois, “Depen-
dency and Hazard Resolution in Multi-
processors,” Proc. 14th Int’l Symp. Com-
puter Architecture, IEEE CS Press, Los
Alamitos, Calif., Order No. 776, 1987,
pp. 234-243.

78 COMPUTER

5.

6.

7.

8.

9.

K. Gharachorloo, A . Gupta. and J. Hen-
nessy, “Performance Evaluation of Mem-
ory Consistency Models for Shared-
Memory Multiprocessors.” Proc. Fourth
Int’l Con,f. Architectural Support f o r
Programming Languages und Operutirrg
Systems, ACM, New York, 1991. pp. 245-
257.

T. Mowry and A. Gupta, “Tolerating
Latency Through Software in Shared-
Memory Multiprocessors.” J . Parallel and
Distributed Computing, Vol. 12, No. 6.
June 199 1. pp. 87- 106.

J.R. Goodman, M.K. Vernon, and P.J.
Woest. “Efficient Synchronization Prim-
itives for Large-scale Cache-Coherent
Multiproccssors,” Proc. Third In[’/ Conf
Architectural Support f o r Programming
Languages and Operating Systems, I E E E
CS Press. Los Alamitos, Calif., Order
No. 1936, 1989, pp. 64-73.

D. Lenoski e t al.. “The Directory-Based
Cache Coherence Protocol for the Dash
Multiprocessor,” Proc. 17th Int’l Symp.
Computer Architecture. I E E E CS Press.
Los Alamitos, Calif., Order No. 2047.
1990. pp. 148-159.

A.W. Wilson, Jr.. “Hierarchical Cache/
Bus Architecture for Shared Memory
Multiprocessors,” Proc. 14th Int’l Symp.
Computer Architecture, I E E E CS Press,
Los Alamitos. Calif., OrderNo. 776,1987,
pp. 244-252.

10. D.R. Cheriton, H.A. Goosen, and P.D.
Boyle, “Paradigm: A Highly Scalable
Shared-Memory Multicomputer Archi-
tecture,” Computer, Vol. 24. No. 2. Feb.
1991. pp. 33-46.

11. D.V. James e t al.. “Distributed-Directo-
ry Scheme: Scalable Coherent Interface.”
Computer, Vol. 23, No. 6, June 1990, pp.
74-77.

12.

13.

A . Agarwal e t al., “Limitless Directories:
A Scalable Cache Coherence Scheme,”
Proc. Fourth Int’l Conf. Architectural
Support f o r Programming Languages and
Operating Systems, ACM, New York,
1991. pp. 224-234.

A. Gupta e t al., “Comparative Evalua-
tion of Latency Reducing and Tolerating
Techniques,”Proc. 18th Int’lSymp. Com-
puter Architecture, I E E E CS Press, Los
Alamitos, Calif., Order No. 2146, 1991,
pp. 254-263.

Daniel Lennski is a re-
search scientist in thc
Processor and Memory
Group of Tandem Com-
puters. Herecentlycom-
pleted his P h D in elec-
trical engineering in the
Computer Systems Lab-
oratory a t Stanford Uni-
versity. His research ef-

forts concentrated on the design and imple-
mentation of Dash and other issues related
to scalable multiprocessors. His prior work
includes the architecture definition of Tan-
dem’s CLX 600. 700. and 800 series proces-
sors.

Lenoski rcccived a BSEE from the Cali-
fornia Institute of Technology in 1983 and an
MSEE from Stanford in 1985.

James Laudon is a P h D
candidate in the Depart-
ment of Electrical En-
gineering at Stanford
University. His research
interests includc multi-
processor architectures
and algorithms.

Laudon received a BS
in electrical engineering

from the University of Wisconsin-Madison
in 1987 and an MS in electrical engineering
from Stanford University in 1988. H c is a
member of the I E E E Computer Society and
ACM.

Kournsh Gharachnrloo
is a P h D candidate in
the Computer Systems
Laboratory at Stanford
University. His research
interests focus on tech-
niques to reduce and tol-
erate memory latency in
large-scale shared-mem-
ory multiprocessors.

Gharachorloo received the BS and B A
degrees in electrical enginccring and eco-
nomics. respectively. in 1985 and the MS
degree in clcctrical engineering in 1986. all
from Stanford University.

Wolf-Dietrich Weber is
a P h D candidate in the
Computer Systcms Lab-
oratory at Stanford Uni-
versity. His research in-
te res t s focus o n
directory-based cache
coherence for scalable
shared-memory multi-

Weber received the B A and B E degrees
from Dartmouth College in 1986. H e re-
ccivcd an MS degree in electrical engineer-
ing from Stanford Univcrsity in 1987.

L ’ processors.

Anoop Gupta is an as-
sistant professor of com-
puterscience at Stanford
University. His primary
interests are in the de-
sign of hardware and
software for large-scale
multiprocessors.

Prior to joining Stan-
ford. Gupta was on the

research faculty of Carnegie Mellon Univer-
sity, where he received his P h D in 1986. Gup-
ta was the recipient of a D E C faculty develop-
ment award from 1987-1989, and he received
the NSF Presidential Young Investigator
Award in 1990.

John Hennessy is a pro-
fessor of electrical engi-
neering and computer
science at Stanford Uni-
versity. His research inter-
ests are in exploiting par-
allelism at all levels to build
higher performance com-
puter systems.

Hennessy is the recipi-
ent of a 1984 Presidential Young Investigator
Award. In 1987, he was named the Willard and
Inez K. Bell Professor of Electrical Engineer-
ing and Computer Science. In 1991. he was
elected an IEEE fellow. During a leave from
Stanford in 1984-85. he cofounded Mips Com-
puter Systems where he continues to partici-
pate in industrializing the RISC concept as
chief scientist.

I Mark Hnrowitz is an as-
sociate professor of elec-
trical engineeringat Stan-
ford University His
research interests include
high-speed digital inte-
gra ted circuit designs,
C A D tools for IC design,
and processor architec-
ture He is a recipient of a

1985 Presidential Young Investigator Award
During a leave from Stanford in 1989-90. he co-
founded Rambus, d company that is working
on improving memory bandwidth to and from
DRAMS

Horowitz rcccived the BS and SM dcgrees in
electrical engineering and computer science
from the Massachusetts Institute of Technolo-
gy and his PhD in electrical engineering from
Stdntord University

Monica S. Lam has been
an assistant professor in
the Computcr Science Dc-
partment at Stanford Uni-
versity since 1988. H e r
current research project is
to developa compiler sys-
tem that optimizes data
locality and exploits par-
allelism at task. loou. and

& .

instruction granularities. She was one of the
chief architects and compiler designers for the
CMU Warp machine and the CMU-Intel’s
iwarp.

Lam received her BS from University of Brit-
ish Columbia in 1980 and a PhD in computer
science from Carnegie Mellon llniversity in 1987.

Readers may contact Daniel Lenoski at Tan-
dem Computers. 19333 Vallco Parkway. MS
3-03, Cupertino, CA 95014: e-mail lenoski-dan
@tandem.com. Anoop Gupta can be reached at
Stanford Univ.. CIS-212, Stanford, C A 94305;
e-mail ag@pepper.stanford.edu.

March 1992 19

mailto:tandem.com
mailto:ag@pepper.stanford.edu

