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As cloud and utility computing spreads, computer architects must ensure continued capability growth
for the data centers that comprise the cloud. Given mega-Watt scale power budgets, increasing data center
capability requires increasing computing hardware energy efficiency. To increase the data center’s capability
for work, the work done per Joule must increase. We pursue this efficiency even as the nature of data center
applications evolves. Unlike traditional enterprise workloads, which are typically memory or I/O bound, big
data computation and analytics exhibit greater compute intensity. This article examines the efficiency of
mobile processors as a means for data center capability. In particular, we compare and contrast the perfor-
mance and efficiency of the Microsoft Bing search engine executing on the mobile-class Atom processor and
the server-class Xeon processor. Bing implements statistical machine learning to dynamically rank pages,
producing sophisticated search results but also increasing computational intensity. While mobile processors
are energy-efficient, they exact a price for that efficiency. The Atom is 5×more energy-efficient than the Xeon
when comparing queries per Joule. However, search queries on Atom encounter higher latencies, different
page results, and diminished robustness for complex queries. Despite these challenges, quality-of-service is
maintained for most, common queries. Moreover, as different computational phases of the search engine en-
counter different bottlenecks, we describe implications for future architectural enhancements, application
tuning, and system architectures. After optimizing the Atom server platform, a large share of power and
cost go toward processor capability. With optimized Atoms, more servers can fit in a given data center power
budget. For a data center with 15MW critical load, Atom-based servers increase capability by 3.2× for Bing.
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Fig. 1. Workloads constituting the cloud server market are growing in diversity [Eastwood et al. 2009].

1. INTRODUCTION

Internet services are experiencing a paradigm shift in which computation and data
migrate from clients to a cloud of distributed resources located in data centers. Today’s
large-scale data centers already run diverse workloads. Cloud computing services, such
as Amazon EC2 and Google App Engine, host a variety of workloads from e-commerce,
gaming, enterprise information technology (IT), news, and more. Web search is a first-
class Internet service as users turn to search engines for rapid access to the web’s
wealth of information. Social media workloads, such as Facebook and YouTube, are
also on the rise. But compared to search, these workloads are more interactive and
dynamic, consisting of environments that are rich with various types of media. Figure 1
shows that Internet services (Infrastructure/Consolidation) comprise a large fraction
of the server market. The increasing prominence of Internet services greatly increases
the diversity of server hardware and of their uses in datacenters.
Consider data center capability as the amount of work done within a fixed power
budget. As demand for computational infrastructure and consolidation increases, the
capability of data centers must increase. The demand for capability is driven by data
growth enabled by Internet services. This growth is exponential and faster than our
growth in ability to store and compute on that data. Over the past six years between
2005 and 2011 data volumes grew at 50 percent per year [Gantz et al. 2008]. Over that
same period, storage capacities grew at 40 percent per year. For example, YouTube
users upload over 20 hours of video in under a minute [Junee 2009].
Not only must we store big data, we must compute on that data to extract value.
Big data domains motivate exascale capability [Kogge et al. 2008]. Just as molecular
dynamics for protein folding and fluid dynamics for climate modeling are big data
domains, so are web search, data mining, and business analytics. To support a massive
number of concurrent requests, Google is estimated to operate over onemillion servers,
which is approximately two percent of the world’s servers. Emerging social media Web
2.0 workloads now match the demands of web search. Facebook and Google together
account for 14 percent of all US Internet traffic [Heather Dougherty 2010].
Greater data center capability requires greater energy efficiency from commodity
computing hardware. With data center power budgets already at mega-Watt scales,
cloud computing cannot realize greater capability with larger or more data centers.
Rather, data centers should deploy more computing hardware within the same bud-
get. To do so, we must look beyond conventional techniques that manage power but do
not provide capability. For example, reducing processor frequency reduces power but
also reduces capability proportionally. Because we want both capability and efficiency,
we must turn to architectures that complete more work per Joule consumed. Moreover,
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Fig. 2. Computational intensity measured in instructions executed per cycle (IPC). Web search (Bing) is
compared against traditional enterprise computing applications as well as recognition, mining, and synthe-
sis (RMS), as benchmarked by the PARSEC suite [Bienia et al. 2008]. IPC is normalized with respect to Bing
IPC, which is notably greater than one. All workloads are configured as per industry standards [VMware
2009]. These workloads are run natively on bare metal hardware under typical load conditions on a high-
performance server processor (Table I).

we must achieve this efficiency with commodity architectures. By exploiting declining
prices and increasing performance in commodity systems, infrastructure providers im-
prove return on investment through horizontal scaling of compute resources.
To improve data center efficiency, we must address processor efficiency, which ac-
counts for the largest share of server power. Small processor cores, in particular, offer
dramatic power and energy savings. Traditionally, small cores have been proposed
for chip multiprocessors to target throughput-oriented workloads [Barroso et al. 2000;
Davis et al. 2005; Kongetira et al. 2005]. Such workloads are characterized by many
independent tasks that are constrained by memory, network, or other I/O latencies.
In such an environment, computational latency is a second-order effect that might be
compromised without much user-perceived impact when using small cores [Lim et al.
2008]. Smaller cores deliver throughput with lower design and power cost when com-
pared to their low-latency, high-performance counterparts.
However, data center applications are in transition. In big data domains, synthesiz-
ing information from data requires greater computation. Indeed, Figure 2 considers
the Microsoft Bing search engine and its computational intensity as measured by the
number of instructions executed per cycle (IPC). By using techniques in statistical ma-
chine learning to compute dynamic page ranks, Bing IPC is greater than one and is 2-
3× greater than that of traditional enterprise workloads. Indeed, Bing computational
intensity resembles that of recognition, mining, and synthesis (RMS) benchmarks [Bi-
enia et al. 2008]. Bing computational intensity is also greater than measurements
previously published for other search engines [Barroso et al. 2003; Barroso 2005].
Although small cores are advantageous for efficiency, they are less capable of han-
dling increases in computational intensity and might jeopardize application quality-
of-service and latency constraints. These challenges constitute the price of efficiency
exacted by small cores. We quantify this price for the Microsoft Bing search engine and
the Intel Atom mobile-class processor. In particular, we perform the following, verti-
cally integrated study:
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—Efficiency (Section 2): Running the Microsoft Bing search engine, the Intel Atom
mobile-class processor is 5× more energy-efficient than the Intel Xeon server-class
processor. We quantify efficiency in queries per Joule.

—Price of Efficiency (Section 3): Search queries on Atom encounter 3×, different
page results for 1-3 percent of queries, and diminished robustness for complex
queries using advanced search features. However, quality-of-service is maintained
for most, common queries.

—Mitigating the Price of Efficiency (Section 4): Different computational phases
encounter different bottlenecks. We discuss implications for microarchitectural
enhancements (e.g., larger caches), application tuning (fewer branches), and system
architecture (e.g., heterogeneous multiprocessors).

—Platform Effects (Section 5): To realize Atom efficiency, server platforms must
be reorganized to reduce power overheads. By integrating multiple Atom cores per
chip, we amortize overheads over more cores. By reducing and multiplexing mother-
board components, we reduce overheads. After accounting for platform overheads,
Atom-based servers can be 1.4-2.1× more energy efficient than Xeon-based servers.

—Data Center Effects (Section 6):With power-efficient Atoms, more servers fit in a
given data center power budget. We compute total cost of ownership. Of every dollar
spent, more goes to capability and less goes to overhead. For a data center with 15MW
critical load, Atom-based servers increase capability by 3.2×.

Collectively, the results in this article illustrate a strategy to enhance data center
capability through energy-efficient, mobile processors. The microprocessor industry of-
fers a choice of two strategies for efficiency: (1) start with a big, high-performance core
and improve efficiency or (2) start with a small, low-power core and improve perfor-
mance. We compare these two strategies and the data favors the latter for Microsoft
Bing.

2. WEB SEARCH EFFICIENCY

Web search is representative of a broad and emerging class of datacenter workloads
that extract value from the wealth of data in the web. Given queries, search must
identify and return relevant pages to the user [Brin and Page 1998]. Inference engines
and machine learning techniques will play an increasingly large role as estimates of
relevance become more sophisticated. In this application environment, we compare
server- and mobile-class architectures for energy efficiency.

2.1. Web Search Overview

Indexed web pages are distributed across server nodes and each node is responsible
for serving queries to its subset of the web. Each indexed page has a static page rank,
which quantifies its relevance independent of any query. Upon query arrival, a node
computes a dynamic page rank as a function of static rank and query details. Com-
puting these page ranks may require tens of billions of processor cycles and access
hundreds of megabytes of data [Barroso et al. 2003].
Figure 3 outlines the structure of the Microsoft Bing search engine. Search queries
enter the system through a top-level aggregator. If the aggregator cannot satisfy the
query from its cached set of frequently asked queries, it distributes the query to index
serving nodes (ISNs). The ISN ranker parses the query and streams through the index
to identify a matching list of pages from query features.
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Fig. 3. Overview of Microsoft Bing and the page rank computation within the index serving node.

For these matching pages, the ranker computes the dynamic page ranks. Bing com-
putes this rank using a neural network. Given rank-ordered pages, the ISN returns
the top N most relevant pages and their dynamic ranks to the aggregator. Merging
results from multiple ISNs, the aggregator identifies and requests metadata for the
most relevant results.
If requested, an ISN provides captions, which comprise query results viewed by the
user. Each caption includes a title, URL, and snippets of the page for context. These
captions are produced by the context generator based on an ISN’s subset of pages.
Thus, the aggregator identifies the top N results across ISNs and returns the associ-
ated captions in response to the query.
Traditionally, the natural data parallelism of web search facilitated data center ca-
pability scaling. Such data parallelism often diminished the importance of individual
server node performance. However, search engines have evolved beyond the simple
page rank algorithms that count link popularity. As web search deploys more sophis-
ticated machine learning techniques to rank pages, server capability becomes more
important.

2.2. Web Search Requirements

Microsoft Bing is characterized by broad performance requirements, which fall into
three broad categories of robustness, flexibility, and reliability.
Robustness. Search performance is quantified by a combination of quality-of-service,
throughput, and latency. Web search defines quality-of-service by the minimum per-
centage of queries handled successfully. For example, a service target of θ percent re-
quires a minimum of θ successful queries for every 100. The other 100-θ queries might
time-out due to long latencies for expensive query features or might be dropped due to
fully occupied queues. Given a quality-of-service target constraint, we might consider a
platform’s sustainable throughput, which quantifies the maximum number of queries
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per second that can arrive at a node without causing it to violate θ. If the query arrival
rate exceeds sustainable throughput, quality-of-service degrades.
Query processing must also observe latency constraints. The average response time
of queries must fall within a certain number of milliseconds, with additional con-
straints for the 90-th percentile of queries. Latency directly impacts relevance (i.e.,
documents corresponding to a specific query) by affecting the number of iterative re-
finements made to a search result. Given a latency constraint, the ranker checks for
remaining time before, for example, checking the next tier in a tiered index. Lower
query processing latencies allow for additional refinements to improve relevance.
Flexibility and Absolute Load. The search engine operates in a highly distributed
system under a variety of loads and activity patterns. Not only must such a system be
scalable, it must also be flexible to changes in activity. For example, activity patterns
are often periodic and correlated with time of day. Moreover, even a modest spike in
complex queries may generate sudden activity spikes measured in absolute terms, as
complex queries cannot be broken down into simpler queries for redistribution across
multiple nodes. Every ISN must handle its own incoming complex query load. There-
fore, the underlying architecture must be robust enough to tolerate these absolute
spikes and, ideally, would exhibit gradual rather than sharp QoS degradations as load
increases. Such architectures would provide greater query flexibility with less disrup-
tion.
Reliability and Relative Load. Hardware failures are to be expected within large-
scale data centers. To ensure reliability and robustness in the presence of failures,
ISNs must operate with spare capacity to bear additional load when a fraction of in-
dex serving nodes fail, since work is then dynamically re-balanced across the remain-
ing nodes. Each node experiences a fractional increase of a failed node’s sustainable
throughput, which is an activity spike measured in relative terms. Architectures that
exhibit gradual and minimal QoS degradations as load increases in relative terms
would provide greater reliability with less disruption.

2.3. Web Search and Mobile Architectures

Web search efficiency depends on the application and its interactions with the under-
lying hardware architecture. Many traditional enterprise applications run on high-
performance, server processor architectures. However, processors for mobile or embed-
ded platforms often require less energy per operation [Dally et al. 2008; Grochowski
and Annavaram 2006]. We identify the opportunities and challenges for efficient web
search on these more efficient processors. In particular, we compare web search run-
ning on Xeons and Atoms, which are Intel architectures targeting server- and mobile-
class platforms, respectively.
Consider the spectrum of x86 processors. We observe high-performance, server-class
architectures at one end and low-power, mobile-class architectures at the other end.
Processor architects have two strategies for energy efficiency. Architects might start
with a high-performance design and optimize efficiency by removing features that de-
liver small performance gain at large power cost. Alternatively, architects might start
with a low-power design and optimize by adding features or accelerators that deliver
high performance gain at modest power cost. Comparing web search efficiency at both
starting points helps us choose between these strategies. Table I summarizes the ar-
chitectures considered in this study.
Server-class Architecture. The Xeon is a product class built around modern, high-
performance processor architectures. We study the Harpertown, which contains eight
Penryn cores, organized into two dies with four cores each [George et al. 2007; Intel
Corporation 2009b]. Penryn implements several power optimizations. Implemented at
45nm with high-K dielectric and metal gate transistors, the process technology re-
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Table I. Server- and mobile-class x86 processor architectures. We
evaluate web search on Xeon-Harpertown [George et al. 2007; In-
tel Corporation 2009b] and Atom-Diamondville [Gerosa et al. 2008;
Intel Corporation 2009b] processors, which represent endpoints in
the spectrum of x86 commodity processors.

Xeon Atom

Harpertown-Penryn Diamondville

Processors 1 1

Cores 4 2

Process 45nm 45nm

Frequency 2.5GHz 1.6 GHz

Pipeline Depth 14 stages 16 stages

Superscalar Width 4 inst issue 2 inst issue

Execution out-of-order in-order

Reorder Buffer 96 entries n/a

Load/Store Buffer 32/20 entries n/a

Inst TLB 128-entry, 4-way Unknown

Data TLB 256-entry, 4-way Unknown

L1 Inst/Data Cache 32/32KB 32/24KB

L2 Cache (per die) 12MB, 24-way 1MB, 8-way

FSB 1066MHz 533 MHz

duces leakage power by 5-10×. Thus, compared to prior high-end core designs, Penryn
consumes much less energy when idle. Process technology also enables more efficient
active computation as switching power falls by 30 percent.
Adaptive architectures adjust hardware resources to match application behavior and
to reduce power. For example, each Penryn die includes four cores sharing a 12MB L2
cache. The cache is organized into 1MB slices, which allows it to dynamically adapt
capacity. Powering down the cache in 1MB increments reduces power.
Dynamic voltage and frequency scaling also manages power. However, such scal-
ing has a modest effect for a platform already optimized for power efficiency, such as
the Harpertown L5420. As shown in Figure 4, the L5420 already operates at near
minimum voltages and frequencies. Switching between the highest and lowest perfor-
mance states (i.e., P-states), the architecture implements only a negligible voltage re-
duction. As we increase processor load by running computationally intensive floating-
point loops [Mienik 2000], we observe a 15 percent power savings between the high
and low P-state. Since operating voltages are not changing, the majority of the power
reduction is due to a proportional reduction in clock frequency.
The choice of a power-optimized Harpertown L5420 with Penryn cores provides a
robust baseline for our study. Since our original study, Intel’s server-class architecture
has evolved from the Penryn to the Nehalem [Kumar and Hinton 2009]. Nehalem fur-
ther improves energy efficiency, emphasizing features that increase performance by
more than one percent for every one percent increase in power. Further improving
efficiency, Nehalem includes a dedicated controller that monitors the operating envi-
ronment to set performance states, voltages, and frequencies. Among these settings is
the ability to power gate processor cores, eliminating both dynamic and static power.
Many of these optimizations improve energy proportionality when the processor is less
than fully utilized. While Nehalem is significantly more power-efficient than Penryn,
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Fig. 4. Effects of dynamic voltage and frequency scaling on the Xeon Harpertown L5420 as the processor is
subject to a power virus—CPU Burn [Mienik 2000].

its evolutionary efficiency is insufficient to close the large power gap between server-
and mobile-class processors.
Mobile-class Architecture. The Atom is representative of modern, low-power pro-
cessor architectures. We study the Diamondville, which contains two cores [Gerosa
et al. 2008; Intel Corporation 2009b]. Each core is designed to operate in the sub-1W
to 2W range. While modern high-performance architectures dynamically re-order in-
structions to improve instruction-level parallelism, Diamondville cores implement an
in-order pipeline with power efficient instruction decode and scheduling algorithms.
The Diamondville datapath is narrower than that of the Harpertown, issuing only
two instructions per cycle. These instructions issue to general-purpose logic that pro-
vides multiple functionality rather than specialized execution units. For example, the
SIMD integer multiplier and floating-point divider are used to execute instructions
that would normally execute on separate, dedicated scalar equivalents [Gerosa et al.
2008]. Such strategies may reduce power, but also have implications for performance
as SIMD execution units compute on scalar operands.

2.4. Experimental Methodology

Web search distributes queries across several index serving nodes. In this article, we
specifically examine its activity within a node. On this node, we install production-
quality web search and drive it with queries traced from real user activity. Of the
components illustrated in Figure 3, we specifically examine the subset that performs
dynamic page ranking and returns the sorted results to the aggregator. We do not
account for the context generator.
The quality of web search is defined by the relevance of pages returned in response
to a query. Relevance depends on server node performance. Nodes experience heavy
computational load. In particular, under typical operating conditions, processor activ-
ity ranges between 60 and 70 percent. This intensity motivates our study of leaf nodes
in distributed web search computation. We neglect the aggregator and the query trace
only considers activity that misses in the cache. Hereafter, “search engine” refers to
the dynamic page ranker, which we investigate.
The index serving node computes page ranks for a trace of forty thousand queries
after warm-up. Input queries are obtained from production runs. Our experiments pa-
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rameterize query arrival rates, measured in queries per second (QPS). Recall from
Section 2.2 that search defines quality-of-service as the percentage of successfully pro-
cessed queries (θ). To determine an architecture’s maximum sustainable throughput,
we sweep query arrival rates and maximize QPS without violating θ.
The index serving node services queries for a 1GB production index, which is a sub-
set of the global index distributed across several nodes. Given a query, each node com-
putes ranks for pages in its index. Each indexed page is characterized by a static rank,
which determines its potential relevance before a query is known. After a query ar-
rives, a dynamic rank is calculated as a function of static rank and query features. The
size of a node’s local index is determined by memory capacity. The index is designed to
reside in memory, minimizing page faults and disk activity. In such a system, processor
architecture is a primary determinant of performance.
To ensure a fair comparison, we normalize results by the number of sockets; Harper-
town consists of two Penryn processors, each with four cores. Moreover, we often nor-
malize by the number of cores as well; Penryns have four cores whereas Atoms have
two. Also for a fair comparison, we match the total number of application threads,
which service queries, to the number of hardware thread contexts. For Atom, this
means enabling simultaneous multithreading (SMT). System software is configured
such that our setup is representative of a typical deployment strategy in Microsoft
datacenters.
We analyze microarchitectural performance using measurements collected via
VTune [Intel Corporation 2008a], a toolbox that provides an interface to hardware
counters on both the Xeon and the Atom. These counters provide detailed insight into
microarchitectural activity that can be attributed to specific computational phases in
the search engine. To relate microarchitectural activity to energy consumption, we
measure power dissipated by the processor. In particular, we identify the 12V lines
entering the voltage regulator module. Applying a Hall-effect clamp ammeter (Agilent
34134A) to this line, we collect power measurements at 1KHz using a digital multime-
ter (Agilent 34411A).
We present much of the data in relative terms to illustrate trends and trade-offs. By
normalizing data, we safeguard the absolute performance numbers for the Microsoft
Bing search engine.

2.5. Efficiency Analysis

To determine web search efficiency on server- and mobile-class processors, we must
compare the rate of work against the rate of energy consumed. In particular, we mea-
sure throughput and power, which quantify queries per second and Joules per second.
Dividing throughput by power, we obtain queries per Joule.
Throughput. LetXθ be the maximum number of queries per second sustained by the
Xeon without violating the quality-of-service target θ. Similarly, define Aθ for sustain-
able Atom throughput. The quality-of-service guarantee is robust if target θ is satis-
fied despite fluctuations and temporary increases in query load. Figure 5 illustrates
quality-of-service trends for Xeon and Atom processors. The horizontal axis quantifies
query arrival rate, normalized to Xeon’s sustainable throughput Xθ. The vertical axis
quantifies quality-of-service as the percentage of successfully processed queries.
At the same θ, Xeon sustains 3.9× the throughput sustained by an Atom (Xθ =
3.9×Aθ). On a per core basis, each of the four Xeon cores sustain 2.0× the throughput
sustained by each of the two Atom cores. Xeon processes the additional queries more
robustly. Degradations in quality-of-service are modest and gradual. Atom is unable to
absorb a large number of additional queries and quickly violates its quality-of-service
target. We sweep query arrival rates to extreme values (e.g., 2Xθ) to identify the max-
imum number of queries per second that an architecture can sustain. This sweep also
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Fig. 6. Search and Xeon (a) execution versus stall time, (b) stall time breakdown.

characterizes robustness and trends. We do not assume sustainable operation under
such loads in a production environment.
Xeon Architectural Activity. Figures 6-7 illustrates microarchitectural activity on the
Xeon under its maximum sustainable query load Xθ. As shown in Figure 6(a), 55 per-
cent of execution time is spent stalled for either the register alias table (RAT), the
instruction fetch front-end (IFU), or data communication (e.g., cache and memory).
Structural conflicts or long latency memory instructions block instruction retirement.
Collectively, these stalls reduce datapath utilization such that only 44 percent of pro-
cessor cycles retire instructions. Figure 6(b) further highlights the source of stalls.
Stalls during instruction fetch arise from branches and instruction cache effects. As
illustrated in Figure 7(a), substantial branch activity of 16 branches per 100 instruc-
tions makes the branch predictor a bottleneck. Moreover, the datapath sees a seven
cycle penalty when the number of unresolved and in-flight branches exceeds the ca-
pacity of the branch predictor (e.g., branch history table) [Intel Corporation 2008a].
Furthermore, as shown in Figure 7(b), the instruction fetch unit often stalls for L2
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Fig. 7. Search and Xeon (a) instruction mix, (b) source of L2 cache accesses.

cache activity with 19 percent of L2 cache accesses attributed to instruction cache
misses.
Other resource stalls may be attributed to memory activity. According to Figure 7(a),
a total of 30.4 percent of instructions either load or store data, which leads to pressure
on the cache hierarchy. Consequently, Figure 7(b) shows that data loads and stores ac-
count for 81.2 percent of all L2 cache activity. Such L2 cache activity often translates
into memory requests with 67 percent of bus activity attributed to memory transac-
tions (not shown). This L2 and memory activity arises from the nature of the search
engine, which streams through the server node’s indexed pages to compute dynamic
page ranks.
Atom Architectural Activity. Figure 8 compares Atom microarchitectural activity to
that of the Xeon when both architectures compute on their respective maximum sus-
tainable query loads. Relative to the Xeon, the Atom implements a simpler and deeper
pipeline. The high frequency of branches and Atom’s deeper pipeline depth increases
the number of cycles penalized by branches. Moreover, despite its deeper pipeline, the
Atom incurs additional penalties as the number of in-flight branches exceeds the max-
imum allowed.1 Collectively, these effects lead to a 10× increase in cycles spent penal-
ized by branch activity.
The divider is another architectural bottleneck in the Atom. The number of Atom
cycles executing divide instructions increases by 48× relative to Xeon divider activ-
ity. These performance effects may arise from a decision to favor generality over spe-
cialization for execution units. Specifically, “the use of specialized execution units is
minimized. For example, the [single instruction multiple data] integer multiplier and
floating point divider are used to execute instructions that would normally require
a dedicated scalar integer multiplier and integer divider respectively” [Gerosa et al.
2008]. While this design decision may reduce static power that would be dissipated

1We see a large increase in BACLEAR events reported by VTune. According to the user manual [Intel
Corporation 2008a], BACLEAR “counts the number of times the front end is re-steered, mainly when the
Branch Prediction Unit cannot provide a correct prediction and this is corrected by the Branch Address
Calculator at the front end. This can occur if the code has many branches such that they cannot be consumed
by the BPU. Each BACLEAR generates approximately an 8 cycle bubble in the instruction fetch pipeline.
The effect on total execution time depends on surrounding code.”
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Fig. 8. Atom microarchitectural activity with respect to Xeon.

by infrequently used logic, performance penalties may arise as SIMD units execute on
scalar operands.
Per core, the Atom implements a much smaller cache hierarchy. As summarized by
Table I, the Atom L1 data and L2 unified caches are 25 and 66 percent smaller than
their Xeon counterparts. This smaller cache capacity translates into 1.5× and 8.0× the
number of data cache and L2 cache misses.
Collectively, these microarchitectural effects lead to a 3× increase in cycles per in-
struction. This increase impacts the mean and variance in per query latency. Note the
distinction between microarchitectural latency, per query latency, and system query
throughput. Switching from the Xeon to the Atom impacts cycles per instruction by 3×

but only impacts query throughput by 0.5×. The impact on system throughput can be
less than the impact on microarchitectural latency because some processing is wasted
on failed, timed-out queries. Thus, Section 3.1 will show that microarchitectural mea-
sures of per instruction latency are most useful when paired with system measures of
per query latency.
Power. Figure 9 illustrates the power time series for both Xeon and Atom as they run
web search at their respective maximum query loads. The Xeon operates with an idle
power component of 38 W. This substantial idle power is particularly problematic given
that the processor is stalled for 56 percent of its cycles. The Xeon exhibits a dynamic
power range of 38 to 75 W with a 95 percent difference between idle and peak power.
In contrast, Atom has a low idle power component of 1.4 W with a 168 percent dif-
ference between idle and peak power. The Atom realizes a dramatic power reduction;
the Xeon dissipates 10× more power. Atom’s low idle power and large dynamic range
is particularly attractive in the pursuit of energy proportional computing [Barroso and
Hölzle 2007]. Moreover, relative to a Xeon core, an Atom core contributes less to query
throughput. As Atom cores are idled or powered down, datacenter capability falls at
finer granularities, which also favors energy proportionality.
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Fig. 9. Xeon consumes ∼62.5W, whereas the low-power Atom consumes ∼3.2W on average.

Table II. Web search on Xeon versus Atom. Performance is sustainable query throughput, mea-
sured in queries per second (QPS) at the same quality-of-service target θ. Average power is
measured for processors operating at sustainable throughput. Area is cited per processor. Price
is reported per unit purchased in orders of one thousand units. QPS is reported normalized to
Atom performance Aθ . Measures of efficiency propagate this normalization.

Per Processor Per Core

Xeon Atom ∆X/A Xeon Atom ∆X/A

Performance (QPS) 3.9Aθ Aθ 3.9× 1.0Aθ 0.5Aθ 1.9×

Power (W) 62.5 3.2 19.5× 15.6 1.6 9.8×

Power Efficiency (QPS / W) 6.2Aθ 31.3Aθ 0.2× 6.2Aθ 31.3Aθ 0.2×

Area (T, ×106) 820 94 8.7× n/a n/a n/a

Area (mm2) 214 50 4.3× n/a n/a n/a

Area Efficiency (QPS / mm2) 1.8Aθ 2.0Aθ 0.9× n/a n/a n/a

Price ($) 380 45 8.4× 95 22.5 4.2×

Price Efficiency (QPS / $) 1.0Aθ 2.2Aθ 0.5× 1.0Aθ 2.2Aθ 0.5×

Efficiency. Throughput is measured in queries per second. Power is measured in
Joules per second. Dividing throughput by power, we measure energy efficiency in
queries per joule. On a per core basis, the Atom is 5× more efficient than the Xeon.
Table II compares the Xeon and the Atom, indicating the large power differential of
20× (10×) per processor (per core) dominates the performance differential of 4× (2×)
per processor (per core). Thus, the large power cost of the Xeon is not justified by the
relatively modest advantage in sustainable query throughput.
Although this article focuses on energy efficiency, Table II mentions area and price
efficiency for comparison. Xeon and Atom area efficiency are comparable, indicating
Xeon area overheads from dynamic instruction scheduling, out-of-order execution, and
larger caches produce a proportional improvement in search query throughput. Re-
garding price efficiency, however, a Xeon core is priced more than 4× higher than
the price of an Atom core. At this higher price, the Xeon core sustains nearly 2× the
query throughput. In effect, every dollar spent on an Atom core leads to 2× the query
throughput. Note that we consider the price seen by data center operators and not the
cost seen by processor manufacturers. Manufacturers may target higher profit mar-
gins on server-class processors. Moreover, this price analysis considers only processor
prices, neglecting platform prices and total cost of ownership. Peripheral components,
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Fig. 10. Xeon and Atom latency with varying query arrival rates (QPS), which are normalized to Xθ .

such as motherboards and memories, will impact the analysis. Section 4 will further
assess the sensitivity of these effects.

3. PRICE OF EFFICIENCY

We quantify the price of exploiting energy efficiency with mobile-class processors. As
data center workloads evolve toward big data domains that require more analytical
computation, understanding the interactions between architecture and application is
particularly important. For web search, we find quality-of-service is maintained for
most, common queries. However, mobile processor cores are less robust to increases in
query load, which impact per query latency as well as latency variance.
Higher latencies impact the relevance of search results. The search engine allots
time spent on any given query. If the allotted time is exhausted, potentially incomplete
results computed up to that time are returned. Thus, if the rate of computation slows,
relevance may suffer as fewer opportunities exist to refine search results. This impact
on relevance is particularly apparent for complex queries.

3.1. Latency

Computational latency is often neglected in online and web services. Often, network
latency is assumed to dominate computational latency in the response time perceived
by the user. For web search, however, computational latency impacts the substance,
in addition to the speed, of results. In particular, each query is subject to a cut-off
latency LC , which defines the allotted time for computation. The search algorithm
uses multiple strategies to refine search results as long as query latency has not yet
exceeded the cut-off latency.
Figure 10 illustrates average query latency trends as query arrival rate increases.
On the logarithmic, vertical axis, latency is normalized to the cut-off. Consider both
architectures at their maximum sustainable loads Aθ and Xθ. In this case, query la-
tencies on the Atom are 3× greater than those on the Xeon (0.33LC atAθ versus 0.12LC

at Xθ). These latencies appear fundamental to the architecture as we observed a sim-
ilar 3× increase in cycles per instruction (Figure 8). Moreover, these latencies appear
to arise from architecture and not system organization (e.g., queuing delays) since the
latency gap persists even as query load falls toward the minimum values of Figure 10.
Latency Distributions. In addition to characterizing average latency, we also charac-
terize latency variance. Figure 11 illustrates the cumulative distribution function for
latency, which is normalized to cut-off. The experiment allows queries to exceed LC

and tracks the time required to process each query to completion. Moreover, we track
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Fig. 11. Per query latency distribution. Allow queries to exceed cut-off latency LC and track per query
latencies.

the impact of increased query activity, measured in multiples of λ. This analysis allows
us to compare the robustness of architectures to activity spikes.
The Xeon, processing queries atXθ, satisfies 89 percent of queries in less than 0.2LC .
98 percent of queries are satisfied before the cut-off latency LC and less than 1 percent
of queries require more than 2LC . Moreover, on the Xeon, these trends are modestly
sensitive to increased query loads. For an increased load of Xθ+3λ, 83 and 96 percent
of queries are still satisfied in less than 0.2LC and LC , respectively.
Processing queries at Aθ, search on Atom exhibits greater latencies and variance.
Although Atom satisfies 93 percent of its queries before cut-off, we find much greater
variance in the latency distribution. Only 68 percent of its queries are satisfied in
less than 0.2LC . And nearly 3 percent of its queries require more than 2LC . Thus,
compared to Xeon latency distributions, Atom latency distributions are characterized
by a much larger spread between the minimum and maximum latencies. Furthermore,
Atom latency distributions are highly sensitive to activity increases. For an increased
load of Aθ + 3λ, only 33 and 78 percent of queries are satisfied in less than 0.2LC and
LC , respectively.
Latency and Architecture. Latency effects appear to arise from differences in the
Xeon and Atom processor architecture; they persist even under minimum query loads.
Figures 12-13 activity to provide deeper insight. As query load increases, measured
activity is normalized to values observed at each architecture’s respective sustain-
able loads. Increases in query load minimally impact Xeon microarchitectural activ-
ity. Aside from increased memory bus utilization, we find little noticeable change in
activity. The net effect on the number of cycles per instruction is modest.
In contrast, Atommicroarchitectural activity increases dramatically with additional
query load. Increases of λ, 2λ and 3λ queries per second beyond Aθ stress architectural
resources and increase the number of cycles per instruction by 7.5, 13.2, and 16.5 per-
cent, respectively. This performance degradation arises primarily from increasing con-
tention in the cache hierarchy. The small 1 MB, 8-way L2 cache becomes a constraint.
The L2 cache miss rate increases by up to 22 percent and the L2 cache eviction rate
increases by up to 100 percent. The increased eviction rate results in much higher bus
utilization; writebacks increase linearly with additional query load. As the memory
subsystem becomes a bottleneck, the pipeline is more often stalled waiting for data.
Thus, the compute-to-memory intensity is impacted and divider utilization falls by 8
percent with an extra load of 3λ queries per second.

ACM Transactions on Computer Systems, Vol. 9, No. 4, Article 39, Publication date: March 2011.



39:16 Reddi, Lee, Chilimbi, and Vaid

1.6

1.4

1.2

1.0

0.8

0.6

R
e

la
ti
v
e

 t
o

 X
e

o
n

 a
t 

X
θ

 I
F

e
tc

h
 S

ta
ll 

Im
p
a
c
t

 B
ra

n
c
h
 M

is
p
re

d
ic

ti
o
n
 I
m

p
a
c
t

 B
ra

n
c
h
 M

is
p
re

d
ic

ti
o
n
 R

a
te

 

 B
u

s
 U

ti
liz

a
ti
o

n

 B
u
s
 B

u
rs

t 
R

e
a
d
s

 D
a
ta

 B
u
s
 U

ti
liz

a
ti
o
n

 W
ri
te

b
a
c
k
 B

u
s
 U

ti
liz

a
ti
o
n  

 T
L
B

 M
is

s
 I
m

p
a
c
t

 I
T

L
B

 M
is

s
 R

a
te

 D
T

L
B

 M
is

s
 R

a
te

 

 D
iv

id
e

r  

 L
1

 D
C

a
c
h

e
 M

is
s
 I

m
p

a
c
t

 L
1
 D

C
a
c
h
e
 M

is
s
 R

a
te

 L
1

 I
C

a
c
h

e
 M

is
s
 R

a
te

 

 L
2

 C
a

c
h

e
 M

is
s
 R

a
te

 L
2

 E
v
ic

ti
o

n
 R

a
te

 

 C
P

I

 Xθ + λ  Xθ + 2λ  Xθ + 3λ 

Fig. 12. Xeon microarchitectural activity as load increases beyond sustainable throughputXθ .
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Fig. 13. Atom microarchitectural activity as load increases beyond sustainable throughput Aθ .
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Fig. 14. Bottlenecks on Atom limit the quality of page hits.

3.2. Relevance

Although network latency dominates user perceived response times, computational la-
tency impacts the relevance of computed results. Search algorithms may have multiple
strategies for refining results and the load or cut-off latency LC would determine op-
portunities for refinement. In a tiered index, pages indexed in the first tier are always
ranked but indices in subsequent tiers may only be ranked if LC has not been ex-
ceeded. Moreover, the fraction of pages that are ranked might be dynamically tuned to
trade-off computation energy and user perceived relevance [Baek and Chilimbi 2010].
In these scenarios, higher rates of computation allow for multiple iterative refinements
of search results to improve relevance. Lower latencies also provide timing slack, which
algorithm designers can consume to improve search heuristics.
Given its higher latencies, search on Atom has fewer opportunities to refine results.
Figure 14 illustrates the effect. For each query, we take the topN page results returned
by the Xeon as the golden, most relevant results. We repeat each query on the Atom
and compare the top N page results against those from the Xeon. In the best case,
100 percent of these N pages match. In the worst case, none of these pages match. We
perform this analysis for each of our forty thousand traced queries and determine how
many of these queries fail to meet matching criteria and return different results on
the Atom. These effects are then examined at varying query loads.
This measure of relevance is conservative since it assumes Xeon results are most
relevant and any result mismatch degrades user perceived relevance. In practice, any
change in the search engine algorithm or architecture would require assembling a user
study group. In some cases, mismatched results may not be noticed by users. However,
in the absence of a user study, we apply matching criteria to quantify the impact on
relevance.
At maximum sustainable Atom load Aθ, nearly all queries satisfy relaxed match-
ing constraints. In particular, search on Atom easily matches 20 percent of the top N
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Fig. 15. Quality-of-service by query complexity. Query types A, B, and C are characterized by increasing
complexity.

queries. However, more stringent constraints expose differences. At Aθ, 1.4 percent of
queries fail to match all N pages returned by the Xeon. The number of such differences
increases to 3.0 percent as load increases.
Some of these differences in page results arise from architectural effects. Even at
a low query load, results on the Atom differ for 1 percent of all queries. At such low
query loads, software queuing delays are negligible and architectural latencies likely
account for the difference. Since Atom’s per query latencies are 3× those of the Xeon,
page rank refining algorithms have a third of the time to complete their work. Thus,
we observe different results, even if hardware resources are under-subscribed.

3.3. Complexity

A search engine may experience user-generated activity spikes. The underlying archi-
tecture must be capable of adapting to rapid and significant shifts in search activity.
These shifts are particularly pronounced for complex queries. Search features (e.g.,
query length, language specification, and logical expression) determine query com-
plexity and its computational demands. Complex queries arrive at the aggregator and
are distributed to index serving nodes. After arriving at a particular node, the com-
plex query is broken into multiple simpler queries. The search engine does not allow
these simpler queries to be re-distributed; each index serving node must handle the
additional load associated with query complexity.
Even a modest spike in complex queries causes a significant activity spike with an
index serving node. Nodes sensitive to activity spikes must be over-provisioned by
operating below sustainable throughput by a safety margin. To understand this sen-
sitivity, we evaluate how query latency distribution changes as load increases in the
presence of different types of queries. From the trace of forty thousand mixed queries,
we separate queries according to complexity and label them into three groups in order
of increasing complexity: A, B, and C as illustrated in Figure 15. Query type A has
no complex search criteria and is therefore fast to process. Types B and C increase
complexity, characterized by longer queries and advanced search engine features.
Figure 15 compares and contrasts the Xeon and the Atom. Atom can match Xeon’s
quality-of-service for queries of type A, even as query load increases to Aθ+3λ. Thus,
Atom provides energy-efficient web search for the simplest queries, which are also the
common case. However, the Atom becomes uncompetitive for query types B and C as
load increases beyond Aθ. At Aθ+3λ, the percentage of successful queries is only 90
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percent for a stream of type C queries. These queries increase the effective query load
by splitting complex queries into simpler ones. With this extra load, queues begin to fill
and new, incoming queries are dropped until this extra load is processed or until the
query exceeds cut-off latencies. In contrast, the Xeon does not suffer from this problem.
As query complexity varies, Xeon is able to absorb activity spikes more smoothly.

4. MITIGATING THE PRICE OF EFFICIENCY

For simple and common queries, the Atom offers dramatic energy efficiencies without
compromising quality-of-service. For more complex queries, architectural bottlenecks
and latency may impact the relevance of results. These effects might be mitigated
through architectural enhancements, system organizations, or application tuning.

4.1. Architectural Enhancements

Compared to the Xeon, the Atom can sustain fewer queries per second. System orga-
nization can mitigate this disadvantage by over-provisioning processors and reducing
query load on index serving nodes. However, the Atom architecture also limits web
search performance. As discussed in Section 3, even at low query loads, the Atom ex-
hibits longer per query latency, returns different page results, and handles complex
queries less effectively. Thus, system strategies to manage query load may be insuffi-
cient. Enhancements to the core architecture may be needed.
Bottlenecks are limited to a few functions within each phase of search computa-
tion. Assembling a list of the top twenty functions ranked by share of execution time
for Xeon and comparing against a similar list for Atom, we find significant overlap.
An important function is important regardless of the architecture. From this list of
twenty functions, we identify a representative function in each major computational
phase (i.e., manager, neural network, ranker, and streams). Profiling Atom architec-
tural activity for these representative functions, Figure 16 indicates the diversity of
microarchitectural bottlenecks across computational phases. No single architectural
bottleneck accounts for all of Atom’s latency gap. Each function exercises different
parts of the microarchitecture.

—The manager coordinates the movement of index files to and from memory. The
smaller L2 cache limits opportunities to exploit locality and produces a 14× increase
in misses. The smaller cache also increases memory subsystem activity by 20 to 22×,
thus causing a 4.6× increase in cycles per instruction.

—The neural network stresses the divider and L2 cache. This function exhibits a 64×
increase in division time, which seems to arise from a design decision regarding
SIMD versus scalar dividers; scalar division is performed in a SIMD execution
unit [Gerosa et al. 2008]. Atom’s small 1MB, 8-way L2 cache leads to a 14× increase
in L2 cache misses. The effect on neural network computation is a 4.8× increase in
cycles per instruction.

— In contrast, other parts of the ranker stress the branch predictor and L1 data cache.
The performance impact of branch misprediction increases by 142× from a very
low baseline on the Xeon. Such penalties may arise from the ranker’s algorithmic
components, which apply different strategies depending on query features and
cut-off latencies. Also from a low Xeon baseline, the impact of L1 data cache misses
increases by 79×. These two effects contribute to a 2.9× increase in cycles per
instruction.
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Fig. 16. Identifying bottlenecks across phases of search using representative functions.

—Also stressing the branch predictor, streams manipulate an iterator data structure
containing indices that match words within the query. Finding a particular element
within the iterator requires non-trivial control flow, which exercises the branch pre-
dictor with a 49× penalty relative to Xeon. The number of cycles per instruction
increases by 2.8×.

Although we observe performance degradations between 2.8× and 4.8× in representa-
tive functions across the four major phases of computation in search, the microarchi-
tectural bottlenecks differ significantly.
Despite the near-term shortcomings of the Atom, the ideal efficient microprocessor
seems closer to the mobile-class end of the microarchitectural spectrum. For example,
as indicated in Figure 12, Xeon datapath resources (e.g., functional units) are over-
provisioned since activity spikes do not have any noticeable effect on most hardware
structures. In adopting simpler Atom cores, area falls by 2× as the datapath and caches
shrink. Some of these area savings could be re-directed towards larger caches. Such an
approach would lead to an unconventional small core designs where high-performance
cache hierarchies are paired with an in-order, narrow-issue datapath. Such a strat-
egy would address specific limitations and may be more efficient than architecting a
datapath for speculative, out-of-order instruction execution.

4.2. Application Tuning

This article consider a particular implementation of Microsoft Bing. All experiments
are performed on compiled binaries and source code analysis is beyond the scope of this
article. However, application tuning may circumvent Atom’s architectural limitations.
To lay the groundwork for such tuning, we consider the computational phases of the
search engine and their contribution to overall performance.
Computational Phases. Figure 17(a) illustrates the distribution of execution time
across four phases. While ranker and neural network computation is of particular in-
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Fig. 17. Computational phases and (a) Atom execution time breakdown, (b) Atom performance penalties
measured in cycles per instruction relative to Xeon.

terest, they account for less than 40 percent of the computation. Manager and stream
computation must manage the flow of data to feed this ranking computation. To close
a latency gap of 3×, we need to improve the performance of all computational phases.
In particular, Figure 17(b) indicates the performance degradation across all major
phases of computation on the Atom. Atom latency, measured in cycles per instruction,
for these phases increases between 1.5× and 2.8× relative to Xeon latency. Moreover,
given the difference in clock frequency, each Atom cycle is 50 percent longer. This anal-
ysis highlights the challenges when no single function or phase of computation can be
targeted to close the performance gap.
Hot Functions. Because each phase comprises a large fraction of total execution time
and all phases see a performance penalty, the importance of each computational phase
is similar for both the Xeon and the Atom. However, if we consider the importance
of individual functions, we observe more significant shifts. The different hardware re-
quirements of individual functions cause some functions to become more important as
they encounter specific Atom bottlenecks.
Figure 18 illustrates this effect for the top twenty functions, when rank ordered
by share of total execution time. A list of the top twenty is compiled for search sub-
routines. Although we cannot present specific function names, we identify their asso-
ciation to broader computational phases (e.g., Manager). Each function in the two lists
are cross-referenced, allowing us to compare and contrast their relative importance in
search on the Xeon and the Atom.
Examining the gradient of arrows linking the two lists, we find neural network func-
tions exhibit the largest increase in share of execution time. On Xeon, neural networks
occupy the 10th and 27th position in a list of twenty. These same functions occupy the
3rd and 7th position on the Atom. This shift illustrates Atom’s architectural impact on
neural network computation. The neural network helps compute dynamic page ranks
and is on the critical path for query processing. When switching to the Atom, five new
functions enter the top twenty: one NeuralNet, one Stream, two Manager, and one
Ranker function.
This analysis highlights the need for future work in application tuning as the search
engine deploys on a new architecture. As new functions become hot, the software tun-
ing strategies must be aware of underlying hardware resources. At the function level,
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Fig. 18. Hot functions, labeled by computational phase, on Xeon andAtom. Arrows cross-reference functions
across two architectures.

for example, re-writing code to reduce the degree of conditional control flowmay relieve
pressure on the branch predictor.
At the application level, web search may dynamically adjust the number of pages
that must be ranked before returning answers. In many cases, a server node might not
need to rank all pages in its index since its results are aggregated with other serving
nodes’ results. In this aggregation, the set of top N pages from a particular node may
not propagate into the set of top N pages after aggregation across all nodes. Exploiting
this fact, algorithm designers might develop heuristics to determine what fraction of
the index requires ranking [Baek and Chilimbi 2010].
A coordinated hardware-software design strategy is needed to identify Atom limi-
tations that should be addressed by architectural enhancements in silicon and those
that should be addressed by application re-writes in software. In practice, however,
business realities and separation of interests pose challenges to coordination. In par-
ticular, data center application developers are accountable for the performance of their
deployed service but do not observe costs associated with procuring and running hard-
ware. As a result, there is little incentive to jeopardize application performance to
accommodate hardware capabilities. Moreover, application quality impacts end-user
experience and market share. Thus, further work is needed to span the hardware-
software divide.

4.3. Heterogeneous Chip Multiprocessors

Looking further beyond conventional architectures, hardware heterogeneity can im-
prove efficiency and performance by tailoring accelerators for computational bottle-
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necks. Prior research in heterogeneous chip multiprocessors proposes integrating large
and small cores onto a single chip (Section 7). However, consider the divisions between
computational phases (Manager, NeuralNet, Ranker, Streams) and the assignment of
these phases to large and small cores. A preliminary analysis suggests such a solution
may be energy inefficient for Microsoft Bing. In particular, we optimistically estimate
performance gains and conservatively estimate power costs. If heterogeneity is not
energy-efficient in this analysis, it will not be efficient in a real implementation.
Consider the four phases of computation: Manager, NeuralNet, Ranker, Streams.
We quantify potential performance gains from accelerating this computation using
a Xeon core instead of an Atom core. If we accelerate the most important function
in each phase, Figure 16 indicates benefits between 2.8× and 4.8×. If we accelerate
the broader phases of computation, Figure 17(b) indicates benefits between 1.5× and
2.8×. Grouping functions into phases, instead of targeting a single top function, dilutes
performance gains. In both cases, these performance gains are optimistic because they
do not account for costs of carving out computation to execute on a different processor
core.
We also quantify potential power costs from accelerating computation on a large
Xeon core. Figure 9 indicates a two-core Atom dissipates 4.3W (2.2W per core) at its
measured peak while a four-core Xeon dissipates 38.5W (9.6W per core) at its mea-
sured trough. Thus, the minimum power cost of assigning computation on the Xeon
instead of the Atom is 4.3×. By comparing Atom peaks to Xeon troughs, this power
cost is optimistic because they do not account for Xeon core activity, which would fur-
ther increase power cost.
Even under optimistic performance benefits and conservative power costs, costs are
clearly larger than the benefits. This data highlights the difficult of efficient accel-
eration with general-purpose processor cores of varying sizes. While it may be pos-
sible to exploit heterogeneity at a granularity finer than computational phases, do-
ing so requires significant re-engineering of the search engine, which is a compli-
cated and costly task. It may also be possible to exploit heterogeneity at a coarser,
directing complex queries to Xeon cores while directing simpler queries to Atom cores.
This would ameliorate the quality-of-service penalties associated with Atoms by using
Xeons. Even in this case, however, Joules per query would increase.,
In the future, more efficient acceleration may arise from application-specific accel-
erators targeting computational kernels (e.g., neural network). Such accelerators may
incur low power costs, while recovering performance lost by low-power, mobile-class
architectures.

5. PLATFORM ARCHITECTURE AND RELIABILITY

Although the Atom processor core is energy efficient, its effect on data center efficiency
depends on platform organization. Organization, in turn, often interacts with reliabil-
ity constraints. We consider the impact of node failures as query load on the failed
node shifts to remaining nodes. To maintain quality-of-service, node over-provisioning
may be needed. The cost of over-provisioning depends on platform power.

5.1. Reliability

Hardware- or software-based failures are often threats in a data center. Therefore,
we must understand how Atom processors perform when query load is re-balanced
to accommodate node failures. Such load re-distribution leads to fractional or relative
increases in query load for a given processor. For instance, a processor will experience
a relative load of 1.2Aθ when a node fails within a group of five nodes. Given the same
query load, Atoms may provide reliability more easily or gracefully than Xeons. If the
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Fig. 19. Comparing quality-of-service and latency for fractional increases in query load. Horizontal axis
quantifies queries per second normalized to Atom and Xeon’s respective maximum query throughputs, Aθ

and Xθ .

same absolute load is distributed across many more Atom-based nodes than Xeon-
based nodes, the increase in relative query load is smaller when a node fails.
Figure 19 compares the effect of fractional load increases on quality-of-service and
average query latency. The horizontal axis quantifies queries per second normalized
to Atom and Xeon’s respective maximum sustainable query throughputs, Aθ and Xθ.
At loads beyond sustainable throughput (1.0 on the normalized horizontal axis), Xeon
query latency rises more quickly than Atom query latency. At query loads of 1.5Xθ,
Xeon query latencies exceedLC . These Xeon queries are at risk of time-outs in software
queues. The aggregator assumes the index serving node cannot produce the required
pages. In contrast, Atom query latencies of 0.5LC are still tolerable at a query load of
1.5Aθ.
Higher latencies produce a corresponding drop in quality-of-service as more queries
time-out in software queues. Atom quality-of-service degrades to 95 percent at
2Aθwhereas Xeon quality-of-service degrades to 64 percent at 2Xθ. Atom quality-of-
service degrades more gradually because the same fractional increase in load (e.g.,
1.2×) on Atom and Xeon corresponds to a smaller increase in absolute load on Atom;
Aθ is smaller than Xθ.
Figure 20 shows microarchitectural activity for both the Xeon and the Atom as load
increases by 1.2 to 2.0× their respective sustainable query throughputs. The Xeon is
unable to scale to higher loads because architectural resources are saturated at query
loads beyond 1.5Xθ. Branch misprediction rates, memory bus utilization, TLB activity,
cache activity reach maximum levels. At 50 percent additional load, the number of
cycles per instruction increases by 11 percent.
In contrast, Figure 21 indicates the Atom architecture has more room for additional
fail-over load. Activity increases and we do not observe plateaus. Thus, while the Xeon
is capable of sustaining higher throughput, it must run significantly under this peak to
anticipate and to handle fail-overs. By adding this safety margin, Xeon query through-
put falls. Moreover, energy efficiency falls as high Xeon power is amortized over fewer
queries per second.
The costs of over-provisioning depend on the costs of the processors and their plat-
forms. To understand these effects, we need to account for other platform component
and their costs, both in dollars and power. To provide a holistic analysis, platform costs
should be integrated to quantify total cost of ownership (TCO). In addition to capital
costs associated with computing hardware, TCO accounts for facility capital costs as
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Fig. 20. Xeon microarchitectural activity during load re-distribution and fail-overs.
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Fig. 21. Atom microarchitectural activity during load re-distribution and fail-overs.
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Table III. Platform cost and power for Xeon and Atom baselines. Efficiency nor-
malized to Xeon Harpertown baseline. See Appendix A for sources and assump-
tions.

Xeon Harpertown Atom Diamondville

4-core, 2-socket 2-core, 1-socket

Cost ($) Power (W) Cost ($) Power (W)

Processor 760 125 45 3.2

Motherboard 200 30 80 30

Network Interface 0 5 0 5

Memory (16GB) 300 20 300 20

Storage (HDD) 100 10 100 10

Total Server Cost 1360 190 525 68.2

Normalized Efficiency
1.00 1.00 0.22 0.23

QPS/$ QPS/W QPS/$ QPS/W

well as operating costs. Performing this analysis for both Xeons and Atoms will illus-
trate the sensitivity of Atom efficiency to platform-level costs.

5.2. Platform Cost and Power

Table III summarizes the cost and power of various platform components. See Ap-
pendix A for sources and assumptions. Although the Atom processor dissipates be-
tween 1.5 to 4.5W when running web search, peripheral and other platform compo-
nents also contribute power to the total. Of particular concern is the commodity moth-
erboard, which dissipates 30W. In the Xeon Harpertown, motherboard power is modest
in comparison to that of the processor. However, as processor power falls, motherboard
overheads become much more significant in the Atom Diamondville.
The fraction of cost and power attributed to processors is important. Processors con-
tribute to data center capability and search engine throughput. In the Xeon Harper-
town, processor cost and power accounts for 56 and 65 percent of the total. However,
the processors shrink dramatically in the Atom Diamondville and account for only
8 and 4 percent of platform cost and power. Worse, as discussed in Section 2, every
Atom processor core contributes only 0.5× the query throughput of a Xeon processor
core. Thus, for every dollar spent or Watt dissipated, the Atom processor delivers fewer
queries per second than the Xeon processor.
To address these challenges, Table IV considers two alternative platforms built from
Atom processors.

— Integrated Atom: Consider a platform with greater multi-core integration. Determine
the number of Atom cores that fit in the area of the Xeon chip. As noted in Table II,
an Atom core is approximately half the size of a Xeon core. Thus, we consider a
200 mm2 chip multiprocessor with eight Atom cores. Moreover, we consider a two-
processor motherboard to produce a server with sixteen Atom cores. This strategy
reflects a trend toward greater integration for x86 cores [Seiler et al. 2008].

—Optimized Atom: Consider 50 mm2 chip multiprocessors with two Atom cores each.
Deploy an eight-processor motherboard to produce a server with sixteen Atom cores.
Furthermore optimize the motherboard and peripherals. Except for processors and
memory, eliminate all components from themotherboard. These components are then
consolidated and multiplexed across a large number of processors, thereby eliminat-
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Table IV. Platform cost and power for Atom platform alternatives. Efficiency nor-
malized to Xeon Harpertown baseline of Table III. See Appendix A for sources
and assumptions.

Integrated Atom Optimized Atom

8-core, 2-socket 2-core, 8-socket

Cost ($) Power (W) Cost ($) Power (W)

Processor 760 25.6 360 25.6

Motherboard 200 30 1350 3

Network Interface 0 5 0 0.5

Memory (4GB) 300 20 400 20

Storage (HDD) 100 10 100 10

Total Server Cost 1360 90.6 2110 59.1

Normalized Efficiency
0.67 1.40 0.43 2.14

QPS/$ QPS/W QPS/$ QPS/W

ing a large fraction of motherboard overheads. SeaMicro demonstrates this approach
to eliminate 90 percent of motherboard components [Rao 2010].

These two strategies reflect two perspectives on deploying mobile processors in data-
centers. The first strategy assumes the cooperation of processor architects. The second
strategy assumes fixed processor designs and organizes a system around the proces-
sors.
Table IV illustrates the advantages of platform engineering. Chip multiprocessor in-
tegration increases processor cost and power as a share of server totals. With a total of
sixteen Atom cores, the Integrated Atom platform amortizes motherboard overheads
over a larger number of cores, which means processor power comprises 28 percent of
the total and more of each Watt dissipated contributes to query throughput. Relative
to the Xeon baseline, energy efficiency improves by 1.4×. Additional processor cores
increase throughput more than they increase power. The power of other platform com-
ponents dilutes the power impact of additional cores. However, larger chips and more
processors per motherboard will increase cost. Query throughput per dollar falls by
0.7×.
The Optimized Atom in Table IV illustrates the effects of customized motherboards.
Increasing the number of processor cores per server amortizes platform overheads.
However, if such chip-level integration is not on the processor architect’s roadmap,
platform-level integration is an alternative. In the latter scenario, place eight proces-
sors onto a single motherboard. The motherboard is customized to eliminate peripheral
overheads so that processor power comprises 43 percent of the total. Like the Inte-
grated Atom platform, more of each Watt dissipated contributes to query throughput.
Relative to the Xeon baseline, energy efficiency improves by 2.1×.
However, this strategy increases net server cost. Building a sixteen-core platform
from $45, dual-core Atom processors may be less expensive than integrating cores
into a large chip multiprocessor. However, motherboard customization may be very
expensive. We estimate the price that data center operators might be willing to pay
for the power savings of the Optimized Atom platform. In particular, assuming the
owner is unwilling to see an increase in the cost of operating a data center, we sweep
a range of motherboard prices to identify the maximum price the owner would be
willing to pay for customization. As we sweep the price of motherboard customization
upwards, we find the point where the marginal increase in server cost exceeds the
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marginal decrease in power cost. In this case, a custom motherboard costs $1,350. See
Appendices A-B for details and assumptions.
The switch to energy-efficient, mobile processors likely increases server cost. For
Integrated Atom and Optimized Atom platforms, we observe a drop of 0.7× and 0.4×

in query throughput per dollar spent on servers. However, server cost is an incomplete
analysis of cost. Accounting only for capital cost of computing hardware, it neglects
electricity savings and other operating costs. For this reason, we also perform a total
cost of ownership analysis. Measured holistically, we find increases in total cost of
ownership are accompanied by proportional increases in capability.

6. DATA CENTER ARCHITECTURE AND COST

Although the Integrated Atom and Optimized Atom platforms are energy-efficient,
they likely increase server cost. For Internet-scale applications, both performance and
cost play an important role in determining the type and size of compute clusters. Bal-
ancing the cost with the service experience is also important. To determine the net
impact on data center capability, we quantify server cost in terms of data center total
cost of ownership (TCO). In particular, we examine two measures of cost efficiency:
total cost per server and total cost per capability. In both cases we study the systems
operating at sustainable throughput.

6.1. Total Cost of Ownership

We quantify TCO in dollars per server per month. See Appendix B for details and
assumptions. TCO is a holistic metric that accounts for capital and operating costs.
For the data center, capital costs are attributed to facility construction and hardware
procurement. Operating costs are attributed to power usage. In our TCO analysis,
we consider a data center with 15MW critical load, which defines the power budget
allowed for computing hardware. Assuming a power usage efficiency (PUE) of 1.7, the
data center dissipates a peak of 25.5 MW. This PUE multiplier accounts for electricity
overheads in delivery and in the facility. See Appendix B for additional detail and
assumptions.
Tables V-VI quantifies total cost of ownership and cost efficiency. Given a fixed data
center power budget (15MW critical load, 25.5mW total), we examine trade-offs be-
tween the Xeon baseline and the three Atom alternatives. Since critical load is fixed,
operating costs due to power usage do not change as we consider different platforms.
However, as indicated in Tables III-IV, these platforms differ in cost and power. These
differences affect server capital costs and the number of servers that fit in the critical
load, respectively. Ultimately, the number of servers affects data center capability.
Consider the Xeon Harpertown and the Atom Diamondville. According to Table III,
Atom Diamondville costs 0.38× and 0.36× less than Xeon Harpertown, in server price
and power dissipated, respectively. As a result, 2.7× the number of Diamondville
servers fit into the 15MW critical load. Although the number of servers increases dra-
matically, price per server is also much lower. The net effect is only a modest impact
on total cost of ownership ($6.1M versus $5.8M). Thus, with Atom Diamondvilles, the
number of servers increases and the TCO per server falls.
However, the number of servers do not provide a complete assessment since each
Diamondville server is capable of sustaining fewer queries per second. Indeed, Xeon
Harpertown supplies eight cores per server for Atom Diamondville’s two. On top of
this 4× gap in core count, each Xeon core is capable of 2× Atom core throughput.
Collectively, this means each Harpertown server is capable of 8× the throughput of
a Diamondville server. A 3× increase in the number of Diamondville servers cannot
overcome this disadvantage and the net result is a 0.4× fall in capability. Since both
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Table V. Total cost of ownership ($ per month) for Xeon Harpertown and Atom
Diamondville. See Appendix B for details and assumptions.

Xeon Harpertown Atom Diamondville

4-core, 2-socket 2-core, 1-socket

Server (capital, $M) 3.22 3.46

Facility (capital, $M) 1.30 1.30

Other (capital, $M) 0.28 0.28

Power (operating, $M) 1.04 1.04

Total ($M) 5.84 6.08

Servers (Count, ×103) 78.95 219.94

TCO / Server ($) 74.00 27.65

Capability (QPS, ×Xθ×106) 0.63 0.22

TCO / Capability ($ per Xθ) 9.25 27.65

Table VI. Total cost of ownership ($ per month) for Integrated Atom, which
integrates eight cores per processor and two processors per server, and Op-
timized Atom, which eliminates motherboard components to reduce power
overheads. See Appendix B for details and assumptions.

Integrated Atom Optimized Atom

8-core, 2-socket 2-core, 8-socket

Server (capital, $M) 6.75 16.1

Facility (capital, $M) 1.30 1.30

Other (capital, $M) 0.28 0.28

Power (operating, $M) 1.04 1.04

Total ($M) 9.37 18.67

Servers (Count, ×103) 165.56 253.81

TCO / Server ($) 56.60 73.57

Capability (QPS, ×Xθ×106) 1.32 2.03

TCO / Capability ($ per Xθ) 7.08 9.20

platforms incur comparable TCO, the net effect is higher cost per unit throughput. For
this reason, naively deploying Atom platforms is ineffective.
A strategy with Integrated Atom is more attractive. By using Atom cores, this plat-
form requires 0.5× the power of a Xeon Harpertown, which means we can deploy ap-
proximately 2× the number of servers within the 15MW critical load while TCO only
increases by 1.6× ($9.4M versus $5.8M). The net effect is a fall in TCO per server.
Moreover, with eight cores per socket and two sockets per server, each Integrated Atom
server contributes more substantial throughput than the Atom Diamondville and even
exceeds the throughput of the Xeon Harpertown. By deploying highly integrated Atom
multiprocessors, data centers can increase peak capability and reduce cost per unit
throughput.
This strategy is confirmed for the Optimized Atom, which deploys eight dual-core
Atom processors on a highly optimizedmotherboard. By using Atom cores and by elimi-
nating motherboard power overheads, this platform requires 0.3× the power of a Xeon
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Harpertown, which means we can deploy approximately 3× the number of servers,
which produces a proportional increase in peak query throughput.
TCO per server is comparable for Xeon Harpertown and Optimized Atom. This sim-
ilarity is an artifact of our motherboard price estimate (Appendix A). In particular,
given uncertainty about motherboard prices, we estimate the maximum price a data
center would pay for a more power-efficient motherboard by pricing the motherboard
such that Optimized Atom TCO per server is no more than Xeon Harpertown TCO per
server. If the Optimized Atom were more expensive than estimated in Table IV, TCO
would increase and the Optimized Atom would be less cost-efficient than the Xeon
Harpertown.

6.2. Capability

Power efficiency increases data center capability. As each server dissipates less power,
more servers can be deployed within the same footprint. As demand for data center
capability increases, deploying more efficient computing hardware is likely preferable
to simply building more data centers. The total cost of ownership analysis highlights
the advantages of the former. In particular, if processors provide capability, we would
prefer processors to comprise a large fraction of server power and servers to comprise
a large fraction of data center cost. The Integrated Atom and the Optimized Atom
achieves both goals.
Processors in the Server. Figure 22 illustrates server power and the breakdown
across various components. Although processors comprise more than 65 percent of
the 190W dissipated by the Xeon Harpertown, absolute power costs are high. To ad-
dress processor power costs, we consider deploying Atom Diamondvilles. However, the
platform is sub-optimal as processor power comprises a small fraction of total power.
Although absolute power costs are low, only a small fraction of dissipated power is go-
ing toward computation due to motherboard overheads. To increase processor power
as a fraction of the total, the Integrated Atom and Optimized Atom amortize over-
heads over sixteen processor cores by integrating more cores per socket or integrating
more sockets per server. To reduce absolute power costs, motherboard optimizations
are necessary.
The final result is an architecture that reduces absolute power costs from 190W
to 60W. Moreover, these power costs are dissipated on the processor and capability,
not on overheads. Processors dissipate 65 percent of Xeon Harpertown power, they
dissipate a sizeable 43 percent of Optimized Atom power. Once processor power has
been optimized, server architects might consider optimizing memory and storage.
Servers in the Datacenter. Figure 23 illustrates the breakdown of TCO. TCO is com-
prised of capital costs for server and the facility; these costs are amortized over their
respective 3 and 15 year lifetimes. Power is the largest component of operating cost for
both servers and facility. In the baseline Xeon Harpertown and Atom Diamondville, of
every dollar spent, only 55-57 percent goes toward servers and computing capability.
The remainder goes toward overheads, whether in facility capital costs or utility oper-
ating costs. By deploying more efficient hardware, the Integrated Atom and Optimized
Atom platforms spend 72-86 percent of every dollar on servers. This shift occurs as the
number of servers increase while data center overheads remain unchanged. Thus, we
achieve greater capability by exploiting infrastructure more effectively while avoiding
the need to expand or to build new data centers with higher budgets.
As Tables V-VI indicate, however, extra capability increases total cost of ownership.
As more power efficient processors are deployed to fill the same data center’s critical
load, server capital costs must necessarily increase. However, by quantifying TCO per
server and TCO per capability, we find the benefits of additional servers increase at
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Fig. 25. Data center throughput increases as Atom energy efficiency allows a larger number of servers in a
datacenter’s fixed power budget (15MW).

least as fast as cost. Compared to Xeon Harpertown, we observe lower TCO per server
and lower TCO per capability for both Integrated Atom and Optimized Atom.
Figure 25 summarizes the net effect on data center capability across the four server
architectures considered. If poorly architected, Atom processors produce a net decrease
in capability as overhead power dominates server power, limiting the number of de-
ployed servers within the 15MW critical load. However, as server overheads are re-
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duced either by greater core integration or platform optimization, more servers can
be deployed within the same power budget, to increase capability by as much as 3.2×.
Thus, data center power efficiency is inherently linked to data center capability.

7. RELATED WORK

Web search must identify and return relevant pages to the user [Brin and Page 1998].
Evolving beyond simply returning web pages, search engines increasingly provide
additional information to help users make complex decisions [Microsoft Corporation
2009]. Moreover, relevance is computed with increasingly sophisticated techniques in
statistical machine learning, which in our case takes the form of neural networks.
As a result, web search becomes more similar to other analytic workloads that rec-
ognize, mine, and synthesize information from data [Dubey 2005]. Indeed, we find
similar computational intensity when comparing analytic workloads, benchmarked by
the PARSEC suite [Bienia et al. 2008], with Microsoft Bing. Moreover, these analytic
workloads may increasingly deploy in the context of online web services. As online ser-
vices, such analytical computation must meet specific quality-of-service targets [Ran-
ganathan and Jouppi 2005].
In this work, we understand the characteristics of a more computationally inten-
sive search engine. The results of this study may also be relevant for other analytics
workloads under quality-of-service constraints.

7.1. Small Processor Cores

Commercial Computing. Small processor cores are proposed, initially, for chip mul-
tiprocessors. Targeting application domains with abundant thread-level parallelism,
Piranha proposes eight simple Alpha processor cores on a single chip [Barroso et al.
2000]. Compared to more complex cores, each simple core is less capable. However,
in aggregate, chip-level performance improves. Moreover, the design and deployment
of simpler cores incur lower cost. Similarly, Niagara deploys simple cores with many
threads, swapping out threads as they stall for memory or I/O [Geppert 2005; Konge-
tira et al. 2005]. Collectively, these architectures observe that several small cores in a
chip multiprocessor can provide greater throughput than a single large core [Davis
et al. 2005]. Similar arguments apply to commodity chip multiprocessors for web
search [Barroso et al. 2003; Barroso 2005].
Also in commercial computing, FAWN deploys a fast array of wimpy nodes for a key-
value storage system [Andersen et al. 2009]. FAWN-KV, is a consistent, replicated,
highly-available, high-performance storage system built on this array. Back-end nodes
deploy PCEngine Alix 3c2 devices, which target embedded computing. This architec-
ture exploits the fact that key-value storage systems are I/O intensive and massively
parallel [Vasudevan et al. 2010].
Chip multiprocessors target conventional applications in enterprise data centers. In
these applications, response times are determined by network latency and are often
assumed insensitive to computational latency at the server node. In contrast, we ex-
amine Microsoft Bing, in which computational latency impacts the quality of search
results. Thus, we must analyze quality-of-service as well as energy efficiency. Small
core latency effects may generalize to other applications in data analytics and mining.
Scientific Computing. Small cores also find application in high-performance, scien-
tific computing. Exascale computing requires three orders of magnitude more capa-
bility within the same power footprint [Kogge et al. 2008]. Small cores are attractive
for their power efficiency. IBM architects Blue Gene with PowerPC cores, which are
designed for embedded computing. Accelerators for communication and floating-point
calculation complement the general-purpose core and deliver performance. D. E. Shaw
Research architects Anton with Tensilica cores, which provide a parameterized in-
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struction set architecture and target embedded computing [Shaw et al. 2007; Kuskin
et al. 2008; Larson et al. 2008]. Accelerators improve performance for molecular dy-
namics computation. Lawrence Berkeley National Laboratory deploys Tensilica cores
for power-efficient climate modeling in the Green Flash system [Wehner et al. 2008].
In each of these cases, a simple core is used because power-efficiency is necessary
to achieve qualitative improvements in capability. Blue Gene achieves petascale capa-
bility. Anton simulates molecular dynamics over milliseconds instead of microseconds.
Green Flash models weather at the scale of kilometers instead of thousands of kilo-
meters. Architects improve capability and efficiency in these domains by relying on
accelerators. In future, this strategy may extend to commercial computing.

7.2. Servers and Atom Processors

SeaMicro is commercializing the concept of Atoms for servers. Unlike previous small
core architectures, Atom’s x86 instruction set architecture can natively support a broad
range of applications. Online service providers may be characterized by a small num-
ber of very large applications (e.g., web search). As a result, such applications may
be re-optimized and re-built to exploit the efficiency of another architecture [Barroso
and Hölzle 2009]. However, efficient x86 processors will enable efficiency for a broader
class of applications, which will benefit more general cloud and utility computing.
SeaMicro inspires the Optimized Atom platform in our study. Without control over
processor design, SeaMicro organizes dual-core Atoms into a highly optimized server
platform. Motherboard components are eliminated and peripheral components are
multiplexed across many processor cores, thereby amortizing power overheads more
effectively [Rao 2010]. The SeaMicro system provides greater compute density with
512 Atom cores in their SM10000 [SeaMicro 2011; Rao 2011].
Given our experiences with Microsoft Bing on the Atom, SeaMicro may significantly
improve energy efficiency for carefully chosen applications. Our study highlights the
trade-offs between energy efficiency and a variety of performance metrics. Other appli-
cations may experience different trade-offs. By building Atom servers, SeaMicro bene-
fits from application portability. In contrast, severs using mobile processors that imple-
ment different instruction sets may require trade-offs between efficiency, performance,
and portability.

7.3. Heterogeneity and Chip Multiprocessors

Heterogeneous chip multiprocessors are often proposed to realize both energy effi-
ciency and high performance. Such architectures would combine large cores (e.g., Xeon)
with small cores (e.g., Atom) and assign computation to the core best suited for it.
Kumar et al. propose heterogeneous multiprocessors with a common instruction set
architecture to facilitate workload scheduling and migration [Kumar et al. 2003; Ku-
mar et al. 2004]. Because of the difficulty of optimizing the choice of heterogeneous
cores, Kumar proposed cores already designed across Alpha generations. Addressing
this challenge, Lee and Brooks apply statistical inference and clustering heuristics to
identify efficient heterogeneous cores [Lee and Brooks 2007].
While early studies in heterogeneity considered cores for arbitrary workloads, het-
erogeneity can also target specific computation. Mogul et al. examine small cores for
energy-efficient operating system computation [Mogul et al. 2008]. Small cores are at-
tractive as operating system codes see modest benefits and large costs when running
on complex, high-frequency cores. In contrast, Suleman et al. examine large cores for
executing the critical section in parallel applications to mitigate Amdahl’s Law [Sule-
man et al. 2009]. In this framework, highly parallel applications benefit from the
energy-efficiency of small cores and incurs the power cost of high-performance cores
only when necessary.
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This study finds that fine-grained heterogeneity in chip multiprocessors incurs a
high power cost for modest performance gains. However, a large and inefficient core
may be needed if quality-of-service for complex queries is required. In this environ-
ment, heterogeneous chip multiprocessors may be relevant.

7.4. Data Center Design and Management

Data centers are effectively large computers with many inter-related components [Bar-
roso and Hölzle 2009]. Data centers are often optimized for energy proportionality
and energy efficiency. An energy proportional data center will scale power dissipation
with the rate of computation [Barroso and Hölzle 2007]. In practice, proportionality
is difficult as most servers dissipate a large fraction of its power when idle. While
component-level energy proportionality is challenging, system-level proportionality
might be achieved by turning off under-used servers and consolidating load. Mobile
processors, such as the Atom, may improve system-level proportionality as power and
capability can now be managed at finer granularities.
An energy-efficient data center will deploy more efficient hardware components.
Energy-efficient cores must be deployed in an integrated fashion and controlled as
an ensemble [Ranganathan et al. 2006]. For example, adopting mobile cores may also
motivate low powermemory and storage [Lim et al. 2008]. In particular, Lim et al. pro-
pose non-traditional hardware components for data centers. They propose embedded
processors, disaggregated servers for memory, and Flash caches for storage. Deploy-
ing low-cost, low-power processors, Lim et al. find small performance penalties as they
consider a range of workloads from mail, search, and media streaming that are not
computationally intensive. With a small performance penalty, embedded processors
reduce power usage and reduce TCO for a net gain in cost efficiency.
In contrast, this work considers a more computationally intensive search engine,
which requires a deeper performance analysis. In particular, we study throughput, la-
tency, quality-of-service, and end-user impact. We also study total cost of ownership.
While Lim et al. report lower cost of ownership for the same number of servers, we ex-
amine the potential to increase the number of servers, thereby increasing data center
capability. The underlying conclusions are the same; low-power processors reduce cost
as long as performance lost is modest compared to energy efficiency gained.

8. CONCLUSION

While we study a particular mobile processor for a particular data center application,
the framework we apply is broadly applicable to understanding emerging processor
architectures and their interactions with emerging data center applications. It is not
possible to claim mobile processors are effective for all application classes, but the re-
sults of this article suggest theymay be effective for some applications not traditionally
targeted by small processor cores, such as web search. We demonstrate a holistic and
vertically integrated framework, which will help identify other applications amenable
for execution on mobile processors. This framework starts with a detailed microar-
chitectural analysis and ends for a data center capability analysis. Throughout, we
link hardware activity with software behavior. An application precisely tailored for an
architecture, and vice versa, will always be more energy-efficient than the general-
purpose alternative.

A. APPENDIX: PLATFORM COST AND POWER

Tables III-IV estimate the dollar and power cost for a variety of server components.
This appendix details sources and assumptions.
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A.1. Processor

We obtain processor dollar cost for the Xeon Harpertown L5420 and the Atom Dia-
mondville 330, effective as of Sept 21, 2008. When bought in lots of one thousand, the
L5420 processor is priced at $380 per processor and the 330 is priced at $45 per pro-
cessor. Intel processor pricing sheets are available through Intel Corporation investor
relations [Intel Corporation 2008c]. We measure processor power costs using a clamp
ammeter while the processor runs Microsoft Bing (Section 2.5).
For the Integrated Atom platform, we estimate the price of an eight-core Atom chip
multiprocessor based on area. Eight Atom cores fit in 200 mm2. Because chip size
impacts manufacturing yield, we assume price correlates with chip size. At 200 mm2,
the eight-core Atom multiprocessor occupies the same area as a four-core Xeon, which
is priced at $380 per socket [Intel Corporation 2008c]. With two sockets, processors on
the Integrated Atom cost $760. Power costs scale linearly with the number of cores.
For the Optimized Atom platform, we scale the price of a two-core Atom chip mul-
tiprocessor by 8× to put a total of sixteen cores on a single motherboard at a cost of
$360. Power costs scale linearly with the number of cores.

A.2. Motherboard

Xeon motherboard cost and power is quoted for the Intel S5000PAL [Intel Corpora-
tion 2009a; 2006]. A server motherboard supports two processor sockets and optimizes
the form factor for high-density data centers. Atom motherboard cost and power is
quoted for the Intel D945GCLF2 [Intel Corporation 2008b]. This desktop motherboard
supports one processor socket.
For the Integrated Atom platform, we require two processor sockets to provision
sixteen cores per server. We estimate motherboard price by assuming server mother-
boards are used instead of those for desktops.
For the Optimized Atom, we assume SeaMicro motherboard customization strate-
gies, which remove all components, except for processors and memory, from the moth-
erboard [Rao 2010]. These components are then made common and shared across hun-
dreds of processors, thereby eliminating many of the power overheads that arise for
duplicated motherboard components residing in each server. SeaMicro removes 90 per-
cent of motherboard components from the server and we scale power accordingly.
Precisely estimating motherboard price for the Optimized Atom is difficult. For
$148,000, SeaMicro ships the SM10000-64 with 256 dual-core Atom processors, one
terabyte of DRAM, storage, and Ethernet uplinks [Rao 2011; SeaMicro 2011]. How-
ever, there is insufficient information to separate prices for different components. For
this reason, we consider pricing motherboard in a way that does not impact total cost
of ownership (Appendix B).
In particular, compute the data center total cost of ownership for the Xeon base-
line. This cost accounts for amortized hardware and facility costs as well as electricity
prices. For example, given Xeon server cost and power, we estimate Xeon TCO to be
$74 per server per month. This estimate reflects the cost of the server and the number
of servers that can be provisioned within a data center’s 15MW critical load.
For the Optimized Atom platform, we estimate power for all components and prices
for all components except motherboard. We then compute total cost of ownership for
various motherboard prices until we identify the one that produces an Optimized Atom
TCO of $74 per server per month, matching the TCO of the Xeon baseline. As indicated
in Table IV, we find this price to be $1,350.
This approach quantifies the dollar savings that arise from less expensive Atom pro-
cessors and from lower power costs per server. As motherboard price increases, the
data center operator is willing to pay for a more expensive motherboard until its price
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exceeds the cost savings from using the Optimized Atom platform. Thus, we estimate
$1,350 is the maximum price a data center operator would pay to realize the mother-
board customizations.

A.3. Network

We assume the network interface cost is negligible, either due to an integrated net-
work interface or low bandwidth requirements. This assumption may not be valid if the
data center requires high cross section bandwidth. However, unlike scientific comput-
ing, web search exhibits few computational dependences between index serving nodes.
Commercial data center network traffic is often low and studies of such networks of-
ten use synthetic traffic patterns that scale up load for interesting studies [Abts et al.
2010; Heller et al. 2010]. Power estimates for the network interface card are based on
those from Cisco [Cisco Systems 2009].

A.4. Memory and Storage

Memory prices are highly variable. We assume $300 for sixteen gigabytes. Power costs
are estimated from Micron data sheets and system power calculator [Micron 2005].
More generally, 1.25W per gigabyte appears a reliable guideline.
Storage prices are also variable. In practice, the search engine does not require
large capacity node storage and it very rarely accesses disk. Typical deployments in-
clude two to four SATA disks and use less than two percent of available disk band-
width [Kozyrakis et al. 2010]. Power estimates for disks are based on those from Sea-
gate [Seagate 2010].

B. APPENDIX: TOTAL COST OF OWNERSHIP

Sections 5-6 compare and contrast total cost of ownership for various platform alter-
natives. This appendix details assumptions.

B.1. Capital and Operating Costs

Section 6 computes total cost of ownership for a variety of server architectures and
platforms using Hamilton’s model and assumptions [Hamilton 2008]. In particular, we
compute the cost per server per month. This cost includes both capital and operating
costs. We consider a data center with a 15MW critical load, which defines the power
budget attributed to computing hardware.
Capital costs include the cost of building the data center facility. The model assumes
$200 million amortized over the facility’s lifetime of 15 years (i.e., 180 months). In this
analysis, we consider cooling and power infrastructure as “facility” while other data
center related capital costs are classified as “other.” The data center must be populated
with servers. We estimate the total number of servers by dividing the 15MW critical
load by the power dissipated by each server. As server efficiency improves, the number
of servers increases. Server power and cost estimates are outlined in Tables III-IV.
Server hardware is amortized over its lifetime of 3 years (i.e., 36 months). Amortizing
the cost of facilities and servers over their respective lifetimes, we estimate monthly
capital cost.
Operating costs depend on power usage. Since we assume a 15MW critical load,
the power dissipated by servers is fixed; only the number of servers vary with server
efficiency. In addition to critical load, we assume a power usage effectiveness of 1.7,
which acts a multiplier to account for facility overheads. Thus, the data center peak
power dissipation is 25.5MW. We assume the cost of power is $0.07/kWh. Multiplying
these numbers, we estimate power cost per hour. We then scale by the average power
used, which is assumed to be 80 percent of peak, and convert hours to months. Thus,
we estimate the monthly operating cost.
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B.2. Cost Efficiency

Total cost of ownership is the sum of amortized capital cost and operating cost. We
consider two measures of cost efficiency. TCO per server is measured in units of dollars
per server per month. The TCO analysis provides dollars per month for the datacenter
with 15MW critical load. Divide this TCO by the number of servers that fit in this
critical load to calculate TCO per server.
TCO per capability is measured in units of dollars per unit throughput. The TCO
analysis provides dollars per month for the data center. To determine capability, con-
sider the number of servers that fit within a 15MW critical load. Then discount Atom-
based platforms, observing that an Atom core is only capable of sustaining half the
query throughput that is sustained by a Xeon core. Thus, we measure capability in
units of Xθ queries per second.
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