
ECE 252 / CPS 220

 Advanced Computer Architecture I

Lecture 1

Introduction

Benjamin Lee

Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15

www.duke.edu/~bcl15/class/class_ece252fall11.html

Mark I

Harvard University, 1944

EDSAC

University of Cambridge, 1949

ECE 252 / CPS 220 2

Computing Devices (Then)

iPad

Apple/ARM, 2010

Blue Gene/P

IBM, 2007

ECE 252 / CPS 220 3

Computing Devices (Now)

ECE 252 / CPS 220 4

Computer Architecture

Application

Physics

Gap too large to bridge in

one step

Computer architecture is the design of abstraction layers,

which allow efficient implementations of computational

applications on available technologies

ECE 252 / CPS 220 5

Abstraction Layers

Algorithm

Gates/Register-Transfer Level (RTL)

Application

Instruction Set Architecture (ISA)

Operating System/Virtual Machines

Microarchitecture

Devices

Programming Language

Circuits

Physics

Domain of

early
computer

architecture

(„50s-‟80s)

Domain of

recent

computer

architecture
(since „90s)

ECE 252 / CPS 220 6

An Integrated Approach

Architect Systems
 - Coordinate technology, hardware, run-time software, compilers, apps

 - Responsible for end-to-end functionality

Design and Analyze
 - Search the space of possible designs at all levels in computer system

 - Evaluate designs with quantitative metrics (performance, power, cost)

Navigate Computing Landscape
 - Architects work at the hardware-software interface

 - Technologies are emerging

 - Applications are demanding

 - Systems are scaling

In-order Datapath

(built, ECE152)

Chip Multiprocessors

(understand, experiment ECE252)

ECE 252 / CPS 220 7

ECE 252 Executive Summary

ECE 252 / CPS 220 8

ECE 252 Administrivia

Instructor Prof. Benjamin Lee

 benjamin.c.lee@duke.edu

 Office Hours: Tu/Th 5:30-6:30PM, 210 Hudson

Teaching Marisabel Guevara, mg@cs.duke.edu

Assistants Office Hours: Tu/Th 2:30-3:30PM, 213 Hudson

 Weidan Wu, ww53@duke.edu

 Office Hours: Mo 1:45-2:45PM, Fr 12:45-1:45PM, 213 Hudson

Lectures Tu/Th 1:15-2:30PM, Teer 203

Text Computer Architecture: A Quantitative Approach,

 4th Edition (Oct 2006). Do not use earlier editions

Web http://www.duke.edu/~BCL15/class/class_ece252fall11.html

ECE 252 / CPS 220 9

ECE 252 Prerequisites

Participation
 - Electrical and Computer Engineering, Computer Science

 - PhD, MS, Undergraduates

Prerequisites
 - Introduction to computer architecture (CPS 104, ECE 152, or equiv.)

 - Programming (homework/projects in C, C++)

Background Knowledge
 - Instruction sets, computer arithmetic, assembly programming

D.A. Patterson and J.L. Hennessy. Computer Organization and Design:

The Hardware/Software Interface, 4th Edition.

Dropping the Course
 - if you are going to drop, please do so early

ECE 252 / CPS 220 10

ECE 252 Syllabus

1. Design Metrics
1. Performance

2. Power

3. Early machines

2. Simple Pipelining
1 Multi-cycle machines

2 Branch Prediction

3 In-order Superscalar

4 Optimizations

3. Complex Pipelining
1 Score-boarding, Tomasulo Algorithm

2 Out-of-order Superscalar

Midterm Exam

Fall Break

4. Memory Systems
1 Caches

2 DRAM

3 Virtual Memory

5. Explicitly Parallel Architectures
1 VLIW

2 Vector machines

3 Multi-threading

6. Multiprocessors
1 Memory Models

2 Coherence Protocols

7. Advanced Topics
1 Emerging Technologies

2 Specialized Architectures

3 Datacenter Architectures

ECE 252 / CPS 220 11

ECE 252 Components

30% Homework and Readings
 - Homework done in teams of 3

 - 5 classes dedicated to paper discussions

15% Midterm exam
 - 75 minutes (in class), closed book

25% Final exam
 - 3 hours, closed-book

 - based on lectures, problem sets, readings

30% Term project/paper
 - Project done in teams of 3

Academic Policy
University policy as codified by Duke Undergraduate Honor Code will be strictly

enforced. Zero tolerance for cheating and/or plagiarism.

ECE 252 / CPS 220 12

ECE 252 Term Project

Scope
 - Semester-long research project

 - Teams of 3

 - Students propose project ideas (Oct 14)

Final Paper
 - 6-12 page research paper

 - Evaluate research idea quantitatively

 - Survey and cite related work

Assumed Knowledge
 - Instruction sets

 - Computer arithmetic

 - Assembly programming

- D.A. Patterson and J.L. Hennessy. Computer Organization and Design:

The Hardware/Software Interface, 4th Edition.

ECE 252 / CPS 220 13

ECE 252 Upcoming Deadlines

8 September – Homework #1 Due
 Assignment on web page. Teams of 2-3.

 Submit hard copy in class. Email code to TA‟s

13 September – Class Discussion
 Roughly one reading per class. Do not wait until the day before!

1. Hill et al. “Classic machines: Technology, implementation, and

economics”

2. Moore. “Cramming more components onto integrated circuits”

3. Radin. “The 801 minicomputer”

4. Patterson et al. “The case for the reduced instruction set computer”

5. Colwell et al. “Instruction sets and beyond: Computers, complexity,

controversy”

ECE 252 / CPS 220 14

Performance

Definitions
 - Latency: time to finish given task (a.k.a. execution time)

 - Throughput: number of tasks in given time (a.k.a. bandwidth)

 - Throughput can exploit parallelism while latency cannot

Example: Move people from Duke to UNC, 10 miles
 - Car: capacity = 5, speed = 60 miles/hour

 - Bus: capacity = 60, speed = 20 miles/hour

 - Latency(car) = 10 minutes

 - Latency(bus) = 30 minutes

 - Throughput(car) = 15 PPH

 - Throughput(bus) = 60PPH

ECE 252 / CPS 220 15

Benchmarking

Measuring Performance
 - Target Workload: accurate but not portable

 - Representative Benchmark: portable but not accurate

 - Microbenchmark: small, fast code sequences but incomplete

Representative Benchmarks
 - SPEC (Standard Performance Evaluation Corporation, www.spec.org)

 - Collects, standardizes, distributes benchmark programs

 - Parallel Benchmarks

 - Scientific and commercial computing

 - SPLASH-2, NAS, SPEC OpenMP, SPECjbb

 - Transaction Processing Council (TPC)

 - Online transaction processing (OLTP) with heavy I/O, memory

 - TPC-C, TPC-H, TPC-W

http://www.spec.org/

ECE 252 / CPS 220 16

Aggregating Performance

Addition
 - Latency is additive but throughput is not

 - Example: Consider applications A1 and A2 on processor P

 - Latency(A1,A2,P) = Latency(A1,P) + Latency(A2,P)

 - Throughput (A1,A2,P) = 1/[1/Throughput(A1,P) + 1/Throughput(A2,P)]

Averages
 - Arithmetic Mean: (1/N) * ∑P=1..N Latency(P)

 - For measures that are proportional to time (e.g., latency)

 - Harmonic Mean: N / ∑P=1..N 1/Throughput(P)

 - For measures that are inversely proportional to time (e.g., throughput)

 - Geometric Mean: (∏P=1..N Speedup(P))^(1/N)

 - For ratios (e.g., speed-ups)

ECE 252 / CPS 220 17

Processor Performance

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e

 (
v
s
.
V

A
X

-1
1

/7
8

0
)

25%/year

52%/year

??%/year

SPECint Benchmarks. Hennessy and

Patterson, Computer Architecture: A

Quantitative Approach, 4th Edition, 2006.

ECE 252 / CPS 220 18

Performance Factors

Latency = (Instructions / Program) x (Cycles / Instruction) x (Seconds / Cycle)

Seconds / Cycle
 - Technology and architecture

 - Transistor scaling

 - Processor microarchitecture

Cycles / Instruction (CPI)
 - Architecture and systems

 - Processor microarchitecture

 - System balance (processor, memory, network, storage)

Instructions / Program
 - Algorithm and applications

 - Compiler transformations, optimizations

 - Instruction set architecture

ECE 252 / CPS 220 19

Moore’s Law

- Moore. “Cramming more components onto integrated circuits.”

Electronics, Vol 38, No. 8, 1965.

- As integration increases and packaging cost decrease

- How does Moore‟s Law impact performance?

ECE 252 / CPS 220 20

Field-Effect Transistors

MOSFET
- MOS: metal-oxide semiconductor

- FET: field-effect transistor

- Charge carriers flow between source-drain

- Flow controlled by gate voltage

- Abstract MOSFET as electrical switch

Gate

Source
Drain

Bulk

Width

Length

Channel

Source

Drain

Gate

ECE 252 / CPS 220 21

Complementary MOS (CMOS)

- Voltages map to logical values (Vdd=1, Gnd=0)

- Implement complementary Boolean logic

- nFET: conduct charge when Vg = Vdd, used in pull-down network

- pFET: conduct charge when Vg = Gnd, used in pull-up network

- Examples: Inverter, NAND (universal, any logic function via De Morgan‟s Law)

Vdd

Gnd

A !A

nFET

pFET B A

A

B

!(AB)

ECE 252 / CPS 220 22

Transistor Dimensions

- Process defined by feature size (F), layout design (l = F/2)

- Example: F=2l =45nm process technology

- Transistor dimensions determine technology performance

- Transistor drive strength (i.e., performance) increases as channel length shrinks

Gate
Source

Drain

Bulk

Width

Length

Minimum Length=2l

Width=4l Source Drain

Gate

ECE 252 / CPS 220 23

Dennard Scaling

- Dennard et al. “Design of ion-implanted MOSFETs with very small physical

dimensions,” Journal Solid State Circuits, 1974.

- Scale not only dimensions but also doping concentration and voltage

- Transistors become faster (1.4x)

- Applied to Moore‟s Law: k=1.4, 1/k = 0.7 every 18-24 months

Gate
Source

Drain

Bulk

Width

Length

ECE 252 / CPS 220 24

Dennard Scaling Limits

- Horowitz et al. “Scaling, power, and the future of CMOS.” IEDM, 2005.

- Classical Dennard scaling ended at 130nm in 2000-2001.

- Oxide Thickness: How to manage increasing leakage? Use high-K dielectrics

- Channel Length: How to manage increasing leakage? Stop scaling L

- Doping Concentration: How to handle imprecise doping? Manage variability

- Voltage: How to manage increasing leakage? Stop scaling V

- Current: How to increase current with shrinking channels? Stress silicon

- Example: Intel 22nm process technology with FinFET

Image: Courtesy Intel Corp.

ECE 252 / CPS 220 25

Processor Performance

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e

 (
v
s
.
V

A
X

-1
1

/7
8

0
)

25%/year

52%/year

??%/year

SPECint Benchmarks. Hennessy and

Patterson, Computer Architecture: A

Quantitative Approach, 4th Edition, 2006.

ECE 252 / CPS 220 26

Performance Factors

Latency = (Instructions / Program) x (Cycles / Instruction) x (Seconds / Cycle)

Seconds / Cycle
 - Technology and architecture

 - Transistor scaling

 - Processor microarchitecture

Cycles / Instruction (CPI)
 - Architecture and systems

 - Processor microarchitecture

 - System balance (processor, memory, network, storage)

Instructions / Program
 - Algorithm and applications

 - Compiler transformations, optimizations

 - Instruction set architecture

ECE 252 / CPS 220 27

Performance Factors

Latency = (Instructions / Program) x (Cycles / Instruction) x (Seconds / Cycle)

Seconds / Cycle
 - Technology and architecture

 - Transistor scaling

 - Processor microarchitecture

Cycles / Instruction (CPI)
 - Architecture and systems

 - Processor microarchitecture

 - System balance (processor, memory, network, storage)

Instructions / Program
 - Algorithm and applications

 - Compiler transformations, optimizations

 - Instruction set architecture

ECE 252 / CPS 220 28

Cycles per Instruction (CPI)

Average Instruction Latency
 - Examine instruction frequency

 - Different instructions require different number of cycles

 - Example: Integer instructions (1 cy), Floating-point instruction (>10 cy)

 - CPI is slightly easier to calculate than IPC (time versus rate)

Example
 - Instruction frequency: 1/3 INT, 1/3 FP, 1/3 MEM operations

 - Instruction cycles: 1cy INT, 3cy FP, 2cy MEM

 - CPI = (1/3 x 1) + (1/3 x 3) + (1/3 x 2)

Caveat
 - CPI provides high-level, quick estimates of performance

 - Does not account for details (e.g., instruction dependences)

ECE 252 / CPS 220 29

CPI and Design

Baseline Processor / Application
 - Integer ALU: 50%, 1 cycle

 - Load: 20%, 5 cycle

 - Store: 10%, 1 cycle

 - Branch: 20%, 2 cycle

Possible Enhancements
 - Option 1: Branch prediction to reduce branch cost to 1 cycle

 - Option 2: Bigger data cache to reduce load cost to 3 cycles

 - Which enhancement would we prefer?

Cycles Per Instruction
 - Base = (0.5 x 1) + (0.2 x 5) + (0.1 x 1) + (0.2 x 2) = 2 cycles

 - Option 1 = (0.5 x 1) + (0.2 x 5) + (0.1 x 1) + (0.2 x 1) = 1.8 cycles

 - Option 1 = (0.5 x 1) + (0.2 x 3) + (0.1 x 1) + (0.2 x 2) = 1.6 cycles

ECE 252 / CPS 220 30

Measuring CPI

Physical Measurements
 - Measure wall clock time as application runs

 - Multiply time by clock frequency to get cycles

 - Profile application with hardware counters (e.g., Intel VTune)

Simulated Measurements
 - Cycle-level, microarchitectural simulation (e.g., SimpleScalar)

 - Run applications on simulated hardware

 - Track instructions as they progress through the design

ECE 252 / CPS 220 31

Improving CPI

Baseline Processor / Application
 - Integer ALU: 50%, 1 cycle

 - Load: 20%, 5 cycle

 - Store: 10%, 1 cycle

 - Branch: 20%, 2 cycle

Possible Enhancements
 - Option 1: Branch prediction to reduce branch cost to 1 cycle

 - Option 2: Bigger data cache to reduce load cost to 3 cycles

 - Which enhancement would we prefer?

Cycles Per Instruction
 - Base = (0.5 x 1) + (0.2 x 5) + (0.1 x 1) + (0.2 x 2) = 2 cycles

 - Option 1 = (0.5 x 1) + (0.2 x 5) + (0.1 x 1) + (0.2 x 1) = 1.8 cycles

 - Option 1 = (0.5 x 1) + (0.2 x 3) + (0.1 x 1) + (0.2 x 2) = 1.6 cycles

ECE 252 / CPS 220 32

Pitfall: Partial Performance Metrics

Ignoring Instructions per Program
 - Neglect dynamic instruction count

 - Misleading if working in algorithms, compilers, or ISA

Using Instructions per Second
 - MIPS = (Instructions / Cycle) x (Cycles / Second) x 1E-6

 - FLOPS: considers only floating-point instructions

 - Example: CPI = 2, clock frequency = 500MHz, 250 MIPS

 - Example: compiler removes instructions, latency falls, MIPS increases

Using Clock Frequency
 - Cannot equate clock frequency with performance

 - Proc A: CPI = 2, f = 500MHz; Proc B: CPI = 1, f = 300MHz

 - Given the same ISA and compiler, B is faster

ECE 252 / CPS 220 33

Pitfall & Amdahl’s Law

- Amdahl. “Validity of the single-processor approach…” AFIPS, 1967.

Make Common Case Fast
Consider improving fraction F of system with a speedup S.

T(new) = T(base) x (1-F) + T(base) x F / S

 = T(base) x [(1-F) + F/S]

Max Speedup = 1 / (1 – F)

Example
- Suppose FP computation is 1/4 of an application‟s execution time

- Maximum benefit from optimizing FP unit is 1.3x (=1/0.75)

- Mulitiprocessor systems were original application of this law

- Accounts for diminishing marginal returns

ECE 252 / CPS 220 34

Processor Power

1

10

100

1000

10000

1978 1980 1982 1984 1986 1988 1990 1992 1994 1996 1998 2000 2002 2004 2006

P
e

rf
o

rm
a

n
c
e

 (
v
s
.
V

A
X

-1
1

/7
8

0
)

25%/year

52%/year

??%/year

SPECint Benchmarks. Hennessy and

Patterson, Computer Architecture: A

Quantitative Approach, 4th Edition, 2006.

ECE 252 / CPS 220 35

Power and Energy

Definitions
 - Energy (Joules) = a x C x V2

 - Power (Watts) = a x C x V2 x f

Power Factors and Trends
 - activity (a): function of application resource usage

 - capacitance (C): function of design; scales with area

- voltage (V): constrained by leakage, which increases as V falls

 - frequency (f): varies with pipelining and transistor speeds

 - Models in cycle-accurate simulators (e.g., Princeton Wattch)

Dynamic Voltage and Frequency Scaling (DVFS)
 - P-states: move between operational modes with different V, f

- Intel TurboBoost: increase V, f for short durations without violating

thermal design point (TDP)

ECE 252 / CPS 220 36

Power and Temperature

Temperature
- Power density (Watts / sq-mm) is

proxy for thermal effects

- Estimate thermal conductivity and

resistance to understand processor hot

spots (e.g., University of Virginia,

HotSpot simulator)

Power Budgets
- Higher power budgets increase

packaging cost

- 130W servers, 65W desktops, 10-30W

laptops, 1-2W hand-held

ECE 252 / CPS 220 37

Power and Chip-Multiprocessors

Definitions
- Historically, multiprocessors use multiple

packages (e.g., IBM Power 3)

- Chip multi-processor integrates multiple

cores on the same die

Multiprocessor Efficiency
- Reduce power with simpler cores

- Recover lost performance with many core
parallelism (e.g., IBM Power 4)

ECE 252 / CPS 220 38

Power and Chip-Multiprocessors

Lower voltages, frequencies
- Voltage, frequency scale together (approximately)

- Power proportional to V2, f (falls cubically)

- Performance proportional to f (falls linearly)

Example
- Option 1: 1-core at V, f

- Option 2: 4-core CMP at 0.85V, 0.85f; program is 75% parallel

- Core Power 0.61x =0.853

- Core Performance 0.85x

- Power impact 2.44x = 0.61x 4

- Performance adjusted for parallelism 2.28x = 1/[0.25 + (0.75 / 4)]

- Performance adjusted for freq slowdown 1.94x = 2.28 x 0.85

- Multiprocessor: 1.5% power per 1% performance (=144%/94%)

- Higher V, f: 3% power per 1% performance (=(1.013-1)/(1.01-1))

ECE 252 / CPS 220 39

Cost

Non-recurring Engineering (NRE)
 - Dominated by engineer-years ($200K per engineer-year)

 - Mask costs (>$1M per spin)

Chip Cost
 - Depends on wafer and chip size, process maturity

Packaging Cost
 - Depends on number of pins (e.g., signal + power/ground)

- Depends on thermal design point (e.g., heat sink)

Total Cost of Ownership
 - Capital costs (e.g., server procurement cost)

- Operating costs (e.g., electricity)

ECE 252 / CPS 220 40

Yield

Wafers
 - Integrated circuits built with multi-step chemical process on wafers

 - Cost per wafer depends on wafer size, number of steps

Chip (a.k.a. Die)
 - If chips are large, fewer chips per wafer

 - Larger chips have lower yield

- Uniform defect density

- Chip cost is proportional to area2-3

Process Variability
 - Yield is non-binary

- Binning for speed grades

- Binning for core count

- Post-fabrication tuning with spares

ECE 252 / CPS 220 41

Acknowledgements

These slides contain material developed and copyright by

- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

