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ECE252 Administrivia

29 September – Homework #2 Due
- Use blackboard forum for questions

- Attend office hours with questions

- Email for separate meetings

4 October – Class Discussion
Roughly one reading per class. Do not wait until the day before!

1. Srinivasan et al. “Optimizing pipelines for power and performance”

2. Mahlke et al. “A comparison of full and partial predicated execution 

support for ILP processors”

3. Palacharla et al. “Complexity-effective superscalar processors”

4. Yeh et al. “Two-level adaptive training branch prediction”
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Pipelining

Latency = (Instructions / Program) x (Cycles / Instruction) x (Seconds / Cycle)

Performance Enhancement
- Increases number of cycles per instruction

- Reduces number of seconds per cycle

Instruction-Level Parallelism
- Begin with multi-cycle design

- When one instruction advances from stage-1 to stage=2, allow next 

instruction to enter stage-1. 

- Individual instructions require the same number of stages

- Multiple instructions in-flight, entering and leaving at faster rate

insn0.decinsn0.fetch

insn1.decinsn1.fetch

Multi-cycle

Pipelined

insn0.exec

insn1.exec

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec
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Ideal Pipelining

- All objects go through the same stages

- No resources shared between any two stages

- Equal propagation delay through all pipeline stages 

- An object entering the pipeline is not affected by objects in other stages

- These conditions generally hold for industrial assembly lines

- But can an instruction pipeline satisfy the last condition?

Technology Assumptions
- Small, very fast memory (caches) backed by large, slower memory

- Multi-ported register file, which is slower than a single-ported one

- Consider 5-stage pipelined Harvard architecture

stage
1

stage
2

stage
3

stage
4
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Practical Pipelining

Pipeline Overheads
- Each stage requires registers, which hold state/data communicated from one 

stage to next, incurring hardware and delay overheads

- Each stage requires partitioning logic into “equal” lengths

- Introduces diminishing marginal returns from deeper pipelines

Pipeline Hazards
- Instructions do not execute independently

- Instructions entering the pipeline depend on in-flight instructions or contend 

for shared hardware resources

stage
1

stage
2

stage
3

stage
4
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Pipelining MIPS

First, build MIPS without pipelining
- Single-cycle MIPS datapath

Then, pipeline into multiple stages
- Multi-cycle MIPS datapath

- Add pipeline registers to separate logic into stages

- MIPS partitions into 5 stages

- 1: Instruction Fetch (IF)

- 2: Instruction Decode (ID)

- 3: Execute (EX)

- 4: Memory (MEM )

- 5: Write Back (WB)
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5-Stage Pipelined Datapath (MIPS)
Figure A.17, Page A-29

IR mem[PC]; PC  PC + 4; Reg[IRrd]  Reg[IRrs] opIRop Reg[IRrt]

IF/ID ID/EX EX/MEM MEM/WB
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5-Stage Pipelined Datapath (MIPS)
Figure A.17, Page A-29

A  Reg[IRrs]; B  Reg[IRrt]; Result  A opIRop B; 

WB  Result; Reg[IRrd] WB

IF/ID ID/EX EX/MEM MEM/WB
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Visualizing the Pipeline
Figure A.2, Page A-8
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Hazards and Limits to Pipelining

Hazards prevent next instruction from executing 

during its designated clock cycle

Structural Hazards
- Hardware cannot support this combination of instructions. 

- Example: Limited resources required by multiple instructions (e.g. FPU)

Data Hazards
- Instruction depends on result of prior instruction still in pipeline

- Example: An integer operation is waiting for value loaded from memory

Control Hazards
- Instruction fetch depends on decision about control flow

- Example: Branches and jumps change PC
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Structural Hazards
Figure A.4, A-14

A single memory port causes structural hazard during data load, instr fetch
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Structural Hazards
Figure A.4, A-14

Stall the pipeline, creating bubbles, by freezing earlier stages  interlocks

Use Harvard Architecture (separate instruction, data memories)
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Data Hazards
Figure A.6, A-16

Instruction depends on result of prior instruction still in pipeline
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Data Hazards

Read After Write (RAW)

- Caused by a dependence, need for communication

- Instr-j tries to read operand before Instr-I writes it

i: add r1, r2, r3

j: sub r4, r1, 43

Write After Read (WAR)

- Caused by an anti-dependence and the re-use of the name “r1”

- Instr-j writes operand (r1) before Instr-I reads it

i: add r4, r1, r3

j: add r1, r2, r3

k: mul r6, r1, r7

Write After Write (WAW)

- Caused by an output dependence and the re-use of the name “r1”

- Instr-j writes operand (r1) before Instr-I writes it

i: sub r1, r4, r3

j: add r1, r2, r3

k: mul r6, r1, r7
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Resolving Data Hazards

Strategy 1 – Interlocks and Pipeline Stalls
- Later stages provide dependence information to earlier stages, which can 

stall or kill instructions

- Works as long as instruction at stage i+1 can complete without any 

interference from instructions In stages 1 through I (otherwise, deadlocks may 

occur)

FB1

stage

1

stage

2

stage

3
stage

4

FB2 FB3 FB4
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Interlocks & Pipeline Stalls

stalled stages

time

t0 t1 t2 t3 t4 t5 t6 t7 . . . .

IF I1 I2 I3 I3 I3 I3 I4 I5
ID I1 I2 I2 I2 I2 I3 I4 I5
EX I1 nop nop nop I2 I3 I4 I5
MA      I1 nop nop nop I2 I3 I4 I5
WB     I1 nop nop nop I2 I3 I4 I5

time

t0 t1 t2 t3 t4 t5 t6 t7 . . . .
(I1) r1  (r0) + 10 IF1 ID1 EX1 MA1 WB1

(I2) r4  (r1) + 17 IF2 ID2 ID2 ID2 ID2 EX2 MA2 WB2

(I3) IF3 IF3 IF3 IF3 ID3 EX3 MA3 WB3

(I4) IF4 ID4 EX4 MA4 WB4

(I5) IF5 ID5 EX5 MA5 WB5

Resource

Usage
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Interlocks & Pipeline Stalls

IRIR IR

31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4

Add

IR

Imm

Ext

ALU

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data 
Memory

we

nop

Example Dependence
r1  r0 + 10

r4  r1 + 17
Stall Condition
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Interlock Control Logic

- Compare the source registers of instruction in 

decode stage with the destination registers of 

uncommitted instructions

- Stall if a source register in decode matches some 

destination register?

- No, not every instruction writes to a register

- No, not every instruction reads from a register

- Derive stall signal from conditions in the pipeline
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Interlock Control Logic

IRIR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4

Add

IR

Imm

Ext

ALU

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data 
Memory

we

nop

Compare the source registers of the instruction in the decode stage with the 

destination register of the uncommitted instructions.

stall
Cstall

ws

rs
rt

?
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Interlock Control Logic

Should we always stall if RS/RT matches some RD? No, because not every 

instruction writes/reads a register. Introduce write/read enable signals (we/re)

Cdest

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4

Add

IR

Imm

Ext

ALU

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data 
Memory

we

31

nop

stall
Cstall

ws

rs
rt

?

we

re1 re2

Cre

ws we ws

Cdest
Cdest

we



ECE 252 / CPS 220 21

Source and Destination Registers

instruction source(s) destination

ALU rd  (rs) func (rt) rs, rt rd

ALUi rt (rs) op imm rs rt

LW rt M[(rs) + imm] rs rt

SW M [(rs) + imm]  (rt) rs, rt

BZ cond (rs)

true: PC  (PC) + imm rs

false: PC  (PC) + 4 rs

J PC  (PC) + imm

JAL r31  (PC), PC  (PC) + imm R31

JR PC  (rs) rs

JALR r31  (PC), PC  (rs) rs R31

R-type: op rs rt rd              func

I-type: op rs rt immediate16

J-type: op immediate26
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Interlock Control Logic

Should we always stall if RS/RT matches some RD? No, because not every 

instruction writes/reads a register. Introduce write/read enable signals (we/re)

Cdest

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4

Add

IR

Imm

Ext

ALU

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data 
Memory

we

31

nop

stall
Cstall

ws

rs
rt

?

we

re1 re2

Cre

ws we ws

Cdest
Cdest

we
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Deriving the Stall Signal

Cdest ws Case(opcode)

ALU: ws rd

ALUi: ws rt

JAL, JALR: ws R31

we Case(opcode)

ALU, ALUi, LW we  (ws != 0)

JAL, JALR we  1

otherwise we  0

Cre re1 Case(opcode)

ALU, ALUi re1  1

LW, SW, BZ re1  1

JR, JALR re1  1

J, JAL re1  0

re2 Case(opcode)

<< same as re1 but for register rt>>
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Deriving the Stall Signal

Xrs denote register rs for instruction in pipeline stage X

Xrt denote register rt for instruction in pipeline stage X

Xws denote destination register for instruction in pipeline stage X

Cstall stall-1  ( (Drs == Ews) & Ewe |

(Drs == Mws) & Mwe |

(Drs == Wws) & Wwe

) & Dre1

stall-2  ( (Drt == Ews) & Ewe |

(Drt == Mws) & Mwe |

(Drt == Wws) & Wwe

) & Dre2

stall  stall-1 | stall-2
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Load/Store Data Hazards

M[(r1)+7]  (r2)

r4  M[(r3)+5]

What is the problem here?

What if (r1)+7 == (r3+5)?

Load/Store hazards may be resolved in the pipeline or may be resolved in 

the memory system.  More later.
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Resolving Data Hazards

Strategy 2 – Forwarding (aka Bypasses)
- Route data as soon as possible to earlier stages in the pipeline

- Example: forward ALU output to its input

t0 t1 t2 t3 t4 t5 t6 t7 . . . .
(I1) r1  r0 + 10 IF1 ID1 EX1 MA1 WB1

(I2) r4  r1 + 17 IF2 ID2 ID2 ID2 ID2 EX2 MA2 WB2

(I3) IF3 IF3 IF3 IF3 ID3 EX3 MA3

(I4) stalled stages IF4 ID4 EX4

(I5) IF5 ID5

time t0 t1 t2 t3 t4 t5 t6 t7 . . . .
(I1) r1  r0 + 10 IF1 ID1 EX1 MA1 WB1

(I2) r4  r1 + 17 IF2 ID2 EX2 MA2 WB2

(I3) IF3 ID3 EX3 MA3 WB3

(I4) IF4 ID4 EX4 MA4 WB4

(I5) IF5 ID5 EX5 MA5 WB5
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Example Forwarding Path

ASrc

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr

inst

Inst

Memory

0x4

Add

IR

Imm

Ext

ALU

rd1

GPRs

rs1

rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data 
Memory

we

31

nop

stall

D

E M W
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Deriving Forwarding Signals

This forwarding path only applies to the ALU operations…

Eforward Case(Eopcode)

ALU, ALUi Eforward  (ws != 0)

otherwise Eforward  0

…and all other operations will need to stall as before

Estall Case(Eopcode)

LW Estall (ws != 0)

JAL, JALR Estall 1

otherwise Estall 0

Asrc (Drs == Ews) & Dre1 & Eforward

Remember to update stall signal, removing case covered 

by this forwarding path
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Multiple Forwarding Paths
Figure A.7, Page A-18
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Multiple Forwarding Paths

ASrc

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr

inst

Inst

Memory

0x4

Add

IR
ALU

Imm

Ext

rd1

GPRs

rs1

rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data 
Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc
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Forwarding Hardware
Figure A.23, Page A-37
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Forwarding Loads/Stores
Figure A.8, Page A-19
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Data Hazard Despite Forwarding
Figure A.9, Page A-20

LD cannot forward (backwards in time)  to DSUB. What is the solution?
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Data Hazards and Scheduling

Try producing faster code for

- A = B + C; D = E – F; 

- Assume A, B, C, D, E, and F are in memory

- Assume pipelined processor

Slow Code

LW Rb, b

LW Rc, c

ADD Ra, Rb, Rc

SW a, Ra

LW Re e

LW Rf, f

SUB Rd, Re, Rf

SW d, RD

Fast Code

LW Rb, b

LW Rc, c

LW Re, e

ADD Ra, Rb, Rc

LW Rf, f

SW a, Ra

SUB Rd, Re, Rf

SW d, RD
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