
ECE 252 / CPS 220

Advanced Computer Architecture I

Lecture 6

Pipelining – Part 1

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall11.html

ECE 252 / CPS 220 2

ECE252 Administrivia

29 September – Homework #2 Due
- Use blackboard forum for questions

- Attend office hours with questions

- Email for separate meetings

4 October – Class Discussion
Roughly one reading per class. Do not wait until the day before!

1. Srinivasan et al. “Optimizing pipelines for power and performance”

2. Mahlke et al. “A comparison of full and partial predicated execution

support for ILP processors”

3. Palacharla et al. “Complexity-effective superscalar processors”

4. Yeh et al. “Two-level adaptive training branch prediction”

ECE 252 / CPS 220 3

Pipelining

Latency = (Instructions / Program) x (Cycles / Instruction) x (Seconds / Cycle)

Performance Enhancement
- Increases number of cycles per instruction

- Reduces number of seconds per cycle

Instruction-Level Parallelism
- Begin with multi-cycle design

- When one instruction advances from stage-1 to stage=2, allow next

instruction to enter stage-1.

- Individual instructions require the same number of stages

- Multiple instructions in-flight, entering and leaving at faster rate

insn0.decinsn0.fetch

insn1.decinsn1.fetch

Multi-cycle

Pipelined

insn0.exec

insn1.exec

insn0.decinsn0.fetch

insn1.decinsn1.fetch

insn0.exec

insn1.exec

ECE 252 / CPS 220 4

Ideal Pipelining

- All objects go through the same stages

- No resources shared between any two stages

- Equal propagation delay through all pipeline stages

- An object entering the pipeline is not affected by objects in other stages

- These conditions generally hold for industrial assembly lines

- But can an instruction pipeline satisfy the last condition?

Technology Assumptions
- Small, very fast memory (caches) backed by large, slower memory

- Multi-ported register file, which is slower than a single-ported one

- Consider 5-stage pipelined Harvard architecture

stage
1

stage
2

stage
3

stage
4

ECE 252 / CPS 220 5

Practical Pipelining

Pipeline Overheads
- Each stage requires registers, which hold state/data communicated from one

stage to next, incurring hardware and delay overheads

- Each stage requires partitioning logic into “equal” lengths

- Introduces diminishing marginal returns from deeper pipelines

Pipeline Hazards
- Instructions do not execute independently

- Instructions entering the pipeline depend on in-flight instructions or contend

for shared hardware resources

stage
1

stage
2

stage
3

stage
4

ECE 252 / CPS 220 6

Pipelining MIPS

First, build MIPS without pipelining
- Single-cycle MIPS datapath

Then, pipeline into multiple stages
- Multi-cycle MIPS datapath

- Add pipeline registers to separate logic into stages

- MIPS partitions into 5 stages

- 1: Instruction Fetch (IF)

- 2: Instruction Decode (ID)

- 3: Execute (EX)

- 4: Memory (MEM)

- 5: Write Back (WB)

ECE 252 / CPS 220 7

5-Stage Pipelined Datapath (MIPS)
Figure A.17, Page A-29

IR mem[PC]; PC PC + 4; Reg[IRrd] Reg[IRrs] opIRop Reg[IRrt]

IF/ID ID/EX EX/MEM MEM/WB

ECE 252 / CPS 220 8

5-Stage Pipelined Datapath (MIPS)
Figure A.17, Page A-29

A Reg[IRrs]; B Reg[IRrt]; Result A opIRop B;

WB Result; Reg[IRrd] WB

IF/ID ID/EX EX/MEM MEM/WB

ECE 252 / CPS 220 9

Visualizing the Pipeline
Figure A.2, Page A-8

ECE 252 / CPS 220 10

Hazards and Limits to Pipelining

Hazards prevent next instruction from executing

during its designated clock cycle

Structural Hazards
- Hardware cannot support this combination of instructions.

- Example: Limited resources required by multiple instructions (e.g. FPU)

Data Hazards
- Instruction depends on result of prior instruction still in pipeline

- Example: An integer operation is waiting for value loaded from memory

Control Hazards
- Instruction fetch depends on decision about control flow

- Example: Branches and jumps change PC

ECE 252 / CPS 220 11

Structural Hazards
Figure A.4, A-14

A single memory port causes structural hazard during data load, instr fetch

ECE 252 / CPS 220 12

Structural Hazards
Figure A.4, A-14

Stall the pipeline, creating bubbles, by freezing earlier stages interlocks

Use Harvard Architecture (separate instruction, data memories)

ECE 252 / CPS 220 13

Data Hazards
Figure A.6, A-16

Instruction depends on result of prior instruction still in pipeline

ECE 252 / CPS 220 14

Data Hazards

Read After Write (RAW)

- Caused by a dependence, need for communication

- Instr-j tries to read operand before Instr-I writes it

i: add r1, r2, r3

j: sub r4, r1, 43

Write After Read (WAR)

- Caused by an anti-dependence and the re-use of the name “r1”

- Instr-j writes operand (r1) before Instr-I reads it

i: add r4, r1, r3

j: add r1, r2, r3

k: mul r6, r1, r7

Write After Write (WAW)

- Caused by an output dependence and the re-use of the name “r1”

- Instr-j writes operand (r1) before Instr-I writes it

i: sub r1, r4, r3

j: add r1, r2, r3

k: mul r6, r1, r7

ECE 252 / CPS 220 15

Resolving Data Hazards

Strategy 1 – Interlocks and Pipeline Stalls
- Later stages provide dependence information to earlier stages, which can

stall or kill instructions

- Works as long as instruction at stage i+1 can complete without any

interference from instructions In stages 1 through I (otherwise, deadlocks may

occur)

FB1

stage

1

stage

2

stage

3
stage

4

FB2 FB3 FB4

ECE 252 / CPS 220 16

Interlocks & Pipeline Stalls

stalled stages

time

t0 t1 t2 t3 t4 t5 t6 t7

IF I1 I2 I3 I3 I3 I3 I4 I5
ID I1 I2 I2 I2 I2 I3 I4 I5
EX I1 nop nop nop I2 I3 I4 I5
MA I1 nop nop nop I2 I3 I4 I5
WB I1 nop nop nop I2 I3 I4 I5

time

t0 t1 t2 t3 t4 t5 t6 t7
(I1) r1 (r0) + 10 IF1 ID1 EX1 MA1 WB1

(I2) r4 (r1) + 17 IF2 ID2 ID2 ID2 ID2 EX2 MA2 WB2

(I3) IF3 IF3 IF3 IF3 ID3 EX3 MA3 WB3

(I4) IF4 ID4 EX4 MA4 WB4

(I5) IF5 ID5 EX5 MA5 WB5

Resource

Usage

ECE 252 / CPS 220 17

Interlocks & Pipeline Stalls

IRIR IR

31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4

Add

IR

Imm

Ext

ALU

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

nop

Example Dependence
r1 r0 + 10

r4 r1 + 17
Stall Condition

ECE 252 / CPS 220 18

Interlock Control Logic

- Compare the source registers of instruction in

decode stage with the destination registers of

uncommitted instructions

- Stall if a source register in decode matches some

destination register?

- No, not every instruction writes to a register

- No, not every instruction reads from a register

- Derive stall signal from conditions in the pipeline

ECE 252 / CPS 220 19

Interlock Control Logic

IRIR IR
31

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4

Add

IR

Imm

Ext

ALU

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

nop

Compare the source registers of the instruction in the decode stage with the

destination register of the uncommitted instructions.

stall
Cstall

ws

rs
rt

?

ECE 252 / CPS 220 20

Interlock Control Logic

Should we always stall if RS/RT matches some RD? No, because not every

instruction writes/reads a register. Introduce write/read enable signals (we/re)

Cdest

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4

Add

IR

Imm

Ext

ALU

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

31

nop

stall
Cstall

ws

rs
rt

?

we

re1 re2

Cre

ws we ws

Cdest
Cdest

we

ECE 252 / CPS 220 21

Source and Destination Registers

instruction source(s) destination

ALU rd (rs) func (rt) rs, rt rd

ALUi rt (rs) op imm rs rt

LW rt M[(rs) + imm] rs rt

SW M [(rs) + imm] (rt) rs, rt

BZ cond (rs)

true: PC (PC) + imm rs

false: PC (PC) + 4 rs

J PC (PC) + imm

JAL r31 (PC), PC (PC) + imm R31

JR PC (rs) rs

JALR r31 (PC), PC (rs) rs R31

R-type: op rs rt rd func

I-type: op rs rt immediate16

J-type: op immediate26

ECE 252 / CPS 220 22

Interlock Control Logic

Should we always stall if RS/RT matches some RD? No, because not every

instruction writes/reads a register. Introduce write/read enable signals (we/re)

Cdest

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr
inst

Inst
Memory

0x4

Add

IR

Imm

Ext

ALU

rd1

GPRs

rs1
rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

31

nop

stall
Cstall

ws

rs
rt

?

we

re1 re2

Cre

ws we ws

Cdest
Cdest

we

ECE 252 / CPS 220 23

Deriving the Stall Signal

Cdest ws Case(opcode)

ALU: ws rd

ALUi: ws rt

JAL, JALR: ws R31

we Case(opcode)

ALU, ALUi, LW we (ws != 0)

JAL, JALR we 1

otherwise we 0

Cre re1 Case(opcode)

ALU, ALUi re1 1

LW, SW, BZ re1 1

JR, JALR re1 1

J, JAL re1 0

re2 Case(opcode)

<< same as re1 but for register rt>>

ECE 252 / CPS 220 24

Deriving the Stall Signal

Xrs denote register rs for instruction in pipeline stage X

Xrt denote register rt for instruction in pipeline stage X

Xws denote destination register for instruction in pipeline stage X

Cstall stall-1 ((Drs == Ews) & Ewe |

(Drs == Mws) & Mwe |

(Drs == Wws) & Wwe

) & Dre1

stall-2 ((Drt == Ews) & Ewe |

(Drt == Mws) & Mwe |

(Drt == Wws) & Wwe

) & Dre2

stall stall-1 | stall-2

ECE 252 / CPS 220 25

Load/Store Data Hazards

M[(r1)+7] (r2)

r4 M[(r3)+5]

What is the problem here?

What if (r1)+7 == (r3+5)?

Load/Store hazards may be resolved in the pipeline or may be resolved in

the memory system. More later.

ECE 252 / CPS 220 26

Resolving Data Hazards

Strategy 2 – Forwarding (aka Bypasses)
- Route data as soon as possible to earlier stages in the pipeline

- Example: forward ALU output to its input

t0 t1 t2 t3 t4 t5 t6 t7
(I1) r1 r0 + 10 IF1 ID1 EX1 MA1 WB1

(I2) r4 r1 + 17 IF2 ID2 ID2 ID2 ID2 EX2 MA2 WB2

(I3) IF3 IF3 IF3 IF3 ID3 EX3 MA3

(I4) stalled stages IF4 ID4 EX4

(I5) IF5 ID5

time t0 t1 t2 t3 t4 t5 t6 t7
(I1) r1 r0 + 10 IF1 ID1 EX1 MA1 WB1

(I2) r4 r1 + 17 IF2 ID2 EX2 MA2 WB2

(I3) IF3 ID3 EX3 MA3 WB3

(I4) IF4 ID4 EX4 MA4 WB4

(I5) IF5 ID5 EX5 MA5 WB5

ECE 252 / CPS 220 27

Example Forwarding Path

ASrc

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr

inst

Inst

Memory

0x4

Add

IR

Imm

Ext

ALU

rd1

GPRs

rs1

rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

31

nop

stall

D

E M W

ECE 252 / CPS 220 28

Deriving Forwarding Signals

This forwarding path only applies to the ALU operations…

Eforward Case(Eopcode)

ALU, ALUi Eforward (ws != 0)

otherwise Eforward 0

…and all other operations will need to stall as before

Estall Case(Eopcode)

LW Estall (ws != 0)

JAL, JALR Estall 1

otherwise Estall 0

Asrc (Drs == Ews) & Dre1 & Eforward

Remember to update stall signal, removing case covered

by this forwarding path

ECE 252 / CPS 220 29

Multiple Forwarding Paths
Figure A.7, Page A-18

ECE 252 / CPS 220 30

Multiple Forwarding Paths

ASrc

IRIR IR

PC
A

B

Y

R

MD1 MD2

addr

inst

Inst

Memory

0x4

Add

IR
ALU

Imm

Ext

rd1

GPRs

rs1

rs2

ws
wd rd2

we

wdata

addr

wdata

rdata
Data
Memory

we

31

nop

stall

D

E M W

PC for JAL, ...

BSrc

ECE 252 / CPS 220 31

Forwarding Hardware
Figure A.23, Page A-37

ECE 252 / CPS 220 32

Forwarding Loads/Stores
Figure A.8, Page A-19

ECE 252 / CPS 220 33

Data Hazard Despite Forwarding
Figure A.9, Page A-20

LD cannot forward (backwards in time) to DSUB. What is the solution?

ECE 252 / CPS 220 34

Data Hazards and Scheduling

Try producing faster code for

- A = B + C; D = E – F;

- Assume A, B, C, D, E, and F are in memory

- Assume pipelined processor

Slow Code

LW Rb, b

LW Rc, c

ADD Ra, Rb, Rc

SW a, Ra

LW Re e

LW Rf, f

SUB Rd, Re, Rf

SW d, RD

Fast Code

LW Rb, b

LW Rc, c

LW Re, e

ADD Ra, Rb, Rc

LW Rf, f

SW a, Ra

SUB Rd, Re, Rf

SW d, RD

ECE 252 / CPS 220 35

Acknowledgements

These slides contain material developed and copyright by

- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

