
ECE 252 / CPS 220

 Advanced Computer Architecture I

Lecture 13

Memory – Part 2

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall11.html

ECE 252 / CPS 220 2

ECE252 Administrivia

20 October – Project Proposals Due
 One page proposal

1. What question are you asking?

2. How are you going to answer that question?

3. Talk to me if you are looking for project ideas.

25 October – Homework #3 Due

25 October – Class Discussion
 Roughly one reading per class. Do not wait until the day before!

1. Jouppi. “Improving direct-mapped cache performance by the addition

of a small fully-associative cache and prefetch buffers.”

2. Kim et al. “An adaptive, non-uniform cache structure for wire-delay

dominated on-chip caches.”

3. Fromm et al. “The energy efficiency of IRAM architectures”

4. Lee et al. “Phase change memory architecture and the quest for

scalability”

ECE 252 / CPS 220 3

Last Time

History of Memory
• Williams tubes were unreliable. Core memory reliable but slow

• Semiconductor memory competitive in 1970s.

DRAM Operation
• DRAM accesses require (1) activates, (2) reads/writes, (3) precharges

• Performance gap between processor and memory is growing.

Managing the Memory Hierarchy
1. Predictable patterns provide (1) temporal and (2) spatial locality

2. Exploit predictable patterns with small, fast caches.

3. Cache data placement policies include (1) fully-associative, (2) set-

associative, and direct-mapped. Choice of policy determines cache

effectiveness.

ECE 252 / CPS 220 4

Datapath – Cache Interaction

PC addr inst

Primary
Instruction
Cache

0x4

Add

IR

D

nop

hit?

Decode,
Register
Fetch

wdata

R

addr

wdata

rdata
Primary
Data
Cache

we
A

B

Y Y ALU

MD1 MD2

Cache Refill Data from Lower Levels of
Memory Hierarchy

hit?

Stall entire
CPU on data
cache miss

To Memory Control

M

E

ECE 252 / CPS 220 5

Average Memory Access Time

AMAT = [Hit Time] + [Miss Prob.] x [Miss Penalty]
- Miss Penalty equals AMAT of next cache/memory/storage level.

- AMAT is recursively defined

To improve performance
- Reduce the hit time (e.g., smaller cache)

- Reduce the miss rate (e.g., larger cache)

- Reduce the miss penalty (e.g., optimize the next level)

Simple design strategy
- Observe that hit time increases with cache size

- Design the largest possible cache with a hit time of 1-2 cycles.

- For example, design 8-32KB of cache in modern technology

- Design trade-offs are more complex with superscalar architectures and

multi-ported memories

ECE 252 / CPS 220 6

Example: Serial vs Parallel Access

Serial Access

- Check cache for addressed data. If miss (probability 1-p), go to memory

- AMAT = Tcache + (1-p) x Tmem

Parallel Access

- Check cache and memory for addressed data.

- AMAT = p x Tcache + (1-p) x Tmem

- AMAT reductions from parallel access often small. Tmem >> Tcache and

p is high. Parallel access consumes memory bandwidth Parallel access

increases cache complexity and Tcache.

CACHE Processor
Main
Memory

Addr Addr

Data Data

CACHE Processor
Main
Memory

Addr

Data Data

ECE 252 / CPS 220 7

Cache Misses and Causes (3C’s)

Compulsory
- First reference to a block. May be caused by “cold” caches as

application begins execution.

- Compulsory misses would occur even with infinitely sized cache

Capacity
- Cache is too small and cannot hold all data needed by the program.

- Capacity misses would occur even under perfect replacement policy.

Conflict
- Cache line replacement policy causes collisions

- Conflict misses would not occur with full associativity

ECE 252 / CPS 220 8

Cache Performance

Larger Cache Size
- Benefit: reduces capacity and conflict misses

- Cost: increases hit time

Higher Associativity
- Benefit: reduces conflict misses

- Cost: increases hit time

Larger Line Size
- Benefit: reduces compulsory and capacity misses

- Cost: increases conflict misses and increases miss penalty

ECE 252 / CPS 220 9

Cache Write Policy Alternatives

What happens when a cache line is written?

If write hits in cache (i.e., line already cached)
- Write-Through: Write data to both cache and memory. Increases

memory traffic but allows simpler datapath and cache controllers.

- Write-Back: Write data to cache only. Write data to memory only when

cache line is replaced (e.g., conflict).

- Write-Back Optimization: Insert “dirty bit” per cache line, which indicates

whether line is modified. Write-back only if replaced cache line is dirty.

If write misses in cache
- No Write Allocate: Write data to memory only.

- Write Allocate: Fetch data into cache. Write data into cache. Also

known as fetch-on-write.

Common combinations
- Write-through and no-write allocate

- Write-back and write allocate.

ECE 252 / CPS 220 10

Write Performance

Writes must (1) check for

HIT and (2) perform write

only after HIT signal

resolves. Steps are serial,

which harms

performance.

 Tag Data V

 =

Block
Offset

 Tag Index

 t
 k

 b

 t

HIT Data Word or Byte

 2k

lines

WE

ECE 252 / CPS 220 11

Reducing Write Time

Problem: Writes take two cycles in memory
- Access cache and compare tags to generate HIT signal (1 cycle)

- Perform cache write if HIT enables a write (1 cycle)

Solutions
- Design data SRAM that can perform read/write in one cycle, restoring

old value if HIT is false.

- Design content-addressable data SRAM (CAM), which enables word line

only if HIT is true.

- Pipeline writes with a write buffer. Write the cache for j-th store instruction

during the tag check for (j+1)-th store instruction

ECE 252 / CPS 220 12

Pipelining Cache Writes

Introduce buffers for delayed write address,

write data. Write cache for j-th store during

tag check for (j+1)-th store. Note that loads

must check buffers for latest data.

Tags Data

Tag Index Store Data

Address and Store Data From CPU

Delayed Write Data Delayed Write Addr.

=?

=?

Load Data to CPU

Load/Store

L

S

1 0

Hit?

ECE 252 / CPS 220 13

Buffering Writes

With buffers, writes do not stall datapath
- Introduce a write buffer between adjacent levels in cache hierarchy.

- After writes enter buffer, computation proceeds.

- For example: Reads bypass writes.

Problem
- Write buffer may hold latest value for a read instruction’s address

Solutions
- Option 1: If a read misses in cache, wait for the write buffer to empty

- Option 2: Compare read address with write buffer addresses. If no

match, allow read to bypass writes. Else, return value in write buffer.

ECE 252 / CPS 220 14

Cache Hierarchy

Problem
- Memory technology imposes trade-off between speed and size.

- A memory cannot be both large and fast.

Solution
- Introduce a multi-level cache hierarchy.

- As distance from datapath increases, increase cache size.

CPU L1$ L2$ DRAM

ECE 252 / CPS 220 15

L1-L2 Cache Interactions

Use smaller L1 cache if L2 cache is present
- Reduce L1 hit time, but increase L1 miss rate.

- L2 mitigates higher L1 miss rate by reducing L1 miss penalty

- May reduce average time (AMAT) and energy (AMAE)

Use write-through L1 if write-back L2 cache is present
- Write-through L1 simplifies pipeline, cache controller.

- No write-backs for dirty lines reduces complexity.

- Write-back L2 absorbs write traffic. Writes do not go off-chip to DRAM.

Inclusion Policies
- Inclusive Multi-level Cache: Smaller cache (e.g., L1) holds copies of data

in larger cache (e.g., L2). Simpler policies.

- Exclusive Multi-level Cache: Smaller cache (e.g., L1) holds data not in

larger cache (e.g., L2). Example: AMD Athlon with 64KB primary and

256KB secondary. Reduces duplication.

ECE 252 / CPS 220 16

Power7 On-Chip Caches (2009)

32KB L1 I$/core

32KB L1 D$/core

3-cycle latency

256KB Unified L2$/core

8-cycle latency

32MB Unified Shared L3$

Embedded DRAM

25-cycle latency to local

slice

ECE 252 / CPS 220 17

Prefetching

Speculate about future memory accesses
- Predict likely instruction and data accesses.

- Pre-emptively fetch instructions and data into caches.

- Instructions accesses likely easier to predict than data accesses.

- Mechanisms might be implemented in HW, SW or both.

- What type of misses does prefetching affect?

Challenges in Prefetching
- Prefetching should be useful. Prefetches should reduce misses.

- Prefetching should be timely. Prefetches will pollute the cache if too early

and will be useless if too late.

- Prefetching may pollute caches and consume memory bandwidth.

ECE 252 / CPS 220 18

Hardware Instruction Prefetching

Example: Alpha AXP 21064
- Prefetch instructions

- Fetch two lines on a cache miss. Fetch the requested line (i) and the

next consecutive line (i+1).

- Place requested line in instruction L1 cache. Place next line in an

instruction stream buffer.

- If an instruction fetch misses in L1 cache but hits in stream buffer, move

stream buffer line into L1 cache. And prefetch next line (i+2)

L1 Instruction
Unified L2

Cache

RF

CPU

Stream

Buffer

Prefetched

instruction block Req

 block

Req

 block

ECE 252 / CPS 220 19

Hardware Data Prefetching

Prefetch after a cache miss
- Prefetch line (i+1) if an access for line (i) misses in the cache

One Block Look-ahead (OBL)
- Blocks also known as lines.

- Initiate prefetch for block (i+1) when block (i) is accessed.

- Generalizes to N-block look-ahead

- How is this different from increasing the block or line size by N times?

Strided Prefetch
- Observe sequence of accesses to cache lines.

- Suppose a sequence (i), (i+N), (i+2N) is observed. Prefetch (i+3N).

- N is the stride.

- Example: IBM Power 5 (2003) supports eight independent streams of

strided prefetches per processor, prefetching 12 lines ahead of the

current access.

ECE 252 / CPS 220 20

Software Prefetching

 for(i=0; i < N; i++) {

 prefetch(&a[i + P]);

 prefetch(&b[i + P]);

 SUM = SUM + a[i] * b[i];

 }

Challenges in Software Prefetching
- Timing is the biggest difficulty, not predictability.

- Prefetch too late if prefetch instruction too close to data use.

- Prefetch too early and cause cache/bandwidth pollution.

- Requires estimating prefetch latency: time from issuing prefetch to filling

L1 cache line.

- Why is this hard to do? What is the correct value of P above?

ECE 252 / CPS 220 21

Caches and Code

Restructuring code affects data access sequences
- Group data accesses together to improve spatial locality

- Re-order data accesses to improve temporal locality

Prevent data from entering the cache
- Useful for variables that are only accessed once

- Requires SW to communicate hints to HW.

- Example: “no-allocate” instruction hints

Kill data that will never be used again
- Streaming data provides spatial locality but not temporal locality

- If particular lines contain dead data, use them in replacement policy.

- Toward software-managed caches

 for(j=0; j < N; j++) {
 for(i=0; i < M; i++) {
 x[i][j] = 2 * x[i][j];
 }
 }

 for(i=0; i < M; i++) {
 for(j=0; j < N; j++) {
 x[i][j] = 2 * x[i][j];
 }
 }

ECE 252 / CPS 220 22

Loop Interchange

What type of locality does this improve?

What does it assume about x?

ECE 252 / CPS 220 23

Loop Fusion

What type of locality does this improve?

for(i=0; i < N; i++)

 a[i] = b[i] * c[i];

for(i=0; i < N; i++)

 d[i] = a[i] * c[i];

 for(i=0; i < N; i++)

{

 a[i] = b[i] * c[i];

 d[i] = a[i] * c[i];

 }

ECE 252 / CPS 220 24

Matrix Multiply (X=YZ) – Naïve

 for(i=0; i < N; i++)
 for(j=0; j < N; j++) {
 r = 0;
 for(k=0; k < N; k++)
 r = r + y[i][k] * z[k][j];
 x[i][j] = r;
 }

Not touched Old access New access

x j

i

y k

i

z j

k

Notes
1. Iterate through matrix (y) by row.
2. Iterate through matrix (z) by col.
3. Update matrix (x) by col.

ECE 252 / CPS 220 25

Matrix Multiply (X=YZ) – Blocked
 for(jj=0; jj < N; jj=jj+B)

 for(kk=0; kk < N; kk=kk+B)

 for(i=0; i < N; i++)

 for(j=jj; j < min(jj+B,N); j++) {

 r = 0;

 for(k=kk; k < min(kk+B,N); k++)

 r = r + y[i][k] * z[k][j];

 x[i][j] = x[i][j] + r;

 }

y k

i

z j

k

x j

i

Notes
1. Organize matrix into BxB sub-

matrices.
2. Iterate through blocks (jj, kk).

3. For each block, iterate through its
elements (i, j).

What type of locality does this
improve? Hint: Track the re-use of
matrix elements during computation.

Not touched Old access New access

ECE 252 / CPS 220 26

Summary

Caches
• Quantify cache/memory hierarchy performance with AMAT

• Three types of cache misses: (1) compulsory, (2) capacity, (3) conflict

• Cache structure and data placement policies determine miss rates

• Write buffers improve performance.

Prefetching
• Identify and exploit spatial locality

• Prefetchers can be implemented in hardware, software, or both

Caches and Code
• Restructuring SW code can improve HW cache performance

• Data re-use can improve with code structure (e.g., matrix-multiply)

ECE 252 / CPS 220 27

Acknowledgements

These slides contain material developed and copyright by

- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

