
ECE 252 / CPS 220

 Advanced Computer Architecture I

Lecture 18

Multiprocessors

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall11.html

ECE 252 / CPS 220 2

ECE252 Administrivia

15 November – Homework #4 Due

Project Status
- Plan on having preliminary data or infrasturcutre

ECE 299 – Energy-Efficient Computer Systems
- www.duke.edu/~bcl15/class/class_ece299fall10.html

- Technology, architectures, systems, applications

- Seminar for Spring 2012.

- Class is paper reading, discussion, research project

- In Fall 2010, students read >35 research papers.

- In Spring 2012, read research papers.

- In Spring 2012, also considering textbook “The Datacenter as a

Computer: An Introduction to the Design of Warehouse-scale Machines.”

http://www.duke.edu/~bcl15/class/class_ece299fall10.html

ECE 252 / CPS 220 3

Last Time

Vector Processors
• Express and exploit data-level parallelism (DLP)

SIMD Extensions
• Extensions for short vectors in superscalar (ILP) processors

• Provide some advantages of vector processing at less cost

ECE 252 / CPS 220 4

Multiprocessors

Shared-memory Multiprocessors
- Provide a shared-memory abstraction

- Enables familiar and efficient programmer interface

P1 P2 P3 P4

Memory System

ECE 252 / CPS 220 5

Multiprocessors

Shared-memory Multiprocessors
- Provide a shared-memory abstraction

- Enables familiar and efficient programmer interface

Interconnection Network

P1

Cache M1

Interface

P2

Cache M2

Interface

P3

Cache M3

Interface

P4

Cache M4

Interface

ECE 252 / CPS 220 6

Processors and Memory – UMA

Uniform Memory Access (UMA)
- Access all memory locations with same latency

- Pros: Simplifies software. Data placement does not matter

- Cons: Lowers peak performance. Latency defined by worst case

- Implementation: Bus-based UMA for symmetric multiprocessor (SMP)

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

ECE 252 / CPS 220 7

Processors and Memory – NUMA

Non-Uniform Memory Access (NUMA)
- Access local memory locations faster

- Pros: Increases peak performance.

- Cons: Increases software complexity, data placement.

- Implementation: Network-based NUMA with various network topologies,

which require routers (R).

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem R R R R

ECE 252 / CPS 220 8

Networks and Topologies

Shared Networks
- Every CPU can communicate with

every other CPU via bus or crossbar

- Pros: lower latency

- Cons: lower bandwidth and more

difficult to scale with processor

count (e.g., 16)

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem

CPU($)

Mem R R R R

Point-to-Point Networks
- Every CPU can talk to specific

neighbors (depending on topology).

- Pros: higher bandwidth and easier to

scale with processor count (e.g.,

100s)

- Cons: higher multi-hop latencies

CPU($)

Mem R

CPU($)

Mem R

CPU($)

Mem R

CPU($)

Mem R

ECE 252 / CPS 220 9

Topology 1 – Bus

Network Topology
- Defines organization of network nodes

- Topologies differ in connectivity, latency, bandwidth, and cost.

- Notation: f(1) denotes constant independent of p, f(p) denotes linearly

increasing cost with p, etc…

Bus
- Direct interconnect style

- Latency: f(1) wire delay

- Bandwidth: f(1/p) and not scalable (p<=4)

- Cost: f(1) wire cost

- Supports ordered broadcast only

ECE 252 / CPS 220 10

Topology 2 – Crossbar Switch

Network Topology
- Defines organization of network nodes

- Topologies differ in connectivity, latency, bandwidth, and cost.

- Notation: f(1) denotes constant independent of p, f(p) denotes linearly

increasing cost with p, etc…

Crossbar Switch
- Indirect interconnect.

- Switches implemented as big multiplexors

- Latency: f(1) constant latency

- Bandwidth: f(1)

- Cost: f(2P) wires, f(P2) switches

ECE 252 / CPS 220 11

Topology 3 – Multistage Network

Network Topology
- Defines organization of network nodes

- Topologies differ in connectivity, latency, bandwidth, and cost.

- Notation: f(1) denotes constant independent of p, f(p) denotes linearly

increasing cost with p, etc…

Crossbar Switch
- Indirect interconnect.

- Routing done by address decoding

- k: switch arity (#inputs or #outputs)

- d: number of network stages = logkP

- Latency: f(d)

- Bandwidth: f(1)

- Cost: f(d*P/k) switches, f(P*d) wires

- Commonly used in large UMA systems

ECE 252 / CPS 220 12

Topology 4 – 2D Torus

Network Topology
- Defines organization of network nodes

- Topologies differ in connectivity, latency, bandwidth, and cost.

- Notation: f(1) denotes constant independent of p, f(p) denotes linearly

increasing cost with p, etc…

2D Torus
- Direct interconnect

- Latency: f(P1/2)

- Bandwidth: f(1)

- Cost: f(2P) wires

- Scalable and widely used.

- Variants: 1D torus, 2D mesh, 3D torus

ECE 252 / CPS 220 13

Challenges in Shared Memory

Cache Coherence
- “Common Sense”

- P1-Read[X] P1-Write[X] P1-Read[X] Read returns X

- P1-Write[X] P2-Read[X] Read returns value written by P1

- P1-Write[X] P2-Write[X] Writes serialized

 All P’s see writes in same order

Synchronization
- Atomic read/write operations

Memory Consistency
- What behavior should programmers expect from shared memory?

- Provide a formal definition of memory behavior to programmer

- Example: When will a written value be seen?

- Example: P1-Write[X] <<10ps>> P2-Read[X]. What happens?

ECE 252 / CPS 220 14

Example Execution

Processor 0 Processor 1

0: addi r1, accts, r3

1: ld 0(r3), r4

2: blt r4, r2, 6

3: sub r4, r2, r4

4: st r4, 0 (r3)

5: call give-cash 0: addi r1, accts, r3 # get addr for account

 1: ld 0(r3), r4 # load balance into r4

 2: blt r4, r2, 6 # check for sufficient funds

 3: sub r4, r2, r4 # withdraw

 4: st r4, 0(r3) #store new balance

 5: call give-cash

Two withdrawals from one account. Two ATMs
- Withdraw value: r2 (e.g., $100)

- Account memory address: accts+r1

- Account balance: r4

CPU0 Mem CPU1

ECE 252 / CPS 220 15

Scenario 1 – No Caches

Processor 0 Processor 1

0: addi r1, accts, r3

1: ld 0(r3), r4

2: blt r4, r2, 6

3: sub r4, r2, r4

4: st r4, 0 (r3)

5: call give-cash 0: addi r1, accts, r3

 1: ld 0(r3), r4

 2: blt r4, r2, 6

 3: sub r4, r2, r4

 4: st r4, 0(r3)

 5: call give-cash

Processors have no caches
- Withdrawals update balance without a problem

500

500

400

400

300

P0 P1 Mem

ECE 252 / CPS 220 16

Scenario 2a – Cache Incoherence

Processor 0 Processor 1

0: addi r1, accts, r3

1: ld 0(r3), r4

2: blt r4, r2, 6

3: sub r4, r2, r4

4: st r4, 0 (r3)

5: call give-cash 0: addi r1, accts, r3

 1: ld 0(r3), r4

 2: blt r4, r2, 6

 3: sub r4, r2, r4

 4: st r4, 0(r3)

 5: call give-cash

Processors have write-back caches
- Processor 0 updates balance in cache, but does not write-back to memory

- Multiple copies of memory location [accts+r1]

- Copies may get inconsistent

500

V:500 500

D:400 500

D:400 500 V:500

D:400 500 D:400

P0 P1 Mem

ECE 252 / CPS 220 17

Scenario 2b – Cache Incoherence

Processor 0 Processor 1

0: addi r1, accts, r3

1: ld 0(r3), r4

2: blt r4, r2, 6

3: sub r4, r2, r4

4: st r4, 0 (r3)

5: call give-cash 0: addi r1, accts, r3

 1: ld 0(r3), r4

 2: blt r4, r2, 6

 3: sub r4, r2, r4

 4: st r4, 0(r3)

 5: call give-cash

Processors have write-through caches
- What happens if processor 0 performs another withdrawal?

500

V:500 500

V:400 400

V:400 400 V:400

V:400 300 V:300

P0 P1 Mem

ECE 252 / CPS 220 18

Hardware Coherence Protocols

Absolute Coherence
- All cached copies have same data at same

time. Slow and hard to implement

Relative Coherence
- Temporary incoherence is ok (e.g., write-back

caches) as long as no load reads incoherent

data.

Coherence Protocol
Finite state machine that runs for every cache line

(1) Define states per cache line

(2) Define state transitions based on bus activity

(3) Requires coherence controller to examine bus

traffic (address, data)

(4) Invalidates, updates cache lines

CPU

D
$

d
at

a

D
$

ta
g

s

CC

bus

ECE 252 / CPS 220 19

Protocol 1 – Write Invalidate

Mechanics – processor P performs write
- Process P performs write, broadcasts address on bus

- !P snoop the bus. If address is locally cached, !P invalidates local copy

- Process P performs read, broadcasts address on bus

- !P snoop the bus. If address is locally cached, !P writes back local copy

Example

 Data in Data in Data in

Processor-Activity Bus-Activity Cache-A Cache-B Mem[X]

 0

CPU-A reads X Cache miss for X 0 0

CPU-B reads X Cache miss for X 0 0 0

CPU-A writes 1 to X Invalidation for X 1 0

CPU-B reads X Cache miss for X 1 1 1

ECE 252 / CPS 220 20

Protocol 2 – Write Update

Mechanics – processor P performs write
- Do not invalidate !P cache line.

- Instead update !P cache line and memory

- Pro: !P gets data faster

- Con: Requires significant bandwidth

 Data in Data in Data in

Processor-Activity Bus-Activity Cache-A Cache-B Mem[X]

 0

CPU-A reads X Cache miss for X 0 0

CPU-B reads X Cache miss for X 0 0 0

CPU-A writes 1 to X Write Broadcast X 1 1 1

CPU-B reads X Cache hit for X 1 1 1

ECE 252 / CPS 220 21

Cache Coherent Systems

Provide Coherence Protocol
- States

- State transition diagram

- Actions

Implement Coherence Protocol
(0) Determine when to invoke coherence protocol

(1)Find state of cache line to determine action

(2)Locate other cached copies

(3)Communicate with other cached copies (invalidate, update)

Implementation Variants
(0) is done in the same way for all systems. Maintain additional state per

cache line. Invoke protocol based on state

(1-3) have different approaches

ECE 252 / CPS 220 22

Implementation 1 – Snooping

Bus-based Snooping
- All cache/coherence controllers observe/react to all bus events.

- Protocol relies on globally visible events

 i.e., all processors see all events

- Protocol relies on globally ordered events

 i.e., all processors see all events in same sequence

Bus Events
- Processor (events initiated by own processor P)

 read (R), write (W), write-back (WB)

- Bus (events initiated by other processors !P)

bus read (BR), bus write (BW)

ECE 252 / CPS 220 23

Three-State Invalidate Protocol

Implement protocol for every cache line.

Add state bits to every cache to indicate (1) invalid, (2) shared, (3) exclusive

ECE 252 / CPS 220 24

Example

P1 read (A)

P2 read (A1)

P1 write (B)

P2 read (C)

P1 write (D)

P2 write (E)

P2 write (F-Z)

ECE 252 / CPS 220 25

Implementation 2 – Directory

Bus-based Snooping – Limitations
- Snooping scalability is limited

- Bus has insufficient data bandwidth for coherence traffic

- Processor has insufficient snooping bandwidth for coherence traffic

Directory-based Coherence – Scalable Alternative
- Directory contains state for every cache line

- Directory identifies processors with cached copies and their states

- In contrast to snoopy protocols, processors observe/act only on relevant

memory events. Directory determines whether a processor is involved.

ECE 252 / CPS 220 26

Directory Communication

Processor sends coherence events to directory
(1) Find directory entry

(2) Identify processors with copies

(3) Communicate with processors, if necessary

ECE 252 / CPS 220 27

Challenges in Shared Memory

Cache Coherence
- “Common Sense”

- P1-Read[X] P1-Write[X] P1-Read[X] Read returns X

- P1-Write[X] P2-Read[X] Read returns value written by P1

- P1-Write[X] P2-Write[X] Writes serialized

 All P’s see writes in same order

Synchronization
- Atomic read/write operations

Memory Consistency
- What behavior should programmers expect from shared memory?

- Provide a formal definition of memory behavior to programmer

- Example: When will a written value be seen?

- Example: P1-Write[X] <<10ps>> P2-Read[X]. What happens?

ECE 252 / CPS 220 28

Synchronization

Regulate access to data shared by processors
- Synchronization primitive is a lock

- Critical section is a code segment that accesses shared data

- Processor must acquire lock before entering critical section.

- Processor should release lock when exiting critical section

Spin Locks – Broken Implementation
acquire (lock) # if lock=0, then set lock = 1, else spin

critical section

release (lock) # lock = 0

Inst-0: ldw R1, lock # load lock into R1

Inst-1: bnez R1, Inst-0 # check lock, if lock!=0, go back to Inst-0

Inst-2: stw 1, lock # acquire lock, set to 1

<< critical section>>> # access shared data

Inst-n: stw 0, lock # release lock, set to 0

ECE 252 / CPS 220 29

Implementing Spin Locks

Processor 0 Processor 1

Inst-0: ldw R1, lock

Inst-1: bnez R1,Inst-0 # P0 sees lock is free

 Inst-0: ldw R1, lock

 Inst-1: bnez R1, Inst-0 # P1 sees lock is free

Inst-2: stw 1, lock # P0 acquires lock

 Inst-2: stw 1, lock # P1 acquires lock

…..

 …. # P0/P1 in critical section

…. # at the same time

Inst-n: stw 0, lock

Problem: Lock acquire not atomic
- A set of atomic operations either all complete or all fail. During a set of

atomic operations, no other processor can interject.

- Spin lock requires atomic load-test-store sequence

ECE 252 / CPS 220 30

Implementing Spin Locks

Solution: Test-and-set instruction
- Add single instruction for load-test-store (t&s R1, lock)

- Test-and-set atomically executes

ld R1, lock; # load previous lock value

st 1, lock; # store 1 to set/acquire

- If lock initially free (0), t&s acquires lock (sets to 1)

- If lock initially busy (1), t&s does not change it

- Instruction is un-interruptible/atomic by definition

Inst-0 t&s R1, lock # atomically load, check, and set lock=1

Inst-1 bnez R1 # if previous value of R1 not 0,

…. acquire unsuccessful

Inst-n stw R1, 0 # atomically release lock

ECE 252 / CPS 220 31

Test-and-Set Inefficiency

Test-and-set works…

Processor 0 Processor 1

Inst-0: t&s R1, lock

Inst-1: bnez R1,Inst-0 Inst-0: t&s R1, lock # P0 sees lock is free

 Inst-1: bnez R1, Inst-0 # P1 does not acquire

…but performs poorly
- Suppose Processor 2 (not shown) has the lock

- Processors 0/1 must…

- Execute a loop of t&s instructions

- Issue multiple store instructions

- Generate useless interconnection traffic

ECE 252 / CPS 220 32

Test-and-Test-and-Set Locks

Solution: Test-and-test-and-set

Inst-0 ld R1, lock # test with a load, see if lock changed

Inst-1 bnez R1, Inst-0 # if lock=1, spin

Inst-2 t&s R1, lock # if lock=1, test-and-set

Inst-4 bnez R1, Inst-0 # if can not acquire, spin

Advantages
- Spins locally without stores

- Reduces interconnect traffic

- Not a new instruction, simply new software (lock implementation)

ECE 252 / CPS 220 33

Semaphores

Semaphore (semaphore S, integer N)
- Allows N parallel threads to access shared variable

- If N = 1, equivalent to lock

- Requires atomic fetch-and-add

Function Init (semaphore S, integer N) {

 s = N;

}

Function P (semaphore S) { # “Proberen” to test

 while (S == 0) { };

 s = s -1 ;

}

Function V (semaphore S) { # “Verhogen” to increment

 s = s + 1;

}

ECE 252 / CPS 220 34

Challenges in Shared Memory

Cache Coherence
- “Common Sense”

- P1-Read[X] P1-Write[X] P1-Read[X] Read returns X

- P1-Write[X] P2-Read[X] Read returns value written by P1

- P1-Write[X] P2-Write[X] Writes serialized

 All P’s see writes in same order

Synchronization
- Atomic read/write operations

Memory Consistency
- What behavior should programmers expect from shared memory?

- Provide a formal definition of memory behavior to programmer

- Example: When will a written value be seen?

- Example: P1-Write[X] <<10ps>> P2-Read[X]. What happens?

ECE 252 / CPS 220 35

Memory Consistency

Execution Example
A = Flag = 0

Processor 0 Processor 1

A = 1 while (!Flag)

Flag = 1 print A

Intuition – P1 should print A=1

Coherence – Makes no guarantees!

ECE 252 / CPS 220 36

Consistency and Caches

Execution Example
A = Flag = 0

Processor 0 Processor 1

A = 1 while (!Flag)

Flag = 1 print A

Caching Scenario
 1. P0 writes A=1. Misses in cache. Puts write into a store buffer.

 2. P0 continues execution.

 3. P0 writes Flag=1. Hits in cache. Completes write (with coherence)

 4. P1 reads Flag=1.

 5. P1 exits spin loop.

 6. P1 prints A=0

Caches, buffering, and other performance

mechanisms can cause strange behavior.

ECE 252 / CPS 220 37

Sequential Consistency (SC)

Definition of Sequential Consistency
Formal definition of programmers’ expected view of memory

(1) Each processor P sees its own loads/stores in program order

(2) Each processor P sees !P loads/stores in program order

(3) All processors see same global load/store ordering.

 P and !P loads/stores may be interleaved into some order.

 But all processors see the same interleaving/ordering.

Definition of Multiprocessor Ordering [Lamport]
Multi-processor ordering corresponds to some sequential interleaving of uni-

processor orderings. Multiprocessor ordering should be indistinguishable from

multi-programmed uni-purocessor

ECE 252 / CPS 220 38

Enforcing SC

Consistency and Coherence
- SC Definition: loads/stores globally ordered

- SC Implications: coherence events of all load/stores globally ordered

Implementing Sequential Consistency
- All loads/stores commit in-order

- Delay completion of memory access until all invalidations that are caused by

access are complete

- Delay a memory access until previous memory access is complete

- Delay memory read until previous write completes. Cannot place writes in a

buffer and continue with reads.

- Simple for programmer but constraints HW/SW performance optimizations

ECE 252 / CPS 220 39

Weaker Consistency Models

Assume programs are synchronized
- SC required only for lock variables

- Other variables are either (1) in critical section and cannot be accessed in

parallel or (2) not shared

Use fences to restrict re-ordering
- Increases opportunity for HW optimization but increases programmer effort

- Memory fences stall execution until write buffers empty

- Allows load/store reordering in critical section.

- Slows lock acquire, release

 acquire

 memory fence

 critical section

 memory fence # ensures all writes from critical section

 release # are cleared from buffer

ECE 252 / CPS 220 40

Summary

Shared Memory Multiprocessors
• Provides efficient and familiar abstraction to programmer

• Much, much more in ECE259

Cache Coherence
• Coordinate accesses to shared, writeable data

• Coherence protocol defines cache line states, state transitions, actions

• Snooping implementation – bus and broadcast

• Directory implementation – directory and

Synchronization
• Locks and ISA support for atomicity

Memory Consistency
• Defines programmers’ expected view of memory

• Sequential consistency imposes ordering on loads/stores

