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ECE252 Administrivia 

15 November – Homework #4 Due 
 

Project Status 
- Plan on having preliminary data or infrasturcutre  

 

ECE 299 – Energy-Efficient Computer Systems 
- www.duke.edu/~bcl15/class/class_ece299fall10.html 

- Technology, architectures, systems, applications 

- Seminar for Spring 2012.  

- Class is paper reading, discussion, research project 

- In Fall 2010, students read >35 research papers. 

- In Spring 2012, read research papers.  

- In Spring 2012, also considering textbook “The Datacenter as a 

Computer: An Introduction to the Design of Warehouse-scale Machines.” 

http://www.duke.edu/~bcl15/class/class_ece299fall10.html
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Last Time 

Vector Processors 
• Express and exploit data-level parallelism (DLP) 

 

SIMD Extensions 
• Extensions for short vectors in superscalar (ILP) processors 

• Provide some advantages of vector processing at less cost 
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Multiprocessors 

Shared-memory Multiprocessors 
- Provide a shared-memory abstraction 

- Enables familiar and efficient programmer interface 

 

 

P1 P2 P3 P4 

Memory System 
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Multiprocessors 

Shared-memory Multiprocessors 
- Provide a shared-memory abstraction 

- Enables familiar and efficient programmer interface 

 

 

Interconnection Network 

P1 

Cache M1 

Interface 

P2 

Cache M2 

Interface 

P3 

Cache M3 

Interface 

P4 

Cache M4 

Interface 
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Processors and Memory – UMA  

Uniform Memory Access (UMA) 
- Access all memory locations with same latency 

- Pros: Simplifies software. Data placement does not matter 

- Cons: Lowers peak performance. Latency defined by worst case 

- Implementation: Bus-based UMA for symmetric multiprocessor (SMP) 

 

 

CPU($) 

Mem 

CPU($) 

Mem 

CPU($) 

Mem 

CPU($) 

Mem 
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Processors and Memory – NUMA  

Non-Uniform Memory Access (NUMA) 
- Access local memory locations faster 

- Pros: Increases peak performance. 

- Cons: Increases software complexity, data placement. 

- Implementation: Network-based NUMA with various network topologies, 

which require routers (R).  

CPU($) 

Mem 

CPU($) 

Mem 

CPU($) 

Mem 

CPU($) 

Mem R R R R 
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Networks and Topologies 

Shared Networks 
- Every CPU can communicate with 

every other CPU via bus or crossbar 

 

- Pros: lower latency 

 

- Cons: lower bandwidth and more 

difficult to scale with processor 

count (e.g., 16) 

CPU($) 

Mem 

CPU($) 

Mem 

CPU($) 

Mem 

CPU($) 

Mem R R R R 

Point-to-Point Networks 
- Every CPU can talk to specific 

neighbors (depending on topology).  

 

- Pros: higher bandwidth and easier to 

scale with processor count (e.g., 

100s) 

 

- Cons: higher multi-hop latencies 

CPU($) 

Mem R 

CPU($) 

Mem R 

CPU($) 

Mem R 

CPU($) 

Mem R 
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Topology 1 – Bus  

Network Topology 
- Defines organization of network nodes 

- Topologies differ in connectivity, latency, bandwidth, and cost.  

- Notation: f(1) denotes constant independent of p, f(p) denotes linearly 

increasing cost with p, etc… 

 

Bus 
- Direct interconnect style 

 

- Latency: f(1) wire delay 

- Bandwidth: f(1/p) and not scalable (p<=4) 

- Cost: f(1) wire cost 

- Supports ordered broadcast only 
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Topology 2 – Crossbar Switch  

Network Topology 
- Defines organization of network nodes 

- Topologies differ in connectivity, latency, bandwidth, and cost.  

- Notation: f(1) denotes constant independent of p, f(p) denotes linearly 

increasing cost with p, etc… 

 

Crossbar Switch 
- Indirect interconnect. 

- Switches implemented as big multiplexors 

 

- Latency: f(1) constant latency 

- Bandwidth: f(1) 

- Cost: f(2P) wires, f(P2) switches 
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Topology 3 – Multistage Network 

Network Topology 
- Defines organization of network nodes 

- Topologies differ in connectivity, latency, bandwidth, and cost.  

- Notation: f(1) denotes constant independent of p, f(p) denotes linearly 

increasing cost with p, etc… 

 

Crossbar Switch 
- Indirect interconnect. 

- Routing done by address decoding 

- k: switch arity (#inputs or #outputs) 

- d: number of network stages = logkP 

 

- Latency: f(d) 

- Bandwidth: f(1) 

- Cost: f(d*P/k) switches, f(P*d) wires 

- Commonly used in large UMA systems 
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Topology 4 – 2D Torus 

Network Topology 
- Defines organization of network nodes 

- Topologies differ in connectivity, latency, bandwidth, and cost.  

- Notation: f(1) denotes constant independent of p, f(p) denotes linearly 

increasing cost with p, etc… 

 

2D Torus 
- Direct interconnect 

 

- Latency: f(P1/2) 

- Bandwidth: f(1) 

- Cost: f(2P) wires 

- Scalable and widely used. 

- Variants: 1D torus, 2D mesh, 3D torus 
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Challenges in Shared Memory 

Cache Coherence 
- “Common Sense” 

- P1-Read[X]  P1-Write[X]  P1-Read[X]  Read returns X 

- P1-Write[X]  P2-Read[X]   Read returns value written by P1 

- P1-Write[X]  P2-Write[X]   Writes serialized 

      All P’s see writes in same order 

 

Synchronization 
- Atomic read/write operations 

 

Memory Consistency 
- What behavior should programmers expect from shared memory? 

- Provide a formal definition of memory behavior to programmer 

- Example: When will a written value be seen? 

- Example: P1-Write[X] <<10ps>> P2-Read[X]. What happens? 
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Example Execution 

Processor 0  Processor 1   

0:  addi  r1, accts, r3    

1:  ld 0(r3), r4   

2:  blt r4, r2, 6   

3:  sub r4, r2, r4   

4:  st r4, 0 (r3)   

5:  call  give-cash 0: addi r1, accts, r3 # get addr for account 

    1: ld  0(r3), r4  # load balance into r4 

    2: blt r4, r2, 6  # check for sufficient funds 

    3: sub r4, r2, r4  # withdraw 

    4: st r4, 0(r3)  #store new balance 

    5: call  give-cash  

Two withdrawals from one account. Two ATMs 
- Withdraw value: r2 (e.g., $100) 

- Account memory address: accts+r1 

- Account balance: r4 

CPU0 Mem CPU1 
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Scenario 1 – No Caches 

Processor 0  Processor 1   

0:  addi  r1, accts, r3    

1:  ld 0(r3), r4   

2:  blt r4, r2, 6   

3:  sub r4, r2, r4   

4:  st r4, 0 (r3)   

5:  call  give-cash 0: addi r1, accts, r3  

    1: ld  0(r3), r4   

    2: blt r4, r2, 6   

    3: sub r4, r2, r4   

    4: st r4, 0(r3)   

    5: call  give-cash  

Processors have no caches 
- Withdrawals update balance without a problem 

500 

500 

400 

400 

300 

P0 P1 Mem 
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Scenario 2a – Cache Incoherence 

Processor 0  Processor 1   

0:  addi  r1, accts, r3    

1:  ld 0(r3), r4   

2:  blt r4, r2, 6   

3:  sub r4, r2, r4   

4:  st r4, 0 (r3)   

5:  call  give-cash 0: addi r1, accts, r3  

    1: ld  0(r3), r4   

    2: blt r4, r2, 6   

    3: sub r4, r2, r4   

    4: st r4, 0(r3)   

    5: call  give-cash  

Processors have write-back caches 
- Processor 0 updates balance in cache, but does not write-back to memory 

- Multiple copies of memory location [accts+r1] 

- Copies may get inconsistent 

500 

V:500 500 

D:400 500 

D:400 500 V:500 

D:400 500 D:400 

P0 P1 Mem 
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Scenario 2b – Cache Incoherence 

Processor 0  Processor 1   

0:  addi  r1, accts, r3    

1:  ld 0(r3), r4   

2:  blt r4, r2, 6   

3:  sub r4, r2, r4   

4:  st r4, 0 (r3)   

5:  call  give-cash 0: addi r1, accts, r3  

    1: ld  0(r3), r4   

    2: blt r4, r2, 6   

    3: sub r4, r2, r4   

    4: st r4, 0(r3)   

    5: call  give-cash  

Processors have write-through caches 
- What happens if processor 0 performs another withdrawal? 

500 

V:500 500 

V:400 400 

V:400 400 V:400 

V:400 300 V:300 

P0 P1 Mem 
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Hardware Coherence Protocols 

Absolute Coherence 
- All cached copies have same data at same 

time. Slow and hard to implement 
 

Relative Coherence 
- Temporary incoherence is ok (e.g., write-back 

caches) as long as no load reads incoherent 

data. 
 

Coherence Protocol 
Finite state machine that runs for every cache line 

(1) Define states per cache line 

(2) Define state transitions based on bus activity 

(3) Requires coherence controller to examine bus 

traffic (address, data) 

(4) Invalidates, updates cache lines 

CPU 
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bus 
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Protocol 1 – Write Invalidate 

Mechanics – processor P performs write 
- Process P performs write, broadcasts address on bus 

- !P snoop the bus. If address is locally cached, !P invalidates local copy 

 

- Process P performs read, broadcasts address on bus 

- !P snoop the bus. If address is locally cached, !P writes back local copy 
 

Example 
 

    Data in  Data in   Data in  

Processor-Activity Bus-Activity   Cache-A  Cache-B  Mem[X] 

        0 

CPU-A reads X Cache miss for X 0    0 

CPU-B reads X Cache miss for X 0  0  0 

CPU-A writes 1 to X Invalidation for X 1    0 

CPU-B reads X Cache miss for X 1  1  1 
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Protocol 2 – Write Update 

Mechanics – processor P performs write 
- Do not invalidate !P cache line.  

- Instead update !P cache line and memory 

- Pro: !P gets data faster 

- Con: Requires significant bandwidth 
 

    Data in  Data in   Data in  

Processor-Activity Bus-Activity   Cache-A  Cache-B  Mem[X] 

        0 

CPU-A reads X Cache miss for X 0    0 

CPU-B reads X Cache miss for X 0  0  0 

CPU-A writes 1 to X Write Broadcast X 1  1  1 

CPU-B reads X Cache hit for X 1  1  1 
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Cache Coherent Systems 

Provide Coherence Protocol 
- States 

- State transition diagram 

- Actions 
 

Implement Coherence Protocol 
(0) Determine when to invoke coherence protocol 

(1)Find state of cache line to determine action 

(2)Locate other cached copies 

(3)Communicate with other cached copies (invalidate, update) 

 

Implementation Variants 
(0) is done in the same way for all systems. Maintain additional state per 

cache line.  Invoke protocol based on state 

(1-3) have different approaches 
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Implementation 1 – Snooping  

Bus-based Snooping 
- All cache/coherence controllers observe/react to all bus events. 

- Protocol relies on globally visible events 

 i.e., all processors see all events 

- Protocol relies on globally ordered events  

 i.e., all processors see all events in same sequence 
 

Bus Events 
- Processor (events initiated by own processor P) 

 read (R), write (W), write-back (WB) 

- Bus (events initiated by other processors !P) 

bus read (BR), bus write (BW) 
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Three-State Invalidate Protocol 

Implement protocol for every cache line.  

Add state bits to every cache to indicate (1) invalid, (2) shared, (3) exclusive 
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Example 

P1 read  (A) 

P2 read (A1) 

P1 write (B) 

P2 read (C) 

P1 write (D) 

P2 write  (E) 

P2 write  (F-Z) 
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Implementation 2 – Directory  

Bus-based Snooping – Limitations  
- Snooping scalability is limited 

- Bus has insufficient data bandwidth for coherence traffic 

- Processor has insufficient snooping bandwidth for coherence traffic 

 

Directory-based Coherence – Scalable Alternative 
- Directory contains state for every cache line 

- Directory identifies processors with cached copies and their states 

- In contrast to snoopy protocols, processors observe/act only on relevant 

memory events. Directory determines whether a processor is involved.  
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Directory Communication 

Processor sends coherence events to directory 
(1) Find directory entry 

(2) Identify processors with copies 

(3) Communicate with processors, if necessary 
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Challenges in Shared Memory 

Cache Coherence 
- “Common Sense” 

- P1-Read[X]  P1-Write[X]  P1-Read[X]  Read returns X 

- P1-Write[X]  P2-Read[X]   Read returns value written by P1 

- P1-Write[X]  P2-Write[X]   Writes serialized 

      All P’s see writes in same order 

 

Synchronization 
- Atomic read/write operations 

 

Memory Consistency 
- What behavior should programmers expect from shared memory? 

- Provide a formal definition of memory behavior to programmer 

- Example: When will a written value be seen? 

- Example: P1-Write[X] <<10ps>> P2-Read[X]. What happens? 

 
 

 

 



ECE 252 / CPS 220 28 

Synchronization 

Regulate access to data shared by processors 
- Synchronization primitive is a lock 

- Critical section is a code segment that accesses shared data 

- Processor must acquire lock before entering critical section. 

- Processor should release lock when exiting critical section 
 

Spin Locks – Broken Implementation 
acquire (lock) # if lock=0, then set lock = 1, else spin 

critical section    

release (lock)  # lock = 0 

 

Inst-0: ldw  R1, lock  # load lock into R1 

Inst-1: bnez   R1, Inst-0  # check lock, if lock!=0, go back to Inst-0 

Inst-2: stw 1, lock  # acquire lock, set to 1 

<< critical section>>>  # access shared data 

Inst-n: stw 0, lock  # release lock, set to 0 
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Implementing Spin Locks 

Processor 0  Processor 1 

Inst-0: ldw R1, lock  

Inst-1: bnez R1,Inst-0    # P0 sees lock is free 

    Inst-0: ldw R1, lock   

    Inst-1: bnez R1, Inst-0 # P1 sees lock is free 

Inst-2: stw 1, lock    # P0 acquires lock 

    Inst-2: stw 1, lock  # P1 acquires lock 

…..       

    ….   # P0/P1 in critical section 

….       # at the same time 

Inst-n: stw 0, lock 
 

Problem: Lock acquire not atomic 
- A set of atomic operations either all complete or all fail.  During a set of 

atomic operations, no other processor can interject.  

- Spin lock requires atomic load-test-store sequence 
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Implementing Spin Locks 

 

Solution: Test-and-set instruction 
- Add single instruction for load-test-store (t&s R1, lock) 

- Test-and-set atomically executes 

ld R1, lock; # load previous lock value 

st 1, lock;  # store 1 to set/acquire 

 

- If lock initially free (0), t&s acquires lock (sets to 1) 

- If lock initially busy (1), t&s does not change it  

- Instruction is un-interruptible/atomic by definition 
 

Inst-0 t&s R1, lock # atomically load, check, and set lock=1 

Inst-1 bnez R1  # if previous value of R1 not 0,  

….    acquire unsuccessful 

Inst-n stw R1, 0  # atomically release lock 
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Test-and-Set Inefficiency 

Test-and-set works… 
 

Processor 0  Processor 1 

Inst-0: t&s R1, lock 

Inst-1: bnez R1,Inst-0 Inst-0: t&s R1, lock   # P0 sees lock is free 

    Inst-1: bnez R1, Inst-0 # P1 does not acquire 
 

 

…but performs poorly 
- Suppose Processor 2 (not shown) has the lock 

- Processors 0/1 must… 

- Execute a loop of t&s instructions 

- Issue multiple store instructions 

- Generate useless interconnection traffic 
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Test-and-Test-and-Set Locks 

Solution: Test-and-test-and-set 
 

Inst-0 ld R1, lock # test with a load, see if lock changed 

Inst-1 bnez R1, Inst-0 # if lock=1, spin 

Inst-2 t&s R1, lock # if lock=1, test-and-set 

Inst-4 bnez R1, Inst-0 # if can not acquire, spin 

 

Advantages 
- Spins locally without stores 

- Reduces interconnect traffic 

- Not a new instruction, simply new software (lock implementation) 
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Semaphores 

Semaphore (semaphore S, integer N) 
- Allows N parallel threads to access shared variable 

- If N = 1, equivalent to lock 

- Requires atomic fetch-and-add 

 

Function Init (semaphore S, integer N) {  

 s = N; 

} 

 

Function P (semaphore S) {   # “Proberen” to test 

 while (S == 0) { };     

 s = s -1 ;  

} 

 

Function V (semaphore S) {  # “Verhogen” to increment 

 s = s + 1; 

} 
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Challenges in Shared Memory 

Cache Coherence 
- “Common Sense” 

- P1-Read[X]  P1-Write[X]  P1-Read[X]  Read returns X 

- P1-Write[X]  P2-Read[X]   Read returns value written by P1 

- P1-Write[X]  P2-Write[X]   Writes serialized 

      All P’s see writes in same order 

 

Synchronization 
- Atomic read/write operations 

 

Memory Consistency 
- What behavior should programmers expect from shared memory? 

- Provide a formal definition of memory behavior to programmer 

- Example: When will a written value be seen? 

- Example: P1-Write[X] <<10ps>> P2-Read[X]. What happens? 
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Memory Consistency 

Execution Example 
A = Flag = 0 

Processor 0   Processor 1 

A = 1  while (!Flag) 

Flag = 1  print A 

 

Intuition – P1 should print A=1 

Coherence – Makes no guarantees! 
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Consistency and Caches 

Execution Example 
A = Flag = 0 

Processor 0   Processor 1 

A = 1  while (!Flag) 

Flag = 1  print A 

 

Caching Scenario 
 1. P0 writes A=1. Misses in cache. Puts write into a store buffer. 

 2. P0 continues execution. 

 3. P0 writes Flag=1. Hits in cache. Completes write (with coherence) 

 4. P1 reads Flag=1. 

 5. P1 exits spin loop. 

 6. P1 prints A=0 

 

Caches, buffering, and other performance 

mechanisms can cause strange behavior. 
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Sequential Consistency (SC) 

Definition of Sequential Consistency  
Formal definition of programmers’ expected view of memory 

 

(1) Each processor P sees its own loads/stores in program order 

 

(2) Each processor P sees !P loads/stores in program order 

 

(3) All processors see same global load/store ordering.  

 P and !P loads/stores may be interleaved into some order. 

 But all processors see the same interleaving/ordering. 

   

Definition of Multiprocessor Ordering [Lamport] 
Multi-processor ordering corresponds to some sequential interleaving of uni-

processor orderings. Multiprocessor ordering should be indistinguishable from 

multi-programmed uni-purocessor 
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Enforcing SC 

Consistency and Coherence 
- SC Definition: loads/stores globally ordered 

- SC Implications: coherence events of all load/stores globally ordered 

 

Implementing Sequential Consistency 
- All loads/stores commit in-order 

 

- Delay completion of memory access until all invalidations that are caused by 

access are complete 

 

- Delay a memory access until previous memory access is complete 

 

- Delay memory read until previous write completes.  Cannot place writes in a 

buffer and continue with reads. 

 

- Simple for programmer but constraints HW/SW performance optimizations 
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Weaker Consistency Models 

Assume programs are synchronized  
- SC required only for lock variables 

- Other variables are either (1) in critical section and cannot be accessed in 

parallel or (2) not shared 

 

Use fences to restrict re-ordering 
- Increases opportunity for HW optimization but increases programmer effort 

- Memory fences stall execution until write buffers empty 

- Allows load/store reordering in critical section. 

- Slows lock acquire, release 

 

 acquire 

 memory fence 

 critical section 

 memory fence # ensures all writes from critical section 

 release  # are cleared from buffer 
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Summary 

Shared Memory Multiprocessors 
• Provides efficient and familiar abstraction to programmer 

• Much, much more in ECE259 

 

Cache Coherence 
• Coordinate accesses to shared, writeable data 

• Coherence protocol defines cache line states, state transitions, actions 

• Snooping implementation – bus and broadcast 

• Directory implementation – directory and 

 

Synchronization 
• Locks and ISA support for atomicity 

 

Memory Consistency 
• Defines programmers’ expected view of memory 

• Sequential consistency imposes ordering on loads/stores 


