
ECE 552 / CPS 550

 Advanced Computer Architecture I

Lecture 9

Instruction-Level Parallelism – Part 2

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall12.html

ECE 552 / CPS 550 2

ECE552 Administrivia

27 September – Homework #2 Due
- Use blackboard forum for questions

- Attend office hours with questions

- Email for separate meetings

2 October – Class Discussion
 Roughly one reading per class. Do not wait until the day before!

1. Srinivasan et al. “Optimizing pipelines for power and performance”

2. Mahlke et al. “A comparison of full and partial predicated execution

support for ILP processors”

3. Palacharla et al. “Complexity-effective superscalar processors”

4. Yeh et al. “Two-level adaptive training branch prediction”

4 October – Midterm Exam

ECE 552 / CPS 550 3

In-Order Issue Pipeline

IF ID WB

ALU Mem

Fadd

Fmul

Fdiv

Issue

GPR’s

FPR’s

ECE 552 / CPS 550 4

Scoreboard

Busy[FU#]: a bit-vector to indicate functional unit

availability where FU = {Int, Add, Mutl, Div}

WP[#regs]: a bit-vector to record the registers to

which writes are pending
 - Bits are set to true by issue logic

 - Bits are set to false by writeback stage

- Each functional unit’s pipeline registers must carry ‘dest’ field and a

flag to indicate if it’s valid: “the (we, ws) pair”

Issue logic checks instruction (opcode, dest, src1,

src2) against scoreboard (busy, wp) to dispatch
 - FU available? Busy[FU#]

 - RAW? WP[src1] or WP[src2]

 - WAR? Cannot arise

 - WAW? WP[dest]

ECE 552 / CPS 550 5

Limitations of In-Order Issue

Instruction Operands Latency

1: LD F2, 34(R2) 1

2: LD F4, 45(R3) long

3: MULTD F6, F4, F2 3

4: SUBD F8, F2, F2 1

5: DIVD F4, F2, F8 4

6: ADDD F10, F6, F4 1

In-order: 1 (2 1) …………2 3 4 4 3 5 ….5 6 6

In-order restriction keeps instruction 4 from issuing

1 2

3 4

5

6

ECE 552 / CPS 550 6

Out-of-Order Issue

- Issue stage buffer holds multiple instructions waiting to issue

- Decode stage adds next instruction to buffer if there is space and

next instruction does not cause a WAR or WAW hazard

- Any instruction in buffer whose RAW hazards are satisfied can issue

- When instruction commits, a new instruction can issue

IF ID WB

ALU Mem

Fadd

Fmul

Issue

ECE 552 / CPS 550 7

Limitations of Out-of-Order Issue

Instruction Operands Latency

1: LD F2, 34(R2) 1

2: LD F4, 45(R3) long

3: MULTD F6, F4, F2 3

4: SUBD F8, F2, F2 1

5: DIVD F4, F2, F8 4

6: ADDD F10, F6, F4 1

In-order: 1 (2 1) …………2 3 4 4 3 5 ….5 6 6

Out-of-order: 1 (2 1) 4 4 …….2 3…... 3 5 ….5 6 6

Out-of-order execution has no gain.

Why did we not issue instruction 5?

1 2

3 4

5

6

ECE 552 / CPS 550 8

Instructions In-Flight

What features of an ISA limit the number of

instructions in the pipeline? Number of registers

What features of a program limit the number of

instructions in the pipeline? Control transfers

Out-of-order issue does not address these other

limitations.

ECE 552 / CPS 550 9

Mitigating Limited Register Names

Floating point pipelines often cannot be filled with

small number of registers
 - IBM 360 had only 4 floating-point registers

Can a microarchitecture use more registers than

specified by the ISA without loss of ISA compatibility?
 - In 1967, Robert Tomasulo’s solution was dynamic register renaming.

ECE 552 / CPS 550 11

ILP via Renaming

Instruction Operands Latency

1: LD F2, 34(R2) 1

2: LD F4, 45(R3) long

3: MULTD F6, F4, F2 3

4: SUBD F8, F2, F2 1

5: DIVD F4, F2, F8 4

6: ADDD F10, F6, F4 1

In-order: 1 (2 1) …………2 3 4 4 3 5 ….5 6 6

Out-of-order: 1 (2 1) 4 4 5 ….2 (3, 5) 3 6 6

Any anti-dependence can be eliminated by

renaming (requires additional storage). Renaming

can be done in hardware!

1 2

3 4

5

6

X

ECE 552 / CPS 550 12

Register Renaming

- Decode stage renames registers and adds instructions to the reorder

buffer (ROB)

- ROB tracks in-flight instructions in program order

- ROB renames registers to eliminate WAR or WAW hazards

- ROB instructions with resolved RAW hazards can issue (source

operands are ready)

- This is called “out-of-order” or “dataflow” execution

IF ID WB

ALU Mem

Fadd

Fmul

Issue

ECE 552 / CPS 550 13

Reorder Buffer (ROB)

Instruction slot is candidate for execution when…
- Instruction is valid (“use” bit is set)

- Instruction is not already executing (“exec” bit is clear)

- Operands are available (“p1” and “p2” are set for “src1” and “src2”)

Reorder buffer

t1

t2

.

.

.

tn

ptr2

next to

deallocate

 ptr1

next

available

Ins# use exec op p1 src1 p2 src2

ECE 552 / CPS 550 14

Renaming Registers and the ROB

1. Insert instruction into ROB (after decoding it)
i. ROB entry is used, use 1

ii. Instruction is not yet executing, exec 1

iii. Specify operation in ROB entry

2. Update renaming table
i. Identify instruction’s destination register (e.g., F1)

ii. Look up register (e.g., F1) in renaming table

iii. Insert pointer to instruction’s ROB entry

3. When instruction executes, exec 1

4. When instruction writes-back, replace pointer to

ROB with produced value

ECE 552 / CPS 550 15

Example

1: LD F2, 34 (R2)

2: LD F4, 45 (R3)

3: MUTLD F6, F4, F2

4: SUBD F8, F2, F2

5: DIVD F4, F2, F8

6: ADDD F10, F6, F4

When are names in sources replaced

by data? When a functional unit

produces data

When can a name be re-used? When

an instruction completes

Renaming table Reorder buffer

Ins# use exec op p1 src1 p2 src2

t1

t2

t3

t4

t5

.

.

data / ti

 p data

F1
F2
F3
F4
F5
F6
F7
F8

t1

 1 1 0 LD

t2

 2 1 0 LD

 5 1 0 DIV 1 v1 0 t4

 4 1 0 SUB 1 v1 1 v1

t4

 3 1 0 MUL 0 t2 1 v1

t3

t5

v1

 1 1 1 LD 0

 4 1 1 SUB 1 v1 1 v1 4 0

v4

 5 1 1 DIV 1 v1 1 v4

 2 1 1 LD 2 0

 3 1 1 MUL 1 v2 1 v1

ECE 552 / CPS 550 16

Renaming Registers and the ROB

1. Insert instruction into ROB (after decoding it)
i. ROB entry is used, use 1

ii. Instruction is not yet executing, exec 1

iii. Specify operation in ROB entry

2. Update renaming table
i. Identify instruction’s destination register (e.g., F1)

ii. Look up register (e.g., F1) in renaming table

iii. Insert pointer to instruction’s ROB entry

3. When instruction executes, exec 1

4. When instruction writes-back, replace pointer to

ROB with produced value

ECE 552 / CPS 550 17

Register Renaming

- Decode stage allocates instruction template (i.e., tag t) and stores

tag in register file.

- When instruction completes, tag is de-allocated.

Load
 Unit

FU FU
Store
 Unit

< t, result >

Ins# use exec op p1 src1 p2 src2 t1
t2
.
.
tn

Renaming Table

& Register File

Reorder Buffer

ECE 552 / CPS 550 18

Allocating/Deallocating Templates

- Reorder buffer is managed circularly.

- Field “exec” is set when instruction begins execution.

- Field “use” is cleared when instruction completes

- Ptr2 increments when “use” bit is cleared.

Reorder buffer

t1
t2
.
.
.

ptr2
next to

deallocate

 prt1
next

available

Ins# use exec op p1 src1 p2 src2

ECE 552 / CPS 550 19

Reservation Stations

Mult

 p data p data 1
2

 p data 1
2
3
4
5
6

data load
buffers

(from

memory)

1
2
3
4

Adder

 p data p data 1
2
3

Floating-point

Register File &
Renaming Table

store buffers

(to memory)

...

instructions

Common bus ensures that data is made available

immediately to all the instructions waiting for it

IBM 360/91
distributes instruction

templates (ROB) by
functional units.

Also known as
reservation stations.

< t, result >

 p data

ECE 552 / CPS 550 20

Effectiveness

History
 - Renaming/out-of-order execution first introduction in 360/91 in 1969

 - However, implementation did not re-appear until mid-90s

 - Why?

Limitations
 - Effective on a very small class of problems

 - Memory latency was a much bigger problem in the 1960s

 - Problem-1: Exceptions were not precise

 - Problem-2: Control transfers

ECE 552 / CPS 550 21

Precise Interrupts

Definition
 - It must appear as if an interrupt is taken between two instructions

 - Consider instructions k, k+1

 - Effect of all instructions up to and including k is totally complete

 - No effect of any instruction after k has taken place

Interrupt Handler
 - Aborts program or restarts at instruction k+1

ECE 552 / CPS 550 22

Out-of-Order & Interrupts

Out-of-order Completion
 - Precise interrupts are difficult to implement at high performance

 - Want to start execution of later instructions before exception checks are

finished on earlier instructions

I1 DIVD f6, f6, f4
I2 LD f2, 45(r3)
I3 MULTD f0, f2, f4
I4 DIVD f8, f6, f2
I5 SUBD f10, f0, f6
I6 ADDD f6, f8, f2

out-of-order comp 1 2 2 3 1 4 3 5 5 4 6 6

 restore f2 restore f10

 interrupts

ECE 552 / CPS 550 23

Exception Handling (in-order)

-- Hold exception flags in pipeline until commit point

-- Exceptions earlier in program order override those later in program order

-- Inject external interrupts, which over-ride others, at commit point

-- If exception at commit: (1) update Cause and EPC registers, (2) kill all stages,

(3) inject handler PC into fetch stage

Asynchronous
Interrupts

Exc
D

PC
D

PC
Inst.
Mem D Decode E M

Data
Mem W +

Exc
E

PC
E

Exc
M

PC
M

Cause

EPC

Kill D
Stage

Kill F
Stage

Kill E
Stage

Illegal
Opcode Overflow

Data Addr
Except

PC Address
Exceptions

Kill
Writeback Select

Handler
PC

Commit Point

ECE 552 / CPS 550 24

Phases of Instruction Execution

Fetch: Instruction bits retrieved from

cache.
I-cache

Fetch

Buffer

Issue

Buffer

Func.

Units

Arch.

State

Execute: Instructions and operands sent to

execution units. When execution completes,

all results and exception flags are available.

Decode: Instructions placed in appropriate

issue (aka “dispatch”) buffer

Result

Buffer Commit: Instruction irrevocably updates

architectural state (aka “graduation” or

“completion”).

PC

ECE 552 / CPS 550 25

Exception Handling (out-of-order)

In-Order Commit for Precise Exceptions
 - Instructions fetched, decoded into reorder buffer (ROB) in-order

 - Instructions executed, completed out-of-order

 - Instructions committed in-order

 - Instruction commit writes to architectural state (e.g., register file, memory)

Need temporary storage for results before commit

Fetch Decode

Execute

Commit Reorder Buffer

In-order In-order Out-of-order

Kill

Kill Kill

Exception? Inject handler PC

ECE 552 / CPS 550 26

Supporting Precise Exceptions

- Add <pd, dest, data, cause> fields to instruction template

- pd (1 if result ready), dest (target register), data (result computed)

- cause (reason for interrupt/exception)

- Commit instructions to register file and memory in-order

- On exception, clear re-order buffer (reset ptr-1 = ptr-2)

- Store instructions must commit before modifying memory

ptr2

next to

commit

ptr1

next

available

Inst# use exec op p1 src1 p2 src2 pd dest data cause

ECE 552 / CPS 550 28

Renaming and Rollbacks

Register File

(now holds only

committed state)

Reorder

Buffer

Load

 Unit
FU FU FU

Store

 Unit

< t, result >

t1

t2

.

.

tn

Ins# use exec op p1 src1 p2 src2 pd dest data

Commit

Rename

Table

Renaming table is a cache, speeds up register name look-up. Table is cleared after

each exception. When else are valid bits cleared? Control transfers.

r1 t v

r2

tag

valid bit

ECE 552 / CPS 550 29

Control Transfer Penalty

I-cache

Fetch

Buffer

Issue

Buffer

Func.

Units

Arch.

State

Execute

Decode

Result

Buffer Commit

PC

Fetch

Branch

executed

Next fetch

started
Modern processors may have >10

pipeline stages between next

PC calculation and branch

resolution.

How much work is lost if pipeline

does not follow correct

instruction flow?

[Loop Length] x [Pipeline Width]

ECE 552 / CPS 550 30

Branches and Jumps

Each instruction fetch depends on 1-2 pieces of

information from preceding instruction:

 1. Is preceding instruction a branch?

 2. If so, what is the target address?

Instruction Taken known? Target known?

J after decode after decode

JR after decode after fetch

BEQZ/BNEZ after fetch* after decode

*assuming zero? detect when register read

ECE 552 / CPS 550 31

Reducing Control Flow Penalty

Software Solutions
 1. Eliminate branches -- loop unrolling increases run length before branch

 2. Reduce resolution time – instruction scheduling moves instruction that

produces condition earlier

Hardware Solutions
 1. Find other work – delay slots and software cooperation

 2. Speculate – predict branch result and execute instructions beyond

branch

ECE 552 / CPS 550 32

Acknowledgements

These slides contain material developed and copyright by

- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

