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ECE552 Administrivia 

19 October – Homework #3 Due 

19 October – Project Proposals Due 
 One page proposal 

1. What question are you asking? 

2. How are you going to answer that question? 

3. Talk to me if you are looking for project ideas. 

 

23 October – Class Discussion 
 Roughly one reading per class. Do not wait until the day before! 

1. Jouppi. “Improving direct-mapped cache performance by the addition 

of a small fully-associative cache and prefetch buffers.” 

2. Kim et al. “An adaptive, non-uniform cache structure for wire-delay 

dominated on-chip caches.” 

3. Fromm et al. “The energy efficiency of IRAM architectures” 

4. Lee et al. “Phase change memory architecture and the quest for 

scalability” 
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History of Memory 

Core Memory 
- Williams Tube in Manchester Mark I (1947) unreliable. 

- Forrester invented core memory for MIT Whirlwind (1940-50s) in response 

- First large-scale, reliable main memory 

 

Magnetic Technology 
- Core memory stores bits using magnetic polarity on ferrite cores 

- Ferrite cores threaded onto 2D grid of wires 

- Current pulses on X- and Y-axis could read and write cells 

 

Performance 
- Robust, non-volatile storage 

- 1 microsecond core access time 

DEC PDP-8/E Board,   
4K words x 12 bits, (1968) 
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Semiconductor Memory 

Semiconductor Memory 
- Static RAM (SRAM): cross-coupled inverters latch value 

- Dynamic RAM (DRAM): charge stored on a capacitor 

 

Advent of Semiconductor Memory 
- Technology became competitive in early 1970s 

- Intel founded to exploit market for semiconductor memory 

 

Dynamic Random Access Memory (DRAM) 
- Charge on a capacitor maps to logical value 

- Intel 1103 was first commercial DRAM 

- Semiconductor memory quickly replaced core memory in 1970’s 
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DRAM – Dennard 1968 
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DRAM Chip Architecture 

-- Chip organized into 4-8 logical banks, which can be accessed in parallel 

-- Each bank implements 2-D array of bits 
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Packaging & Memory Channel 

• DIMM (Dual Inline Memory Module): Multiple chips 

sharing the same clock, control, and address signals. 

 

• Data pins collectively supply wide data bus.  For 

example, four x16 chips supply 64b data bus. 

Address lines multiplexed 

row/column address 

Clock and control signals 

Data bus 

(x4, x8, x16, x32) 

DRAM 

chip 
~12 
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Packaging & 3D Stacking 

[ Apple A4 package cross-section, iFixit 2010 ] 

Two stacked 

DRAM die 

Processor plus 

logic die 

[ Apple A4 package on circuit board ] 
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DRAM Operation 

1. Activate (ACT) 
 - Decode row address (RAS). Enable the addressed row (e.g., 4Kb) 

 - Bitline and capacitor share charge 

 - Sense amplifiers detect small change in voltage.  

 - Latch row contents (a.k.a. row buffer) 

  

2. Read or Write 
 - Decode column address (CAS). Select subset of row (e.g., 16b) 

 - If read, send latched bits to chip pins 

 - If write, modify latched bits and charge capacitor 

 - Can perform multiple CAS on same row without RAS (i.e., buffer hit) 

 

3. Precharge 
 - Charge bit lines to buffer to prepare for next row access 
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DRAM Chip Architecture 
-- Activate: Latch row in sense amplifiers 

-- Read/Write: Access specific columns in the row. 

-- Precharge: Prepare for next row 
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DRAM Controller 

1. Interfaces to Processor Datapath 
 - Processor issues a load/store instruction 

 - Memory address maps to particular chips, rows, columns 

  

2. Implements Control Protocol 
 - (1) Activate a row, (2) Read/write the row, (3) Precharge 

 - Enforces timing parameters between commands 

 - Latency of each step is approximately 15-20ns 

 - Various DRAM standards (DDR, RDRAM) have different signals 
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Double Data Rate (DDR*) DRAM 

[ Micron, 256Mb DDR2 SDRAM datasheet ] 

Row Column Precharge Row’ 

Data 
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400Mb/s 
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Processor-Memory Bottleneck 

Memory is usually a performance bottleneck 
 - Processor limited by memory bandwidth and latency 

  

Latency (time for single transfer) 
 - Memory access time >> Processor cycle time 

 - Example: 60ns latency translates into 60 cycles for 1GHz processor 

 

Bandwidth (number of transfers per unit time) 
 - Every instruction is fetched from memory 

 - Suppose M is fraction of loads/stores in a program 

 - On average,1+M memory references per instruction 

 - For CPI = 1, system must supply 1+M memory transfers per cycle.  
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Processor-Memory Latency 

Consider processor. Four-way superscalar. 3GHz clock. In 100ns required to 

access DRAM once, processor could execute 1,200 instructions 

Time 
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Distance Increases Latency 

Small 
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Memory Cell Size  

Off-chip DRAM has higher density than on-chip SRAM. 

[ Foss, “Implementing Application-Specific Memory”, ISSCC 1996 ] 

DRAM on 
memory chip 

On-Chip 
SRAM in 
logic chip 
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Memory Hierarchy 

Capacity Register (RF) << SRAM << DRAM 

Latency  Register (RF) << SRAM << DRAM 

Bandwidth  on-chip >> off-chip 

 

Consider a data access.  

If data is located in fast memory, latency is low (e.g., SRAM). 

If data is not located in fast memory, latency is high (e.g., DRAM). 

 

Small, 
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Memory 
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CPU 
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Memory Hierarchy Management 

Small & Fast (Registers) 
 - Instruction specifies address (e.g., R5) 

  - Implemented directly as register file 

 - Hardware might dynamically manage register usage  

 - Examples: stack management, register renaming 

  

Large & Slow (SRAM and DRAM) 
 - Address usually computed from values in registers (e.g., ld R1, x(R2)) 

 - Implemented directly as hardware-managed cache hierarchy 

 - Hardware decides what data is kept in faster memory 

 - Software may provide hints 
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Real Memory Reference Patterns 

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM 

Systems Journal 10(3): 168-192 (1971) 
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Predictable Patterns 

Temporal Locality 
If a location is referenced once,  

the same location is likely to referenced again in the near future.   

 

Spatial Locality 
If a location is referenced once,  

nearby locations are likely to be referenced in the near future.  
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Real Memory Reference Patterns 

Donald J. Hatfield, Jeanette Gerald: Program Restructuring for Virtual Memory. IBM 

Systems Journal 10(3): 168-192 (1971) 
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Caches 

Caches exploit predictable patterns 

 

Temporal Locality 
Caches remember the contents of recently accessed locations 

 

Spatial Locality 
Caches fetch blocks of data nearby recently accessed locations 
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Caches 

Cache Processor  Main 
Memory  
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Byte 
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Cache Controller 

Controller examines address from datapath and 

searches cache for matching tags. 

 

Cache Hit – address found in cache 
 - Return copy of data from cache 

 

Cache Miss – address not found in cache 
 - Read block of data from main memory. 

 - Wait for main memory 

 - Return data to processor and update cache 

 - What is the update policy? 
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Data Placement Policy 

Fully Associative 
 - Update – place data in any cache line (a.k.a. block) 

 - Access – search entire cache for matching tag 

 

Set Associative 
- Update – place data within set of lines determined by address 

- Access – identify set from address, search set for matching tag 

 

Direct Mapped 
- Update – place data in specific line determined by address 

- Access – identify line from address, check for matching tag 
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Placement Policy 

0 1 2 3 4 5 6 7 0     1      2     3 Set Number 

Cache 
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Direct-Mapped Cache 
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Fully Associative Cache 
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Update/Replacement Policy 

In an associative cache, which cache line in a set 

should be evicted when the set becomes full? 

 

Random 

Least Recently Used (LRU) 
 - LRU cache state must be updated on every access 

 - True implementation only feasible for small sets (e.g., 2-way) 

 - Approximation algorithms exist for larger sets 

First-In, First-Out (FIFO)  
 - Used in highly associative caches 

Not Most Recently Used (NMRU) 
 - Implements FIFO with an exception for most recently used blocks 
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Cache Example 

Given memory accesses (read address), complete table for cache. 

Cache is two-way set associative with four lines (a.k.a. sets) 

Each entry contains the {tag, index} for that line.  
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Line Size and Spatial Locality 

Word3 Word0 Word1 Word2 

Larger line size has distinct hardware advantages 

 -- less tag overhead 

 -- exploit fast burst transfers from DRAM  

 -- exploit fast burst transfers over wide bus 

 

What are the disadvantages of increasing block size? 
 -- fewer lines, more line conflicts 

 -- can waste bandwidth depending on application’s spatial locality 

 

Line address               offsetb 

2b = line size a.k.a block size (in bytes) 

Split CPU  
address 

b bits 32-b bits 

Tag 

Line is unit of transfer between the cache and memory 

4 word line, b=2 
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Midterm 
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