
ECE 552 / CPS 550

 Advanced Computer Architecture I

Lecture 14

Virtual Memory

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall12.html

ECE 552 / CPS 550 2

ECE552 Administrivia

19 October – Homework #3 Due

19 October – Project Proposals Due
 One page proposal

1. What question are you asking?

2. How are you going to answer that question?

3. Talk to me if you are looking for project ideas.

23 October – Class Discussion
 Roughly one reading per class. Do not wait until the day before!

1. Jouppi. “Improving direct-mapped cache performance by the addition

of a small fully-associative cache and prefetch buffers.”

2. Kim et al. “An adaptive, non-uniform cache structure for wire-delay

dominated on-chip caches.”

3. Fromm et al. “The energy efficiency of IRAM architectures”

4. Lee et al. “Phase change memory architecture and the quest for

scalability”

ECE 552 / CPS 550 3

Last Time

Caches
• Quantify cache/memory hierarchy with AMAT

• Three types of cache misses: (1) compulsory, (2) capacity, (3) conflict

• Cache structure and data placement policies determine miss rates

• Write buffers improve performance

Prefetching
• Identify and exploit spatial locality

• Prefetchers can be implemented in hardware, software, both

Caches and Code
• Restructuring SW code can improve HW cache performance

• Data re-use can improve with code structure (e.g., matrix multiply)

ECE 552 / CPS 550 4

Physical Addresses

Physical addresses determined when program is

loaded into memory.

But programmers do not think about memory

addresses when writing sub-routines…
- Location Independence – How do we write programs without knowing

physical addresses

- For code, addresses determined by Loader/Linker

- (1) loads sub-routines into memory, determines physical addresses,

- (2) links multiple sub-routines,

- (3) resolves physical addresses so jumps to sub-routines go to correct

memory locations

ECE 552 / CPS 550 5

Machine with Physical Addresses

With unrestricted access to a machine, program uses

physical addresses.

PC
Inst.

Cache D Decode E M
Data

Cache W +

Main Memory (DRAM)

Memory Controller

Physical

Address
Physical

Address

Physical

Address

Physical

Address

Physical Address

ECE 552 / CPS 550 6

Translated Addresses

Motivation
- In early machines, I/O is slow and requires processor support

- Slow I/O: Mitigate by over-lapping I/O from different programs

- Processor Support: Mitigate with DMAs

Direct Memory Accesses (DMAs)
- Processor invokes DMA controller to perform I/O

- Processor does other operations during transfer

- Processor interrupted by DMA controller when transfer complete

Multi-programming Support
- Overlapped I/O and DMAs require multi-programming support

- Supervisor schedules programs, manage context switches

- Address translation provides location-independent programs.

- Address translation provides isolated memory spaces.

prog1

prog2

P
h

y
si

c
a

l
M

e
m

o
ry

OS

ECE 552 / CPS 550 7

Virtual and Physical Memory

Programs are allocated physical memory at physical addresses.

Program operates in virtual memory with virtual addresses.

We require address translation to map virtual addresses to physical addresses.

This lecture provides 4 increasingly sophisticated translation techniques

Virtual Memory

P
h
y
s
ic

a
l
M

e
m

o
ry

ECE 552 / CPS 550 8

1 - Base & Bound

Base register – Identifies start of program’s allocation in physical memory.

Bound register – Provides protection and isolation between programs

Base, Bound registers visible only when processor is running in “supervisor” mode

Virtual Memory
Program Address Space

Bound Register
Bounds

Violation?

P
h

y
si

c
a

l M
e

m
o

ry

segment

Base Register

+

Physical

Address
Virtual Address

Base Physical Address

Segment Length

ECE 552 / CPS 550 9

Machine with Virtual Addresses

Every memory access translates virtual addresses to physical addresses.

Efficient adder implementations are possible for (base+offset).

PC
Inst.

Cache D Decode E M

Data
Cache W +

Main Memory (DRAM)

Memory Controller

Physical
Address

Physical
Address

Physical
Address

Physical Address

Data Bound
Register

Data Base
Register

+

Virtual
Address

Bounds Violation?

Physical
Address

Prog. Bound
Register

Program Base
Register

+

Virtual
Address

Bounds Violation?

ECE 552 / CPS 550 10

Base & Bounds Implementation

Hardware Cost
- Two registers, adder, comparator

- Fast logic

Context Switch
- Switch between programs

- Save/restore base, bound registers

ECE 552 / CPS 550 11

2 - Segmentation

Motivation
- Base&Bounds assumes one contiguous memory segment per program.

- Segmentation separates address space into several segments.

- Each segment is contiguous but multiple segments may be required.

Idea
- Generalize Base&Bounds

- Implement a table of base-bound pairs

 (Base) (Bound)

Virtual Segment # Physical Segment Base Segment Size

Code (00) 0x4000 0x700

Data (01) 0x0000 0x500

- (10) 0 0

Stack (11) 0x2000 0x1000

ECE 552 / CPS 550 12

Data & Program Segments

What is the advantage of this separation?

Physical
Address

Physical
Address

Virtual Memory
Program Address

Space

M
a

in
 M

e
m

o
ry

data
segment

Data Bound
Register

Mem. Address
Register

Data Base
Register

+

Bounds
Violation?

Program Bound
Register

Program Counter

Program Base
Register

+

Bounds
Violation?

program
segment

Logical
Address

Logical
Address

ECE 552 / CPS 550 13

Segmentation Implementation

Virtual Address
- Partition into segment and offset

- Segment – Specifies segment number,

which indexes table

- Offset – Specifies offset within a segment

Segment Table
- Segment – Provides segment base

- Size – Provides segment bound

Translation
- Compute physical address from segment

base, offset, and bound

ECE 552 / CPS 550 14

Fragmentation

- As programs enter and leave the system, physical memory is fragmented.

- Fragmentation occurs because segments are variable size

OS

Space

16K

32K

user 1

user 2

user 3

free

24K

24K

24K

ECE 552 / CPS 550 15

Fragmentation

- As programs enter and leave the system, physical memory is fragmented.

- Fragmentation occurs because segments are variable size

OS

Space

16K

32K

user 1

user 2

user 3

OS

Space

16K

16K

24K

user 1

user 2

user 3

user 5

user 4

8K

Users 4 & 5

arrive

free

24K 24K

24K

24K

32K

ECE 552 / CPS 550 16

Fragmentation

- As programs enter and leave the system, physical memory is fragmented.

- Fragmentation occurs because segments are variable size

OS

Space

16K

32K

user 1

user 2

user 3

OS

Space

16K

16K

24K

user 1

user 2

user 3

user 5

user 4

8K

Users 4 & 5

arrive

Users 2 & 5

leave
OS

Space

16K

24K

16K

24K

user 1

user 4

8K

user 3

free

24K 24K

24K

24K

32K 32K

ECE 552 / CPS 550 17

Fragmentation

- As programs enter and leave the system, physical memory is fragmented.

- Fragmentation occurs because segments are variable size

OS

Space

16K

32K

user 1

user 2

user 3

OS

Space

16K

16K

24K

user 1

user 2

user 3

user 5

user 4

8K

Users 4 & 5

arrive

Users 2 & 5

leave
OS

Space

16K

24K

16K

24K

user 1

user 4

8K

user 3

free

24K 24K

24K

24K

32K 32K

ECE 552 / CPS 550 18

3 - Paging

Motivation
- Branch&Bounds, Segmentation require fancy memory management

- Example: What mechanism coalesces free fragments?

Idea
- Constrain segmentation with fixed-size segments (e.g., pages)

- Paging simplifies memory management

- Example: free page management is a simple bitmap

- 00111111100000011100

- Each bit represents a page of physical memory

- 1 means allocated, 0 means free

ECE 552 / CPS 550 19

Paging Implementation

Virtual Address
- Partition into page and offset

- Page – Specifies virtual page number, which

indexes table

- Offset – Specifies offset within a page

Page Table
- Page – Provides a physical page number

- Size – Not required, pages equal size (e.g., 4KB)

Translation
- Compute physical address from physical page

number, offset

ECE 552 / CPS 550 20

4 – Segmentation & Paging

Motivation
- Page tables can be very large.

- Assume 32-bit virtual addresses, 4KB page size

- 4KB = 4096 bytes = 212 bytes per page => 12-bit offset

- Remaining address bits for page number => 20-bit page number

- Each page requires a page table entry

- With 20-bit page number, 220 pages addressed

- Each program in multi-programmed machine requires its own page table

- Total size of page tables = [# of programs] x 220 entries

Idea
- Page tables reside in memory

- Segmentation with paging and indirection to reduce page table size

- (Alternatively use indirect page tables, which hashes VPN to PPN)

ECE 552 / CPS 550 21

Segmented Page Tables

Virtual Address

- Partition into segment, page, offset

- Segment –Specifies segment#, which

indexes Table 1

- Page – Specifies virtual page # number,
which indexes Table 2

- Offset – Specifies offset in page

Table 1

- Segment – Points to a page table

- Size – Specifies number of pages in segment

Table 2

- Page – Provides a physical page#

Translation

- Compute physical address from physical

page number, offset

What about paged page tables?

ECE 552 / CPS 550 22

Address Translation & Protection

- Every access to memory requires

 (1) address translation

 (2) protection check

- A good virtual memory system must be fast (e.g., 1 cycle), space efficient

Physical Address

Virtual Address

Address
Translation

Virtual Page No. (VPN) offset

Physical Page No. (PPN) offset

Protection
Check

Exception?

Kernel/User Mode

Read/Write

ECE 552 / CPS 550 23

Translation Lookaside Buffer (TLB)

Address Translation is Expensive
- In a two-level page table, reference requires several memory accesses

Solution
- Cache translations. We use a data structure called a TLB.

- TLB Hit – single cycle translation

- TLB Miss – walk page table to translate, update TLB

VPN offset

 tag PPN

physical address

PPN offset

virtual address

hit?

(VPN = virtual page number)

(PPN = physical page number)

ECE 552 / CPS 550 24

TLB Design

32-128 entries, fully associative
- Each entry maps a large page.

- Little spatial locality across 4KB pages so associative caches preferred.

- Larger TLBs (e.g., 256-512 entries) may be 4-8 way set-associative

- Even larger systems may have multi-level TLBs

Random or FIFO replacement policies

Definition – TLB Reach
- Size of largest virtual address space that can be simultaneously mapped

- 64 entries, 4KB pages, 1 page per TLB entry

- TLB Reach = [64 entries] x [4KB] = 256KB (if pages contiguous in memory)

ECE 552 / CPS 550 26

Machine with Virtual Memory

PC
Inst.

TLB

Inst.

Cache D Decode E M
Data

Cache W +

Page Fault?
Protection violation?

Page Fault?

Protection violation?

Data

TLB

Main Memory (DRAM)

Memory Controller
Physical
Address

Physical
Address

Physical Address

Physical
Address

Page-Table Base
Register

Virtual
Address Physical

Address

Virtual
Address

Hardware Page

Table Walker

Miss? Miss?

ECE 552 / CPS 550 27

Address Translation Summary
virtual address

TLB

Lookup

Page Table

Walk

update TLB
page fault

(OS loads page)

Protection

Check

physical address

(use to access L1

cache)

miss hit

denied permitted

protection

fault

hardware

hardware or software

software

exception

handler

page

in mem

page not

in mem

seg fault

ECE 552 / CPS 550 28

Summary

Virtual Memory
• Enables multi-programming

• Programs operate in virtual memory space

• Programs are protected from each other

Virtual to Physical Address Translation
• Base&Bound

• Segmentation

• Paging

• Multi-level Translation (segmented paging, paged paging)

Translation Lookaside Buffer
• Accelerates virtual memory, address translation

ECE 552 / CPS 550 29

Acknowledgements

These slides contain material developed and copyright by

- Arvind (MIT)

- Krste Asanovic (MIT/UCB)

- Joel Emer (Intel/MIT)

- James Hoe (CMU)

- Arvind Krishnamurthy (U. Washington)

- John Kubiatowicz (UCB)

- Alvin Lebeck (Duke)

- David Patterson (UCB)

- Daniel Sorin (Duke)

