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ECE552 Administrivia 

13 November – Homework #4 Due 

Project Status 
- Plan on having preliminary data or infrastructure 

 

8 November – Class Discussion 
 Roughly one reading per class. Do not wait until the day before! 

1. Mudge, “Power: A first-class architectural design constraint” 

2. Lamport, “How to make a multiprocessor computer that correctly 

executes multiprocess programs” 

3. Lenoski et al. “The Stanford DASH Multiprocessor” 

4. Tullsen et al. “Simultaneous multithreading: Maximizing on-chip 

parallelism” 
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Vectors and Data-level Parallelism 
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Data-level Parallelism 

Vectors effective for data-level parallelism (DLP) 
-- Vectors are most efficient way to exploit DLP 

-- Superscalar (e.g., DLP as instruction-level parallelism) is less efficient  

-- Multiprocessor (e.g., DLP as thread-level parallelism) is less efficient 

 

Scientific Computing 
-- Weather forecasting, car-crash simulation, biological modeling 

-- Vector processors were invented for supercomputing, but fell out of favor 

after the advent of multiprocessors 

 

Multimedia Computing 
-- Identical ops on streams or arrays of sound samples, pixels, video frames 

-- Vector processors were revived for multimedia computing 
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Vector Processor History 

Vectors widely used for supercomputing (1970s-1990s) 
-- Cray, CDC, Convex, TI, IBM 

 

Transition away from vectors (1980s-1990s) 
-- Fitting a vector processor into a single chip was difficult 

-- Building supercomputers from commodity components was easier 

 

Vectors are re-emerging as SIMD 
-- SIMD – single instruction multiple data 

-- SIMD provides short vectors in all ISAs 

-- Provides multimedia acceleration 
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Parts of a Vector Processor 

Scalar processor 
-- Scalar register file 

-- Example: 32 registers, each with 1 32-bit element 

-- Scalar functional units (arithmetic, load/store, etc…) 

 

Vector register file 
-- Each register is an array of elements 

-- Example: 32 registers, each with 32 64-bit elements 

-- MVL – maximum vector length = max # of elements per register 

 

Vector functional units 
-- Integer, floating-point, load/store, etc… 

-- Some datapaths (e.g., ALUs) shared by vector, scalar units 
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Parts of a Vector Processor 
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Vector Supercomputers 

Cray-1, 1976 

 

Scalar Unit 

 - Load/Store architecture 

 

Vector Extension 

 - Vector registers 

 - Vector instructions 

 

Implementation 

 - Hardwired control (no microcode) 

 - Pipelined functional units 

 - Interleaved memory system 

 - No data caches 

 - No virtual memory 
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Vector Programming Model 

+ + + + + + 

[0] [1] [VLR-1] 

Vector Arithmetic 
Instructions 
ADDV v3, v1, v2 

v3 

v2 
v1 

Scalar Registers 

r0 

r15 
Vector Registers 

v0 

v15 

[0] [1] [2] [VLRMAX-1] 

VLR Vector Length Register 

v1 
Vector Load and 
Store Instructions 
LV v1, r1, r2 

Base, r1 Stride, r2 
Memory 

Vector Register 
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Vector ISA Benefits 

Compact – single instruction defines N operations 
-- also fewer branches 
 

Parallel – N operations are (data) parallel 
-- no dependencies between vector elements 

-- like VLIW, no complex hardware for dynamic scheduling 

-- scalable; additional functional units give additional performance 
 

Expressive – memory ops describe access patterns 
-- vector memory ops exhibit continuous or regular access patterns 

-- vector memory ops can prefetch and/or effectively use memory banks 

 

-- amortize high latency for 1st element over large sequential pattern  

(bursts of data transfer…1st element incurs a long latency….subsequent 

elements are pipelined to produce a new element per cycle) 
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Basic Vector Instructions 

Suppose 64-element vectors 

 

Instr  Operands Operation  Comment 

VADD.VV V1, V2, V3 V1 = V2 + V3  vector + vector 

VADD.SV  V1, R0, V2 V1 = R0 + V2  scalar + vector 

VMUL.VV  V1, V2, V3 V1 = V2 * V3  vector x vector 

VMUL.SV  V1, R0, V2 V1 = R0 * V2  scalar x vector 

 

VLD  V1, R1  V1 = M[R1,…R1+63] load, stride=1 

VLDS  V1, R1, R2 V1 = M[R1,…R1+63*R2] load, stride=R2 

VLDX  V1, R1, V2 V1 = M[R1+V2(i), i=0 to 63] indexed gather 

 

VST  V1, R1  M[R1…R1+63] = V1 store, stride=1 

VSTS  V1, R1, R2 M[R1,…R1+63*R2] = V1 store, stride=R2 

VSTX  V1, R1, V2 M[R1+V2(i), i=0 to 63] = V1 indexed scatter 
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Vector Code Example 

# C code  # Scalar Code  # Vector Code 

for (i=64 ; i>0 ; i--)  LI R4, 64   LI VLR, 64 

C[i] = A[i] + B[i];   loop:   VLD V1, R1 

   L.D F0, 0 (R1)  VLD V2, R2 

   L.D F2, 0 (R2)  ADD.VV V3, V1, V2 

   ADD.D F4, F2, F0  VST V3, R3 

   S.D F4, 0 (R3) 

   DADDIU R1, 8  

   DADDIU R2, 8 

   DADDIU R3, 8 

   DSUBIU R4, 1 

   BNEZ R4, loop 

 

-- Load immediate (LI) with length of vector (64) 

-- Vector length register (VLR) 
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Vector Length 

Vector register holds a max number of elements 
-- MVL: Maximum vector length (e.g., 64) 

-- But application vector lengths may not match MVL 
 

Vector length register 
-- VL: controls length of any vector operation (add, multiply, load, store) 

-- Example: vadd.vv with VL10 is equivalent to: 

 for(i=0; i<10; i++) {V1[i] = V2[i] + V3[i]} 

-- Before sequence of vector instructions, VL set to number <= to MVL 
 

 

How can we code applications where the vector 

length is not known until run-time? 
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Strip Mining 

Strip Mining 
-- Suppose application VL > MVL 

-- Generate loop that handles MVL elements per iteration 

-- Translate each loop iteration into a single vector instruction 
 

Example: AX+Y 
-- First loop for (N mod MVL) elements. Remaining loops for MVL elements 

 

VL = (N mod MVL);   # set VL to be a smaller vector 

for (i=0 ; i<VL ; i++)   # 1st-loop translates into a single set 

 Y[i] = A*X[i] + Y[i];  # of vector instructions 

low = (N mod MVL)  # low – strips off beginning elements 

VL = MVL   # set VL to be max vector length 

for (i=low ; i<N ; i++);   # 2nd-loop translates into N/MVL sets 

 Y[i] = A * X[i] + Y[i];  # of vector instructions 
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Vector Instruction Execution 

Use deep pipeline (fast clock) 

to execute operations for 

each vector element. 

 

Simplify pipeline control 

because elements in vector 
are independent  no 

hazards. 

V1 V2 V3 

V3[i]  V1[i] * V2[i] 

Six stage multiply pipeline 
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Opt 1 – Chaining  

Consider the following code with vector length of 32 
vmul.vv  V1, V2, V3 

vadd.vv V4, V1, V5 # very long RAW hazard 
 

Chaining 
-- V1 is not a single entity, but a vector of individual elements 

-- Pipeline forwarding can work for individual elements 
 

Flexible Chaining 
-- Chain any vector to any other active vector operation 

-- Requires more read/write ports in the vector register file 
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Opt 2 – Multiple Datapaths 
ADDV C,A,B 

C[1] 

C[2] 

C[0] 

A[3] B[3] 

A[4] B[4] 

A[5] B[5] 

Execution using 
one pipelined 

datapath 

C[4] 

C[8] 

C[0] 

A[12] B[12] 

A[16] B[16] 

A[20] B[20] 

C[5] 

C[9] 

C[1] 

A[13] B[13] 

A[17] B[17] 

A[21] B[21] 

C[6] 

C[10] 

C[2] 

A[14] B[14] 

A[18] B[18] 

A[22] B[22] 

C[7] 

C[11] 

C[3] 

A[15] B[15] 

A[19] B[19] 

A[23] B[23] 

Execution using 
four pipelined 

datapaths 

4 adders  4 elements / cycle 

N/4 cycles 

 

1 adder  1 element / cycle 

N cycles 
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Opt 2+: Multiple Lanes 

-- Vector elements interleaved across lanes 

-- Example: V[0, 4, 8, …] on Lane 1, V[1, 5, 9,…] on Lane 2, etc.  

 

-- Compute for multiple elements per cycle  

-- Example: Lane 1 computes on V[0] and V[4] in one cycle 

 

-- Modular, scalable design 

-- No inter-lane communication needed for most vector instructions 
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Opt 3 – Conditional Execution 

Suppose you want to vectorize this code: 
for (i=0 ; i<N ; i++) {  

 if(A[i] != B[i]) {A[i] -= B[i]; } } 
 

Solution: vector conditional execution 
-- Add vector flag registers, single-bit mask per vector element 

-- Use vector-compare to set the vector flag register 

-- Use vector flag register to control vector-sub 

-- Vector op executed only if corresponding flag element is set 
 

vld   V1, Ra 

vld    V2, Rb 

vcmp.neq.vv  M0, V1, V2 # vector compare for mask 

vsub.vv  V3, V2, V1, M0 # conditional vadd 

vst   V3, Ra 
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Vector Memory 

Multiple, interleaved memory banks (e.g., 16) 

Provides memory-level parallelism when filling vector registers 

 

0 1 2 3 4 5 6 7 8 9 A B C D E F 

+ 

Base Stride 
Vector Registers 

Memory Banks 

Address 
Generator 
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Supercomputing to Multimedia 

Support narrow data types 
-- Allow each vector register to store 16-, 32-, or 64-bit elements 

-- Use a control register to indicate width of register elements 

 

Support fixed-point arithmetic 
-- Minor modification to functional units 

 

Support element permutations for vector reductions 
-- for(i=0 ; i<N ; i++) {S += A[i]} 

-- Rewrite as: 

 for(i=0 ; i<N ; i+=VL) {S[0:VL-1]+=A[i:i+VL-1];}  # S[…], A[…] are 

 for(i=0 ; i<VL ; i++) {S+=[S[i];}   # vectors of VL elements 

-- First loop trivially vectorizable 

-- Second loop vectorizable by splitting vector register S into two vector 

registers.  Take a binary-tree approach to reduction 
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SIMD in Superscalar Processors 

SIMD extends conventional ISA 
-- SIMD – single instruction, multiple data 

-- MMX, SSE, SSE-2, SSE-3, 3D-Now, Altivec, VIS 

 

Objective: Accelerate multimedia processing 
-- Define vectors of 16-, 32-bit elements in regular registers 

-- A logical vector register may span multiple physical registers 

-- Apply SIMD arithmetic on these vectors 

 

Advantages 
-- No vector register file, which would require additional area 

-- Simple extensions (new opcodes, modified datapath) 
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SIMD Challenges 

SIMD vectors are short with fixed size 
-- Cannot capture data parallelism wider than 64 bits 

-- Recent shift from 64-bit to 128-bit vectors (SSE, Altivec) 

 

SIMD does not support vector memory accesses 
-- Strided or indexed access require equivalent multi-instruction sequences  

-- Without vector memory accesses, much lower benefits in performance 

and code density 
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SIMD versus Vectors 

 

 

 

 

 

 

 

 

 

-- QCIF and CIF numbers are in clock cycles per frame 

-- All other numbers are in clock cycles per pixel 

-- MMX results assume no first-level cache misses 

-- Courtesy: Christos Kozyrakis, Stanford 

 

 

 

 

 



ECE 552 / CPS 550 26 

 

 

Intel Larrabee 

 

 

 

 

 

 

 

 

 

 

 

Vector Multiprocessor 

-- 2-way superscalar, 4-way multi-threaded, in-order cores with vectors 

-- Cores communicate on a wide ring bus 

-- L2 cache is partitioned among the cores 

 -- Provides high aggregate bandwidth 

 -- Allows data replication and sharing 
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Larrabee x86 Core 

-- separate scalar, vector units with 

separate registers 

-- scalar unit: in-order x86 core 

-- vector unit: 16 32-bit ops/clock 

 

-- short execution pipelines 

-- fast access to L1 cache 

-- direct connection to L2 cache subset 

 

-- instructions support prefetch into L1 

and L2 caches 
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Larrabee Vector Unit  

Vector Instruction Set 

-- 32 vector registers (512 bits each) 

-- vector load/store with scatter/gather 

-- 8 mask registers for conditional exec. 

-- mask registers select lanes for an instruction 

-- mask registers allow separate execution 
kernels in each lane 

 

Vector Instruction Support 

-- Fast read from L1 cache 

-- Numeric type conversion and replication in 

memory path 
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Vector Power Efficiency 

Power and Parallelism 
-- Power(1-lane) = [capacitance] x [voltage]^2 x [frequency] 

-- If we double number of lanes, we double peak performance 

-- Then, if we halve frequency, we return to original peak performance. 

-- But, halving frequency allows us to halve voltage 

-- Power (2-lane) = [2 x capacitance] x [voltage/2]^2 x [frequency/2] 

-- Power (2-lane) = Power(1-lane)/4 @ same peak performance       

 

Simpler Logic 
-- Replicate control logic for all lanes 

-- Avoid logic for multiple instruction issue or dynamic out-of-order execution 

 

Clock Gating 
-- Turn-off clock when hardware is unused 

-- Vector of given length uses specific resources for specific # of cycles 

-- Conditional execution (masks) further exposes unused resources 

 

 

 



ECE 552 / CPS 550 30 

 

 

Summary 

Vector Processors 
-- Express and exploit data-level parallelism (DLP) 

 

SIMD Extensions 
-- Extensions for short vectors in superscalar (ILP) processors 

-- Provide some advantages of vector processing at less cost 


