
ECE 552 / CPS 550

 Advanced Computer Architecture I

Lecture 17

Vectors

Benjamin Lee
Electrical and Computer Engineering

Duke University

www.duke.edu/~bcl15
www.duke.edu/~bcl15/class/class_ece252fall11.html

ECE 552 / CPS 550 2

ECE552 Administrivia

13 November – Homework #4 Due

Project Status
- Plan on having preliminary data or infrastructure

8 November – Class Discussion
 Roughly one reading per class. Do not wait until the day before!

1. Mudge, “Power: A first-class architectural design constraint”

2. Lamport, “How to make a multiprocessor computer that correctly

executes multiprocess programs”

3. Lenoski et al. “The Stanford DASH Multiprocessor”

4. Tullsen et al. “Simultaneous multithreading: Maximizing on-chip

parallelism”

ECE 552 / CPS 550 3

Last Time
T

im
e

(p
ro

ce
ss

or
 c

yc
le

)

Superscalar Fine-Grained Coarse-Grained Multiprocessing
Simultaneous

Multithreading

Thread 1

Thread 2

Thread 3

Thread 4

Thread 5

Idle slot

ECE 552 / CPS 550 4

Vectors and Data-level Parallelism

ECE 552 / CPS 550 5

Data-level Parallelism

Vectors effective for data-level parallelism (DLP)
-- Vectors are most efficient way to exploit DLP

-- Superscalar (e.g., DLP as instruction-level parallelism) is less efficient

-- Multiprocessor (e.g., DLP as thread-level parallelism) is less efficient

Scientific Computing
-- Weather forecasting, car-crash simulation, biological modeling

-- Vector processors were invented for supercomputing, but fell out of favor

after the advent of multiprocessors

Multimedia Computing
-- Identical ops on streams or arrays of sound samples, pixels, video frames

-- Vector processors were revived for multimedia computing

ECE 552 / CPS 550 6

Vector Processor History

Vectors widely used for supercomputing (1970s-1990s)
-- Cray, CDC, Convex, TI, IBM

Transition away from vectors (1980s-1990s)
-- Fitting a vector processor into a single chip was difficult

-- Building supercomputers from commodity components was easier

Vectors are re-emerging as SIMD
-- SIMD – single instruction multiple data

-- SIMD provides short vectors in all ISAs

-- Provides multimedia acceleration

ECE 552 / CPS 550 7

Parts of a Vector Processor

Scalar processor
-- Scalar register file

-- Example: 32 registers, each with 1 32-bit element

-- Scalar functional units (arithmetic, load/store, etc…)

Vector register file
-- Each register is an array of elements

-- Example: 32 registers, each with 32 64-bit elements

-- MVL – maximum vector length = max # of elements per register

Vector functional units
-- Integer, floating-point, load/store, etc…

-- Some datapaths (e.g., ALUs) shared by vector, scalar units

ECE 552 / CPS 550 8

Parts of a Vector Processor

ECE 552 / CPS 550 9

Vector Supercomputers

Cray-1, 1976

Scalar Unit

 - Load/Store architecture

Vector Extension

 - Vector registers

 - Vector instructions

Implementation

 - Hardwired control (no microcode)

 - Pipelined functional units

 - Interleaved memory system

 - No data caches

 - No virtual memory

ECE 552 / CPS 550 10

Vector Programming Model

+ + + + + +

[0] [1] [VLR-1]

Vector Arithmetic
Instructions
ADDV v3, v1, v2

v3

v2
v1

Scalar Registers

r0

r15
Vector Registers

v0

v15

[0] [1] [2] [VLRMAX-1]

VLR Vector Length Register

v1
Vector Load and
Store Instructions
LV v1, r1, r2

Base, r1 Stride, r2
Memory

Vector Register

ECE 552 / CPS 550 11

Vector ISA Benefits

Compact – single instruction defines N operations
-- also fewer branches

Parallel – N operations are (data) parallel
-- no dependencies between vector elements

-- like VLIW, no complex hardware for dynamic scheduling

-- scalable; additional functional units give additional performance

Expressive – memory ops describe access patterns
-- vector memory ops exhibit continuous or regular access patterns

-- vector memory ops can prefetch and/or effectively use memory banks

-- amortize high latency for 1st element over large sequential pattern

(bursts of data transfer…1st element incurs a long latency….subsequent

elements are pipelined to produce a new element per cycle)

ECE 552 / CPS 550 12

Basic Vector Instructions

Suppose 64-element vectors

Instr Operands Operation Comment

VADD.VV V1, V2, V3 V1 = V2 + V3 vector + vector

VADD.SV V1, R0, V2 V1 = R0 + V2 scalar + vector

VMUL.VV V1, V2, V3 V1 = V2 * V3 vector x vector

VMUL.SV V1, R0, V2 V1 = R0 * V2 scalar x vector

VLD V1, R1 V1 = M[R1,…R1+63] load, stride=1

VLDS V1, R1, R2 V1 = M[R1,…R1+63*R2] load, stride=R2

VLDX V1, R1, V2 V1 = M[R1+V2(i), i=0 to 63] indexed gather

VST V1, R1 M[R1…R1+63] = V1 store, stride=1

VSTS V1, R1, R2 M[R1,…R1+63*R2] = V1 store, stride=R2

VSTX V1, R1, V2 M[R1+V2(i), i=0 to 63] = V1 indexed scatter

ECE 552 / CPS 550 13

Vector Code Example

C code # Scalar Code # Vector Code

for (i=64 ; i>0 ; i--) LI R4, 64 LI VLR, 64

C[i] = A[i] + B[i]; loop: VLD V1, R1

 L.D F0, 0 (R1) VLD V2, R2

 L.D F2, 0 (R2) ADD.VV V3, V1, V2

 ADD.D F4, F2, F0 VST V3, R3

 S.D F4, 0 (R3)

 DADDIU R1, 8

 DADDIU R2, 8

 DADDIU R3, 8

 DSUBIU R4, 1

 BNEZ R4, loop

-- Load immediate (LI) with length of vector (64)

-- Vector length register (VLR)

ECE 552 / CPS 550 14

Vector Length

Vector register holds a max number of elements
-- MVL: Maximum vector length (e.g., 64)

-- But application vector lengths may not match MVL

Vector length register
-- VL: controls length of any vector operation (add, multiply, load, store)

-- Example: vadd.vv with VL10 is equivalent to:

 for(i=0; i<10; i++) {V1[i] = V2[i] + V3[i]}

-- Before sequence of vector instructions, VL set to number <= to MVL

How can we code applications where the vector

length is not known until run-time?

ECE 552 / CPS 550 15

Strip Mining

Strip Mining
-- Suppose application VL > MVL

-- Generate loop that handles MVL elements per iteration

-- Translate each loop iteration into a single vector instruction

Example: AX+Y
-- First loop for (N mod MVL) elements. Remaining loops for MVL elements

VL = (N mod MVL); # set VL to be a smaller vector

for (i=0 ; i<VL ; i++) # 1st-loop translates into a single set

 Y[i] = A*X[i] + Y[i]; # of vector instructions

low = (N mod MVL) # low – strips off beginning elements

VL = MVL # set VL to be max vector length

for (i=low ; i<N ; i++); # 2nd-loop translates into N/MVL sets

 Y[i] = A * X[i] + Y[i]; # of vector instructions

ECE 552 / CPS 550 16

Vector Instruction Execution

Use deep pipeline (fast clock)

to execute operations for

each vector element.

Simplify pipeline control

because elements in vector
are independent no

hazards.

V1 V2 V3

V3[i] V1[i] * V2[i]

Six stage multiply pipeline

ECE 552 / CPS 550 17

Opt 1 – Chaining

Consider the following code with vector length of 32
vmul.vv V1, V2, V3

vadd.vv V4, V1, V5 # very long RAW hazard

Chaining
-- V1 is not a single entity, but a vector of individual elements

-- Pipeline forwarding can work for individual elements

Flexible Chaining
-- Chain any vector to any other active vector operation

-- Requires more read/write ports in the vector register file

ECE 552 / CPS 550 18

Opt 2 – Multiple Datapaths
ADDV C,A,B

C[1]

C[2]

C[0]

A[3] B[3]

A[4] B[4]

A[5] B[5]

Execution using
one pipelined

datapath

C[4]

C[8]

C[0]

A[12] B[12]

A[16] B[16]

A[20] B[20]

C[5]

C[9]

C[1]

A[13] B[13]

A[17] B[17]

A[21] B[21]

C[6]

C[10]

C[2]

A[14] B[14]

A[18] B[18]

A[22] B[22]

C[7]

C[11]

C[3]

A[15] B[15]

A[19] B[19]

A[23] B[23]

Execution using
four pipelined

datapaths

4 adders 4 elements / cycle

N/4 cycles

1 adder 1 element / cycle

N cycles

ECE 552 / CPS 550 19

Opt 2+: Multiple Lanes

-- Vector elements interleaved across lanes

-- Example: V[0, 4, 8, …] on Lane 1, V[1, 5, 9,…] on Lane 2, etc.

-- Compute for multiple elements per cycle

-- Example: Lane 1 computes on V[0] and V[4] in one cycle

-- Modular, scalable design

-- No inter-lane communication needed for most vector instructions

ECE 552 / CPS 550 20

Opt 3 – Conditional Execution

Suppose you want to vectorize this code:
for (i=0 ; i<N ; i++) {

 if(A[i] != B[i]) {A[i] -= B[i]; } }

Solution: vector conditional execution
-- Add vector flag registers, single-bit mask per vector element

-- Use vector-compare to set the vector flag register

-- Use vector flag register to control vector-sub

-- Vector op executed only if corresponding flag element is set

vld V1, Ra

vld V2, Rb

vcmp.neq.vv M0, V1, V2 # vector compare for mask

vsub.vv V3, V2, V1, M0 # conditional vadd

vst V3, Ra

ECE 552 / CPS 550 21

Vector Memory

Multiple, interleaved memory banks (e.g., 16)

Provides memory-level parallelism when filling vector registers

0 1 2 3 4 5 6 7 8 9 A B C D E F

+

Base Stride
Vector Registers

Memory Banks

Address
Generator

ECE 552 / CPS 550 22

Supercomputing to Multimedia

Support narrow data types
-- Allow each vector register to store 16-, 32-, or 64-bit elements

-- Use a control register to indicate width of register elements

Support fixed-point arithmetic
-- Minor modification to functional units

Support element permutations for vector reductions
-- for(i=0 ; i<N ; i++) {S += A[i]}

-- Rewrite as:

 for(i=0 ; i<N ; i+=VL) {S[0:VL-1]+=A[i:i+VL-1];} # S[…], A[…] are

 for(i=0 ; i<VL ; i++) {S+=[S[i];} # vectors of VL elements

-- First loop trivially vectorizable

-- Second loop vectorizable by splitting vector register S into two vector

registers. Take a binary-tree approach to reduction

ECE 552 / CPS 550 23

SIMD in Superscalar Processors

SIMD extends conventional ISA
-- SIMD – single instruction, multiple data

-- MMX, SSE, SSE-2, SSE-3, 3D-Now, Altivec, VIS

Objective: Accelerate multimedia processing
-- Define vectors of 16-, 32-bit elements in regular registers

-- A logical vector register may span multiple physical registers

-- Apply SIMD arithmetic on these vectors

Advantages
-- No vector register file, which would require additional area

-- Simple extensions (new opcodes, modified datapath)

ECE 552 / CPS 550 24

SIMD Challenges

SIMD vectors are short with fixed size
-- Cannot capture data parallelism wider than 64 bits

-- Recent shift from 64-bit to 128-bit vectors (SSE, Altivec)

SIMD does not support vector memory accesses
-- Strided or indexed access require equivalent multi-instruction sequences

-- Without vector memory accesses, much lower benefits in performance

and code density

ECE 552 / CPS 550 25

SIMD versus Vectors

-- QCIF and CIF numbers are in clock cycles per frame

-- All other numbers are in clock cycles per pixel

-- MMX results assume no first-level cache misses

-- Courtesy: Christos Kozyrakis, Stanford

ECE 552 / CPS 550 26

Intel Larrabee

Vector Multiprocessor

-- 2-way superscalar, 4-way multi-threaded, in-order cores with vectors

-- Cores communicate on a wide ring bus

-- L2 cache is partitioned among the cores

 -- Provides high aggregate bandwidth

 -- Allows data replication and sharing

ECE 552 / CPS 550 27

Larrabee x86 Core

-- separate scalar, vector units with

separate registers

-- scalar unit: in-order x86 core

-- vector unit: 16 32-bit ops/clock

-- short execution pipelines

-- fast access to L1 cache

-- direct connection to L2 cache subset

-- instructions support prefetch into L1

and L2 caches

ECE 552 / CPS 550 28

Larrabee Vector Unit

Vector Instruction Set

-- 32 vector registers (512 bits each)

-- vector load/store with scatter/gather

-- 8 mask registers for conditional exec.

-- mask registers select lanes for an instruction

-- mask registers allow separate execution
kernels in each lane

Vector Instruction Support

-- Fast read from L1 cache

-- Numeric type conversion and replication in

memory path

ECE 552 / CPS 550 29

Vector Power Efficiency

Power and Parallelism
-- Power(1-lane) = [capacitance] x [voltage]^2 x [frequency]

-- If we double number of lanes, we double peak performance

-- Then, if we halve frequency, we return to original peak performance.

-- But, halving frequency allows us to halve voltage

-- Power (2-lane) = [2 x capacitance] x [voltage/2]^2 x [frequency/2]

-- Power (2-lane) = Power(1-lane)/4 @ same peak performance

Simpler Logic
-- Replicate control logic for all lanes

-- Avoid logic for multiple instruction issue or dynamic out-of-order execution

Clock Gating
-- Turn-off clock when hardware is unused

-- Vector of given length uses specific resources for specific # of cycles

-- Conditional execution (masks) further exposes unused resources

ECE 552 / CPS 550 30

Summary

Vector Processors
-- Express and exploit data-level parallelism (DLP)

SIMD Extensions
-- Extensions for short vectors in superscalar (ILP) processors

-- Provide some advantages of vector processing at less cost

