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Abstract
As our society becomes more information-driven, we have
begun to amass data at an astounding and accelerating rate.
At the same time, power concerns have made it difficult to
bring the necessary processing power to bear on querying,
processing, and understanding this data. We describe Gor-
don, a system architecture for data-centric applications that
combines low-power processors, flash memory, and data-
centric programming systems to improve performance for
data-centric applications while reducing power consump-
tion. The paper presents an exhaustive analysis of the design
space of Gordon systems, focusing on the trade-offs between
power, energy, and performance that Gordon must make. It
analyzes the impact of flash-storage and the Gordon architec-
ture on the performance and power efficiency of data-centric
applications. It also describes a novel flash translation layer
tailored to data-intensive workloads and large flash storage
arrays. Our data show that, using technologies available in
the near future, Gordon systems can out-perform disk-based
clusters by 1.5× and deliver up to 2.5× more performance
per watt.

Categories and Subject Descriptors C.5.5 [Computer Sys-
tems Organization]: Computer System Implementation—
Servers; C.3 [Computer Systems Organization]: Special-
Purpose and Application-Based Systems; C.4 [Computer
Systems Organization]: Performance of Systems

General Terms Performance

Keywords Cluster architecture, data centric, Flash memory,
solid-state storage

1. Introduction
We live in a world overflowing with data. From the hand-
held to the data center we are collecting and analyzing ever-
greater amounts of information. Companies like Google and
Microsoft routinely process many terabytes of data, and
users of desktop search engines routinely pose queries across
the 100s of gigabytes of data stored on their hard drives.
There is no reason to expect our appetite for collecting and
processing data to stop growing at its current breakneck
speed.
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To satiate our appetite for large-scale data processing
current technology must overcome three challenges. First,
the recent slowdown in uni-processor performance and the
difficulties in programming their CMP replacements makes
it increasingly difficult to bring large computing power to
bear on a single problem. Second, while hard drive capacity
continues to grow, the latency and bandwidth that hard drives
can deliver do not. Third, power constraints due to cooling,
economic, and ecological concerns severely limit the range
of possible solutions for both of these problems.

On each of these fronts some progress has been made:
For data-centric applications, programming models such as
Map-Reduce [17] and Dryad [31] largely automate the task
of parallelizing data-processing programs. Solid state stor-
age devices offer increased bandwidth and reduced latency
for mass storage. Finally, processor manufacturers have de-
veloped very capable, yet very power-efficient processors.

For data-centric computing, the most fundamental of
these three advances is the rise of solid-state storage. Flash
memory’s performance characteristics enable systems far
outside the design space covered by existing technolo-
gies such as conventional servers, processor-in-disk, and
processor-in-memory systems. The highest density flash
memories available today (or in the near future) offer 16×
the density per package of DRAM at 1/16 the power [9, 36].
In the near future, an array of four flash packages will be
able to deliver 4× the read bandwidth of a high-end disk at
1/30 the power and a fraction of the latency. These advan-
tages, combined with the fact that solid state storage arrays
comprise many discrete chips, instead of a few large drives,
provide vastly more flexibility in the architecture of a com-
bined computing and storage platform.

This paper describes Gordon, a flash-based system archi-
tecture for massively parallel, data-centric computing. Gor-
don leverages solid-state disks, low-power processors, and
data-centric programming paradigms to deliver enormous
gains in performance and power efficiency. In designing and
evaluating Gordon, we make the following contributions:

1. A description of the Gordon architecture.
2. A flash management software layer that allows highly-

parallel operation of large arrays of flash devices.
3. An evaluation of flash management techniques for data-

centric applications.
4. A thorough analysis of the Gordon system design space

and the trade-offs between power, energy, and perfor-
mance that Gordon must make.

5. A discussion of cost, virtualization, and system-level is-
sues in Gordon machines.

Our results show that Gordon systems can deliver up to
2.5× the computation per energy of a conventional cluster-
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based system while increasing performance by a factor of up
to 1.5. We also demonstrate that our flash management sys-
tem can deliver up to 900MB/s of read and write bandwidth.

The rest of this paper is organized as follows. Section 2
provides background on the technologies that Gordon uti-
lizes. Section 3 describes the architecture of a Gordon sys-
tem. Sections 4 and 5 describe Gordon’s flash storage system
and our design space exploration. Section 6 discusses usage
models for Gordon systems and directions for future work.
Section 7 concludes.

2. Background
Gordon relies on three technologies: large-scale data-parallel
programming systems, solid-state storage, and low-power
processors. Data-centric computing has been a topic of re-
search for some time, and we provide a brief overview be-
low. Solid-state storage is a more recent development, and
the architectural trade-offs it offers are less well-known, so
we discuss them briefly here and in more depth in Section 4.
We discuss the recent advances in commercially available
low-power processors that Gordon leverages in the next sec-
tion.
2.1 Peta-scale data-centric parallel programming
Industrial researchers have recently developed several sys-
tems for processing extremely large data sets in parallel. Two
of these systems, Dryad [31] and MapReduce [17], offer an
alternative to parallel databases [18, 25, 19] for managing
and computing with massive data sets. They focus specif-
ically on handling large-scale data in enterprise-scale clus-
ters composed of commodity hardware. Both systems pro-
vide simple abstractions for specifying data-parallel compu-
tations and then automate the task of actually making them
run in parallel.

MapReduce, in particular, has received a great deal of re-
cent attention. Several implementations are publicly avail-
able [1, 38], and researchers have used MapReduce in do-
mains ranging from natural language processing [17], to ma-
chine learning [16], to scientific computing [35]. Extensions
have also been proposed to enhance and extend its function-
ality [15].

MapReduce programs operate on a set of input key-value
pairs. A user-supplied map function takes an input key-value
pair and generates a set of intermediate pairs. The system
groups the intermediate pairs by key and then applies the
reduce function to each group. The reduce function generates
the final output key-value pairs. MapReduce runs on top of a
distributed, reliable file system [24].

Dryad takes a different approach and supports a wider
range of application structures, but increases complexity.
Dryad programs are a generalization of UNIX pipes to ar-
bitrary directed acyclic graphs of processing steps connected
by uni-directional channels. The system maps the process-
ing steps and channels onto available hardware, virtualizing
resources as needed.
2.2 Solid-state storage
Flash memory has risen to prominence over the last decade
due to the growing popularity of mobile devices with large
storage requirements (iPods, digital cameras, etc.). These de-
vices make up the vast majority of the NAND flash memory
market. They do not require particularly high performance
but they do require cheap, high-density, low-power, persis-
tent storage. In response to these requirements, flash manu-
facturers have primarily pursued density and cost improve-
ments and paid less attention to performance. This pressure
has allowed flash density to increase by 85% per year for
the past decade (Figure 1), with 64Gb devices due out next
year [34, 10].

Despite these gains in density, flash’s full potential for
high-performance storage is far from realization. While den-
sity has improved, other aspects of flash performance have
not kept pace. For instance, the bandwidth on flash devices’
8-bit bus (typically 40MB/s) has not increased since 1995.
Likewise, the pin-level interface is primitive by modern stan-
dards. Industrial efforts [7, 8] are underway to remedy these
problems and promise to raise peak bus bandwidth to at least
133MB/s.

In addition to device advances, system architecture, soft-
ware, and management technology for flash memory are ad-
vancing as well. Several efforts have sought to improve or
refine flash storage performance in general-purpose systems.
These include new chip-level interfaces [39], solid-state disk
organizations [12], improvements in the flash translation
layer that abstracts away flash’s idiosyncrasies [13], and
system-level interfaces [2].

Taken together, these advances signal the beginning of
flash memories’ “coming of age” as a high-performance
storage technology. In the next section we describe a system
architecture designed to exploit flash’s unique capabilities.

3. Gordon’s system architecture
The Gordon system architecture uses the technology de-
scribed in Section 2 to put terabytes of solid-state storage
in close proximity with 100s or 1000s of power-efficient
processors. The processors communicate over a simple in-
terconnect and execute independent instances of a stripped-
down operating system along with the software stack needed
to implement a data-parallel execution environment like
MapReduce.

The goal of the Gordon design is to reduce the mismatch
between network bandwidth, disk bandwidth, and CPU per-
formance. In a typical high-density cluster (e.g., a rack of
blade servers) a few power-hungry, high-performance pro-
cessors provide several GOP/s of computing power, but share
access to a small number of (also power-hungry) hard drives
that provide limited bandwidth. In a Gordon system, the ra-
tio of GOP/s to MB/s is quite different: Each processor has
access to a flash array that provides enormous bandwidth and
very low latency.

We call the combination of a processor and its flash stor-
age system a Gordon node. Figures 2(a) and (b) show a scale
drawing of a single Gordon node and an enclosure contain-
ing sixteen nodes. Within an enclosure, nodes plug into a
backplane that provides 1Gb ethernet-style network connec-
tivity and power. A standard rack would hold about sixteen
enclosures for 256 nodes, for 64TB of storage and 230GB/s
of aggregate I/O bandwidth.

As Figure 2 demonstrates, Gordon nodes can be very
compact. This is largely due to the high density of flash
devices (16GB/package). Each node contains 256GB of flash
storage, a flash storage controller (with 512MB of dedicated
DRAM), 2GB of ECC DDR2 SDRAM, a 1.9Ghz Intel Atom
processor, and other supporting circuitry. The configuration
in the figure delivers the most performance per watt of all the
configurations we examine in Section 5.

A Gordon node offers two principle advantages over a
conventional server. First, it consumes much less power:
Our power model (see Section 5) estimates the configuration
shown would consume no more than 19W, compared to 81W
for a full-blown server. Second, it provides the processor
900MB/s of read and write bandwidth to 256GB of “disk.”

Each Gordon node is a complete, independent computer.
They each run a full-blown operating system (e.g., a mini-
mal Linux installation) and communicate using conventional
network interfaces (TCP/IP). The benchmarks we use for
this study use Hadoop [1], an industrial-strength implemen-
tation of Google’s MapReduce parallel programming envi-
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Figure 1. Flash scaling: Flash memory density has been
increasing by 85% per year.
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Figure 2. A Gordon system: A scale drawing of a Gordon
node PCB (a) and a sketch of 16 nodes in a single enclo-
sure. Gordon nodes can be very compact. This configuration
(with flash on both sides) holds 256GB of flash memory and
2.5GB of DDR2 SDRAM. The enclosure holds 4TB of stor-
age and provides 14.4GB/s of aggregate I/O bandwidth.

ronment. Hadoop provides automatic parallelization and a
reliable, distributed file system similar to the Google File
System [24]. From the software and users’ perspectives, a
Gordon system appears to be a conventional computing clus-
ter.

Our goal in designing Gordon is to significantly im-
prove performance and power efficiency for large-scale data-
intensive applications that process many terabytes of data.
To achieve this goal, we have developed a high-performance
flash storage system tuned for data-intensive applications.
We describe this storage system in the next section. Then, in
Section 5, we carry out a systematic exploration of the Gor-
don system design space to find the optimal balance between
storage configuration, CPU performance, and power.

4. Gordon’s storage system
Gordon’s flash-based storage system is the key to its power
efficiency and performance advantage. This section de-
scribes the physical organization of the flash storage system
as well as the firmware layer that manages it. Although Gor-
don’s storage system targets data-intensive applications, sev-
eral of the approaches we describe are applicable to more
general-purpose storage systems as well.

Before we describe Gordon’s flash storage system, we
briefly outline current flash technology, likely future de-
velopments, and the opportunities and limitations that flash
presents. Then, we explore the architecture of the flash mem-
ory system including the flash controller, the buses that con-
nect flash chips, and the firmware layer that manages the ar-
ray.

4.1 Flash memory overview
Flash memory technology presents unique challenges and
opportunities that system architects must address and exploit
in order to realize flash’s full potential. Below we briefly de-
scribe NAND flash technology, its organization, its interface,
its performance, its reliability behavior, and the system soft-
ware support it requires. The performance parameters we list
below are typical and are the ones we assume for this work.
Actual devices may vary slightly from these values.

Flash technology Flash memories store data as charge
trapped on a floating gate between the control gate and
the channel of a CMOS transistor. Each gate can store one
(single-level cell or SLC) or more (multilevel cell or MLC)
bits of information. Commercially available devices store
just one or two bits per cell. Modern SLC flash devices
achieve densities of 1 bit per 4F 2 where F is the pro-
cess feature size (currently 30nm), allowing for very high-
density flash arrays. Emerging 3D flash technologies [22, 33]
promise to push densities even higher.

High-density flash applications use NAND flash devices,
which provide less flexible access to data than lower-density
NOR flash. We only consider NAND flash in this work.

Organization Flash memories are organized differently
than SRAM or DRAM both logically and physically. A flash
device contains a set of blocks each made up of 64 (SLC)
or 128 (MLC) pages. Each page contains 2112 bytes. This
includes a 2048-byte primary data area as well as an “out of
band” data area used to store bad block information, ECC,
and other meta-data.

Devices typically divide blocks among two or four
“planes.” Each plane has its own buffer to hold data for pro-
grams and reads. Planes can perform some operations in par-
allel, although they contend for the package pins.

Operations NAND flash devices support erase, program,
and read operations. Erase operates on entire blocks and
sets all the bits in the block to 1. It takes 2ms to erase one
block. Program operations program entire pages at once. The
time to program a page includes moving the data over the
pins and onto the device. Once the data is in an internal
buffer, programming typically takes between 200µs(SLC)
and 800µs(MLC). Program operations can only change 1s to
0s, so an erase operation (of the entire block) is required to
arbitrarily modify the page’s contents. Read operations read
an entire page in parallel. Reading data from the plane into
the internal buffer takes 25µs.

Capacity Current SLC and MLC technology allows for
32Gb/die and 64Gb/die, respectively [34, 10]. Manufactur-
ers stack between one and four chips in a single package, al-
lowing for between 4GB (one die, SLC) and 32GB (four die,
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MLC) per package. While increased density is desirable, it
comes at a cost: All chips in a single package contend for a
single bus (8 or 16 bits wide, depending on the device) of I/O
pins.
Performance Flash offers significant performance gains
over conventional hard drives. Currently, 8-bit flash de-
vices can transfer data on and off chip at 40MB/s, although
133MB/s chips are beginning to appear and 400MB/s chips
are projected [27]. This peak bandwidth is higher than the
maximum achievable sustained bandwidth because reading
and programming latencies are large (see above). A single
40MB/s SLC flash chip with a single plane can achieve a
maximum of 30.7MB/s for reads and 12.9MB/s for writes.
Erase bandwidth is not affected by bus speed since it does
not require any data transfer. As a result, erase bandwidth
(166MB/s for a single plane) far exceeds program band-
width. Increasing the number of planes per die and/or dies
per package can increase performance significantly by in-
creasing bus utilization (see below).
Reliability Flash memories can fail in several ways. Most
notoriously, devices wear out with use. After many repeti-
tions, the erase and program process can cause cells to be-
come stuck due to physical damage to the device. The ex-
pected lifetime or erase budget of one block in a flash device
is 10,000 for MLC and 100,000 for SLC. Flash devices re-
port erase and program failures due to wear out, and manu-
factures recommend that the entire block be removed from
service if an error occurs that cannot be corrected with ECC.
To maximize the lifetime of a flash chip, flash systems use
wear-leveling [14, 32, 42] to ensure that blocks are erased
with equal frequency.

Whether flash wear-out is a problem depends on the ap-
plication. With good wear-leveling, it is possible to write
25.6PB to the storage array in a Gordon node. The peak pro-
gram bandwidth for a node is 900MB/s, so wear out could,
in theory, occur in one year. However, in practice none of
our applications sustain program rates near that level and
the average across the applications is much lower, leading to
much longer lifetimes for the array. Nonetheless, techniques
for carefully managing the write budgets of large flash arrays
warrant further study.
Software Flash storage systems typically include a “flash
translation layer” (FTL) that manages flash storage. The
FTL serves two primary purposes: The first is to provide
wear leveling. FTLs maintain a layer of indirection between
the logical block addresses (LBA) that the system uses to
address data, and the physical location of the data in flash.
This allows FTLs to write data wherever they wish, and
in particular, to spread writes out across the available flash
storage to improve wear leveling. The second purpose is to
provide high-performance access to the array by scheduling
accesses across the chips to exploit as much parallelism as
possible between and within the flash devices. We discuss
flash translation layers in more detail below.
4.2 Gordon’s storage system
The flash storage system comprises two components – a flash
controller and the flash memory itself. The flash controller
provides the link between the CPU and the flash array and
implements Gordon’s FTL. The physical organization of the
flash memories and the logical organization that the FTL
imposes on them has a large impact on the storage system’s
performance.
4.2.1 The flash array hardware
The flash controller implements Gordon’s FTL and pro-
vides the hardware interface to the flash storage array. We
would like the controller to be able to manage as much stor-

Parameter SLC MLC
Chip Configuration

Density Per Die (GB) 4 8
Page Size (Bytes) 2048+32 2048+64

Block Size (Pages) 64 128
Bus Width (Bits) 16 16

Operational Latencies (µs)
Read 25 25
Write 200 800
Erase 2000 2000

Peak Bandwidth (MB/s)
40MHz Bus Read 75.8 75.8

Program 20.1 5.0
133MHz Bus Read 126.4 126.4

Program 20.1 5.0
400MHz Bus Read 161.1 161.1

Program 20.1 5.0

Table 1. Flash characteristics: We assume near-future
flash memory technology for this study. MLC values are
from [34, 37]. SLC numbers are from [9]. Per-die capacity is
based on [34]. Bus speed is a projection from [8].

age as possible, but hardware constraints limit its capacity.
Flash chips connect to the controller over shared buses. Each
bus supports up to four flash packages, each of which con-
tains four dies. We expect that attaching more packages to a
133Mhz (66Mhz DDR) bus would be challenging. Likewise,
additional buses would be expensive. Each bus comprises 24
shared pins (eight control and 16 data) and a unique chip en-
able and ready line for each die, for 56 pins, or a total of
224 pins across four buses. In addition to the flash buses,
the controller must also interface with the host processor
(150 pins), support the system DRAM interface (105 pins),
and the narrower, private DRAM interface used to store FTL
meta-data (41 pins), for a total of 304 signal pins. Other sig-
nals (JTAG, etc.) are needed as well. For comparison, the
Atom processor’s System Controller Hub (which uses ag-
gressive packaging technology) has 474 I/O pins and a total
of 1249 pins [30].

For flash devices, we use the parameters in Table 1. The
values in the table represent flash technologies that should be
commercially available in the next 1-2 years.
4.2.2 The Gordon FTL
Gordon’s FTL defines the logical organization of the flash
array and the interface the processor uses to access the flash
storage. Gordon’s FTL is an extension of the FTL described
in [13]. This FTL allows the application to write to and read
from any logical block address (LBA) at random, hiding
flash’s idiosyncrasies from the rest of the system.

The FTL performs program operations at a write point
within the array. The write point is a pointer to a page of
flash memory. When the FTL receives a write command, it
programs the data to the location indicated by the write point,
updates the LBA table and advances the write point to the
next page in the block. When the write point’s block is full,
the FTL allocates a new, erased block for the write point.
If there is an insuficient supply of empty blocks, the FTL
may have to clear a block by copying data within the array
(see [13] for details).

The LBA table is held in volatile memory, but the FTL
must keep a persistent version as well. The FTL stores this
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data as a summary page in each block. The summary records
the LBA-to-physical mapping for each page in the block.
Since multiple, stale copies of an LBA may exist, the FTL
also gives each block a sequence number. The freshest copy
of an LBA’s data is the last copy written to the block with the
highest sequence number.

A key limitation of the FTL in [13] is that it allows for
only a single write point. As a result, it will never allow two
operations to proceed in parallel, except in the case of clean-
ing blocks in the background. For small flash storage sys-
tems (like a “USB key”), this is acceptable, but for Gordon
it is not.

We use three techniques to solve this problem. The first
is to aggressively pursue dynamic parallelism between ac-
cesses to the flash array. We have extended our FTL to sup-
port multiple write points and spread accesses between them.
To maintain the sequence number invariant, each write point
has its own sequence number, and once an LBA has been
written to a particular write point, future writes must go to
the same write point or another write point with a larger se-
quence number.

The policy for spreading programs across write points se-
lects the write point with the smallest sequence number that
can accept data for the LBA while also balancing load across
the busses. Using multiple write points does not affect read
bandwidth significantly, but it can improve write bandwidth
dramatically. Our data show that increasing the number of
write points per 133Mhz bus from 1 to 4 increases write
bandwidth by 2.8×.

The second approach is to combine physical pages from
several dies into “super-pages” (and, therefore, “super-
blocks” for erase operations) and manage the flash array
at this larger granularity. We explore three ways to cre-
ate super-pages: horizontal striping, vertical striping, and 2-
dimensional (2D) striping (Figure 3).

In horizontal striping each physical page in a super-page
is on a separate bus. In this case, access to the physical pages
proceeds in parallel. The number of buses in the system
limits the size of horizontal super-pages. Horizontal striping
is similar to the “ganging” scheme described in [12].

Vertical striping places the physical pages in a super-page
on a single bus. The bus transfers each physical page’s data
in turn, but the program and read operations can occur in
parallel across the dies. The number of dies per bus limits
the size of vertical super-pages.

The final scheme, 2D striping, combines horizontal and
vertical striping to generate even larger super-pages. With 2-
D striping, it is possible to divide the array into rectangular
sets of chips that are part of the same horizontal and vertical
stripes. Our FTL provides one write point for each of these
sets.

2D striping trades parallelism between operations for par-
allelism within a single operation. It also reduces manage-
ment overhead by reducing the total number of super-pages
in the array. This is very important, since the LBA table for a
large flash array can be very large. For instance, for 256GB
of flash and 2KB pages, the LBA table is 512MB. The same
array with 64KB super-pages requires only 16MB. Since our
flash controller has 512MB of storage and our storage ar-
ray is 256GB, super-pages must be at least 4KB in size. In
this case the LBA table consumes 256MB, leaving space for
other FTL data.

Large super-pages cause two problems. First, they in-
crease the latency of sub-page accesses, since the FTL will
need to read or program more data than requested.

The second danger is that wear-out failures will effect a
much larger portion of the array. In a striped system, if a sin-
gle physical block wears out, the entire super-block must be
removed from service. We have stress-tested SLC flash chips

to measure their failure rate directly, and our data show that
for 64KB super-pages, only 98% of super-blocks will last to
100,000 erase cycles, compared to 99.9% for 2KB pages. For
128KB, only 96% will survive this long. In a striped disk-
based system, RAID techniques would provide the means to
restore this lost reliability. However, the reliability of RAID
systems stems from the possibility of replacing failed com-
ponents. Since flash components are soldered to the Gordon
nodes, this is not practical.

Vertical and horizontal striping have complimentary ef-
fects on how the FTL utilizes the buses that connect the flash
devices. Horizontal striping effectively creates a wider, high-
bandwidth bus, increasing the raw performance of the array
for large reads. Vertical striping further enhances through-
put by increasing bus utilization. When writing to a vertical
stripe, the FTL can queue up all the data for a program oper-
ation and stream out the data without interruption, transfer-
ring data to each chip in turn. For reads, the FTL can initiate
the read operation on all the chips, and then read data from
each one in turn. Interleaving [12] accesses between multiple
vertical pages can further increase performance.

To evaluate these alternative organizations, we have de-
veloped a detailed trace-driven flash storage system simu-
lator. It supports parallel operations between flash devices
and across planes within a single device. It also models the
flash buses and implements our FTL. We generated traces
of 200,000 random accesses (reads or writes, depending on
the trace) of between 2KB and 256KB. To evaluate perfor-
mance for real applications, we use traces from our suite of
data-intensive workloads (Table 2).

Figure 4 demonstrates the impact of increasing super-
page size on performance. For super-pages with four or
fewer pages, we use horizontal striping, but going beyond
four requires vertical striping as well. The data show write
bandwidth for varying transfer sizes. The data also show
the negative impact on bandwidth for large super-page sizes
and small transfers. For instance, bandwidth for 32KB and
128KB transfers is the same until the page size exceeds
32KB. Then, the extra work required to read the rest of the
super-page reduces performance.

Our workloads present a mix of large and small transfers.
While 88-93% of bytes read and written are part of transfers
of 120KB or larger, roughly half of individual transfers are
only 8KB. As a result, setting our page size to 128KB would
roughly double the amount of data the FTL had to read and
write.

Careful examination of traces from our workloads shows
a clear pattern in accesses: an 8KB access aligned on a
128KB boundary followed immediately by a 120KB access
to the rest of the same 128KB region. To exploit the pattern,
we added a simple bypassing mechanism to our FTL that
merges incoming read requests with pending requests to the
same page and also caches the result of the last read. Our
FTL also performs limited write combining by merging write
requests to the same page when possible. Figure 4 shows
that this mechanism nearly eliminates the negative impact
of large pages for small sequential reads. The small dip in
performance is due to the overhead of scanning the queue of
pending reads. The effect is similar for reads. As expected,
bypassing and combining do not improve random access
performance.

The data also show the necessity of interleaving requests
to allow some chips to program or read data while data are
flowing over the bus. For 256KB pages, the super-page spans
the entire array, so only one request can be active at once. As
a result, performance degrades even with write combining.
Using 64KB pages gives the best performance and allows
four operations to proceed in parallel. This is approximately
what we would expect: Transferring 64KB of data over four
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Figure 3. Three approaches to striping data across flash
arrays: Horizontal, vertical, and two-dimensional striping
reduce overhead by increasing effective page size.
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Figure 4. Flash storage array performance: Without by-
passing or write-combining, large super-page sizes lead to
decreased performance for small transfers. Adding these fea-
tures nearly eliminates the effect for sequential accesses.

133Mhz buses takes 58µs, or about 0.29 times the program
time for our flash chips. If the transfer time were 1/3 the
program time, bus utilization would be nearly 100%.

Figure 5 shows how page size and bypassing affect overall
storage performance of our data-intensive workloads, nor-
malized to 8KB pages. In the left-hand figure, bypassing
is disabled, and large pages benefit Index, Identity, Ran-
domWriter, and Sort. The right-hand figure shows perfor-
mance with bypassing. There, 64KB pages provide between
1.1× and 6.3× speedups for all applications.

For sequential accesses (and random accesses to super-
pages of similar size) our storage array delivers 900MB/s
of bandwidth for reads and writes. Our design uses 16-bit
SLC flash devices and assumes a 133Mhz bus. Currently,
40Mhz devices are commonly available. Moving to these
devices would reduce peak bandwidth by 60% and reduce
average I/O performance for our applications by the same
amount. Conversely, moving to a 400Mhz (200Mhz DDR)
bus would increase performance by between 20% for write-
intensive applications and 2.5× for read-intensive applica-
tions. It would also push peak read bandwidth to 2.2GB/s.
Peak write bandwidth would rise to 1.1GB/s. Write perfor-
mance is limited by the aggregate program bandwidth of the
chips on each bus. Moving to MLC devices also reduces per-
formance because of their long program times, reducing per-
formance by between 2% (read-intensive) and 70% (write-
intensive).

5. Configuring Gordon
Having tuned Gordon’s flash storage system for data-
intensive applications, we turn our attention to the remain-
der of the Gordon node design. First, we describe our work-
loads, power model, and simulation methodology. Then we
describe our design space survey of Gordon configurations.
Section 6 presents further results and discussion.

5.1 Workloads
To motivate Gordon’s design, we use a set of benchmarks
that use MapReduce for parallel computation. Table 2 sum-
marizes the workloads. Two of the benchmarks focus specif-
ically on I/O (Identity and RandomWriter). The other bench-

marks represent more realistic applications from a range of
domains. WebIndex is our most sophisticated application. It
generates an index for a web search engine. ComplexGrep is
the most computationally demanding of the workloads. The
I/O measurements in the table do not include accesses hidden
by the distributed file system’s caching mechanism. For in-
stance, Sort writes more than it reads, because some accesses
to temporary files are satisfied by the cache.

To run the benchmarks we use Hadoop [1], an industrial-
strength open-source MapReduce implementation written in
Java. It provides many of the features of Google’s MapRe-
duce [17] including a distributed file system (Hadoop DFS),
similar to Google’s GFS [24]. All our experiments run under
Linux 2.6.24 using Sun’s 64-bit Java implementation (JDK
1.6).

To characterize the workloads we ran each of them on a
cluster of eight 2.4GHz Core 2 Quad machines, with 8GB
of RAM, and a single, large SATA hard disk. A private 1Gb
ethernet network connects the machines.

5.2 Power model

To measure power consumption, we developed a power
model for Gordon and more conventional systems. Table 3
summarizes the model. For the server components, our data
come from direct measurements of a running system. Our
model uses activity factors similar to the Mantis full sys-
tem power model [20] and our results broadly match their
results as well as those in [28, 21, 20]. For flash memory and
the Atom processor, we use maximum power numbers from
product data sheets. As [21] points out, these numbers are of-
ten up to 50% greater than actual consumption. As a conse-
quence, the results we report for Gordon’s efficiency are con-
servative. We model flash controller power on Intel’s System
Controller Hub, but with a second DRAM channel [30].

The power model describes machine configurations as a
set of identical nodes, each of which contains one or more
processors, disk (or flash), and DRAM. Within each node,
we model each component’s power as P = IdlePower ×
(1−ActivityFactor)+ ActivePower× (ActivityFactor). The
activity factors come from our traces, or, in the case of flash,
from our flash simulator.
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Figure 5. Application-level IO performance with and without bypassing: Read bypassing and write combining (right)
allow all applications to benefit from larger page sizes. Without these two optimizations, large pages degrade performance
(left).

Name Description Workload Disk Use (MB)
size Read Write

RandomWriter Output random data 10GB 351 26,860
Identity Copy all inputs to the output 15GB 45,106 103,650
Sort Sort random numbers 1GB 1,373 5,672
Grep Search for “the” 8GB 8,448 483
(simple) in multi-lingual text
Grep Complex regular expression 8GB 9,199 958
(complex) search in multi-lingual text
N-Gram Find frequently occuring N-word 4GB 40,133 90,688

phrases in multi-lingual text
WebIndex Indexing of web pages 13GB 18,925 62,808

Table 2. Workloads: The workloads we use to evaluate Gordon vary in the amount of read and write bandwidth they require.

Power (W)
Component Idle Active
Core 2 CPU (1 core @ 2.4Ghz) 12 20.8
Atom CPU 0.16 2.4
2GB DDR2 SDRAM 3 5.3
Hard disk (read) 9 13
Hard disk (write) 9 17
4GB SLC Flash (Rd/Wr/Erase) 0.003 0.04
Flash Ctlr./DRAM Ctrl. 0.16 2.3
Flash Ctlr. 512MB SDRAM 0.7 1.2
System overhead power See text.

Table 3. Power model: The values for the Core 2, DRAM,
and disk components are from measurements of a running
system. For other components, we use values taken from the
manufacturer [11, 9]. Core 2 idle power is from [29]. We
model flash controller power on Intel’s System Controller
Hub, but with a second DRAM channel [30].

Component Performance
Core 2 CPU (one core) 1.5 insts/cycle
Atom CPU 0.5 insts/cycle
Hard disk latency simulated
Hard disk read BW simulated
Hard disk write BW simulated
Flash read BW simulated
Flash write BW simulated
Network BW 1Gb/s

Table 4. Baseline component performance metrics: For
the servers, these numbers are from measurements of a run-
ning system. Atom performance numbers are based on [3, 4]
and our measurements.
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To model system overhead power, we measured the idle
power of one of our servers and subtracted out the idle power
of memory, disk, and CPU components. We then measured
average total system power under load, and took the ratio of
the two. Using this ratio, we set the ratio of idle power to
average power to be the same for each of our configurations.

We have validated this model against the servers in our
cluster by enabling and disabling system components and
measuring power consumption on varying load. It gives re-
sults within 10% of our measurements. For experiments in
which we vary CPU speed, we scale voltage with frequency
across the range supported by each processor (0.75-1.2V for
Atom [26]; 0.8-1.6V for the Core 2 [29]).

5.3 Measuring cluster performance
To evaluate the performance of an architecture for a cluster
of machines we use two simulators. The first is a high-
level, trace-driven cluster simulator to measure total system
performance. The second simulator provides detailed storage
system simulations that allow us to explore architectural
options for flash storage arrays.

High-level simulator We use a trace-driven high-level sim-
ulator to measure overall performance. We collect traces
from running systems that contain second-by-second uti-
lization information for each component using performance
counters and the /proc file system on Linux. The traces
describe the number of instructions executed, the number of
L2 cache misses, the number of bytes sent and received over
the network, the number of bytes written to and read from
the disk drive, and the number of hard drive accesses per-
formed. We collect the traces on otherwise idle machines,
but the traces include all system activity (OS, system dae-
mons, etc).

We model a 32-node cluster by running four VMWare [5]
virtual machines on each of our eight servers (giving each
VM its own CPU and 2GB of memory) and gather indepen-
dent traces for each one. Since VMWare does virtualize per-
formance counters, we gather instruction and L2 miss counts
for the VM itself.

The simulator processes a set of traces (one per node) in
parallel. For one sample of data in the trace, it computes
the time needed for instruction execution, disk accesses,
and network transfers during that second. It then takes the
maximum of these values as the simulated execution time for
that sample. Taking the maximum effectively models perfect
parallelism between disk, network, and the CPU.

We calculate two sets of results from the simulator using
two different methods that model different amounts of inter-
node synchronization. The first, called sync, models a barrier
at the end of each trace sample, forcing the nodes to syn-
chronize frequently and preventing nodes that do little work
from finishing early. The time to execute each sample in the
trace is set by the slowest node for that sample. The sync
model provides an upper bound on execution time. The sec-
ond method, nosync, models zero synchronization between
nodes. The execution time for the trace is set by the running
time of the slowest node. The nosync model provides a lower
bound on execution time.

To measure performance of p-way multi-processor con-
figurations, we model the execution of p parallel instances
of the workload and divide run-time by p. We assume that
performance scales linearly with clock speed.

To measure power, the simulator uses the power model
described above to compute the power consumption each
second for each node in the cluster. The sync model includes
power for the idle periods when one node is waiting for the
other nodes to finish. Nodes are never idle in the nosync
model until they are finished executing. Once execution on a

Parameter Value Parameter Value
Processors 1,2,4 Processor type Atom,Core 2
Flash dies 0,64 Atom freq (Ghz) 0.8,1.5,1.9
Hard drives 0,1,2,4 Core 2 freq (Ghz) 0.6,1.2,1.8,2.4

Table 5. Node design space: The parameters for our design
space exploration. For all node configurations, we model a
cluster of 32 nodes.

node is complete, we assume it goes into a deep power-done
state.

Table 4 contains the simulator parameters for all sys-
tem components. For Core 2 Duo performance, disk, and
network, these are peak values. Atom performance (based
on [3, 4]) are given for comparison. We use this simulator to
generate all of our system-level performance results.

Storage simulator Since we study machines with two
types of storage systems (flash and hard drives), we use
two different simulators. For disk simulations we use
disksim [23] configured to model a 1TB, 7200rpm, SATA II
hard drive with a 32MB disk cache. To model flash behavior
we use the simulator described in Section 4. Both simula-
tors process block-level traces taken from running systems
and generate latency and bandwidth measurements. We use
these values as inputs to the high-level cluster simulator.

5.4 Design space survey
We have carried out a systematic survey of the design space
for Gordon nodes. To understand how Gordon compares to
the alternatives, our survey includes both flash-based and
hard drive-based designs.

Table 5 shows the parameters and values we varied in our
survey. We restrict ourselves to a single storage type (disk or
flash) and processor type (Core 2 or Atom) in each configu-
ration. We set the power budget for a single node to 300W.
The result is a set of 88 node configurations. All flash-based
designs use the maximum number of flash chips possible per
node, because adding additional chips cannot hurt perfor-
mance and their contribution to power consumption is small.
We assume the flash storage system described in the previous
section with 64KB super-pages.

We use our simulators to measure the performance of
a cluster of 32 of each node configuration using the sync
model. Figure 6 contains the results for three individual
benchmarks and the average across our benchmark suite.
Each point represents a single node configuration and mea-
sures the energy consumption of the whole system versus
run-time. All data are normalized to a four-processor Core 2
configuration with one disk.

The lower-left points (circled) are the Pareto optimal node
designs: Shorter run times are not possible without increas-
ing energy and vice versa. For all the workloads, the same de-
signs are Pareto optimal. All of them are flash-based. Table 6
summarizes the Pareto optimal designs and the lowest-power
design. The designs labeled MinT, MaxE, and MinP, are the
fastest (minimum time), most efficient (performance/watt),
and minimum average power configurations, respectively.

The table also summarizes the improvements in perfor-
mance, efficiency, and power consumption that flash pro-
vides for each configuration. For instance, MaxE is between
2.2 and 2.5× more efficient than the most efficient disk con-
figuration, while MinP saves over 68% in power. The gains in
performance are substantial as well: MinT is between 1.5×
and 1.8× as fast as a similar disk-based system while spend-
ing nearly equal energy.
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Name CPU Average Power vs Perf/watt vs Speedup vs
configuration Power (W) MinP Disk MaxE Disk MinT Disk

NoSync Sync NoSync Sync NoSync Sync NoSync Sync
MinP 1 Atom; 0.8GHz 1.43 3.91 0.33 0.32 1.74 1.12 0.07 0.07
MaxE 1 Atom; 1.9GHz 2.32 4.81 0.54 0.39 2.54 2.15 0.16 0.16

1 Core 2; 2.4GHz 9.14 19.89 2.11 1.63 2.31 1.88 0.59 0.56
2 Core 2; 2.4GHz 23.82 45.66 5.51 3.74 1.64 1.45 1.09 1.00
4 Core 2; 1.8GHz 47.56 92.74 11.00 7.59 1.11 0.92 1.48 1.29

MinT 4 Core 2; 2.4GHz 58.50 106.18 13.54 8.69 1.08 0.93 1.77 1.49

Table 6. Optimal Gordon configurations: For all three design goals (performance, performance/watt, and power consump-
tion) Gordon acheives substantialy better results than disk-based designs. Results are presented for both sync and nosync
methods. MinP is not Pareto optimal.
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Figure 7 shows how the network, processor, and storage
systems contribute to execution time for MaxE and MaxE-
disk, the most efficient disk-based configuration (4 Atom
processors @ 1.9Ghz, 1 disk). The stacked bars show the
portion of execution when different combinations of compo-
nents are fully utilized (i.e., when those components limit
performance). The disk-based configuration spends about
equal time disk bound (second section of the bar from the
top) as CPU bound (third from top). For the MaxE flash
configuration, the CPU is clearly the bottleneck, but since
the MaxE configuration is Pareto-optimal, adding additional
processors is not a good power/performance trade-off. The
MinT flash configuration, however, includes four processors
and its performance varies from strongly CPU bound (Com-
plexGrep) to substantially disk/flash bound (Identity).
5.5 Gordon power consumption
Figure 8 shows the per-component energy consumption
for the MaxE configuration relative to MaxE-disk. Per-
component energy consumption is mostly uniform across the
applications. On average, MaxE-flash consumes 40% of the
energy of the disk-based configuration, but execution times
are longer, leading to a factor of two increase in performance
per watt. The data show that the increased idle power of disk
has a twofold impact on efficiency. It causes the disk to burn
excess power, but also encourages the design to use higher-
performance, less efficient processors, since these processors
reduce the amount of time the disk sits idle. Flash eliminates
the vast majority of the storage system’s idle power, allowing
the design to take advantage of more efficient processors.

Reducing Gordon’s power consumption further is chal-
lenging. DRAM and overhead power account for most of the
remaining power. Reducing the amount of DRAM may be
possible, especially if the in-memory working sets of our ap-
plications are small. Overhead power is a widely reported
problem at the system level [21, 20]. Reducing this source of
waste would benefit a wide range of systems, and make the
power savings that flash can offer even more significant.

6. Discussion
Incorporating flash memory into Gordon’s system architec-
ture required us to reevaluate the trade-offs between power,
performance, efficiency, and cost in the design of a Gordon
node. At a larger scale, fully exploiting the efficiency gains
that Gordon offers requires careful considerations of larger-
scale trade-offs. We explore several of the trade-offs below
and examine usage models for large Gordon systems and
their potential roles in a large data center.
6.1 Exploit disks for cheap redundancy
Using a distributed, replicated filesystem increases the cost
of storage for both disk and flash-based systems. We can
mediate this problem for some applications by combining
Gordon nodes with other servers that have conventional hard
drives. Gordon’s file system can keep one replica in flash
and redundant copies on disk. In the case of a failure, re-
covery will be automatic. When the disk-based replicas are
not needed (the vast majority of the time) the conventional
servers can be put into deep sleep with their hard drives spun
down.

This system works well for reads, since the replicas do
not need to be updated. For write-intensive workloads, the
replica must be stored in flash at least temporarily, otherwise
the disk bandwidth for updating the hard drive-based replicas
would limit performance and significantly increase power
consumption. One approach to mitigating this effect is to
treat the flash storage array as a replica cache. All replicas of
frequently updated data would be kept in flash, but replicas
of less frequently updated data could be kept on disk. If

Capacity Cost Active
power
(W)

SAS disk 300GB $340 15
SATA disk 1.5TB $129 17

4GB DIMM 4GB $193 6
FusionIO 160GB SLC 160GB $2000 9

2.6GHz Intel Quad core n/a $500 60
Max DRAM enclosure n/a $1795 110

Max flash enclosure n/a $1025 90
Max disk enclosure n/a $1600 90

Table 7. Cost and power model for commodity systems:
To model the cost and power consumption of commod-
ity systems, we retail pricing information for the disks and
DRAM. Enclosure power data are estimates based on mea-
surements of our cluster.

# of Media Non- %Non- %Non-
servers cost media media media

cost cost power
4GB DIMMs 10,923 $50M $41M 45% 68%

NAND 2185 $13M $3M 22% 91%
SAS Disks 218 $1.2M $627K 35% 53%

SATA Disks 44 $100K $125K 54% 68%

Table 8. The fiscal and power costs of storing a petabyte:
Differences in cost, performance, density, and power require-
ments affect the distribution of costs across the system. Flash
spends more dollars and less power on the storage media it-
self, so specializing the rest of the system leads to smaller
increases in costs and greater savings in power.

writes become less frequent, the replicas could be migrated
to disk. Indeed, if a piece of data has not been accessed at all
in a very long time, all replicas could be moved to disk.
6.2 Cost
Currently, cluster-based systems rely heavily on commodity
components to reduce cost. For current systems that need
to store very large amounts of data, this is a wise trade-off:
Disks are slow and cheap, so there is little point in spending
large sums to provide fast processors and exotic, high-speed
networks.

Tables 7 and 8 contain a cost model and the results it
generates to show how flash storage alters these trade-offs.
The model computes the cost of storing 1PB of data in
DRAM DIMMs, SLC flash-based PCIe storage cards [2],
SAS disks, and commodity SATA disks. The model includes
non-storage costs, such as the enclosures needed to house
the storage media and the CPUs required to access it. Using
prices and specifications for currently-available commodity
servers [41], it chooses the densest option for each storage
technology (for DRAM, a machine with 24 DIMM slots;
for disks, the machine with sixteen drive bays; for flash, a
machine with four PCIe slots to accept flash storage cards).

Currently, the retail price for 160GB FusionIO devices
is $7200, but we do not believe this reflects a reasonable
cost for the device they provide. In bulk, SLC flash currently
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Figure 7. Per-component contributions to execution
time: The run-time of each benchmark broken down by the
active hardware components.
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Figure 8. Relative energy consumption: Node energy
consumption for MaxE relative to the disk-based configu-
ration with highest performance per watt.

costs about $5/GB ($800 for 160GB) [6], so $7200 reflects
a very large profit margin that will undoubtably diminish
with competition. We estimate the price of the 160GB PCIe
device at $2000.

The model makes it clear why commodity components
are a good choice, especially for disk-based systems. In
those systems between 35 and 54% of the cost is the non-
storage components of the system and those components ac-
count for 53-68% of power consumption. If specialized hard-
ware doubled the cost of the non-disk components and re-
duced their power consumption by half, the resulting ma-
chine would cost 35-54% more and use 16-32% less power.
Since disks are inherently slow, the gains from specialization
would likely be modest.

For NAND, specialization could cost less (22%) and lead
to greater power savings (45%). Furthermore, since flash
is delivers much greater raw performance than disks, the
performance gains from specialization will be greater (as our
results for Gordon demonstrate).

We expect flash prices to continue to drop at between
50 and 60% per year [40], but hard drive prices are falling
as well. However, in terms of cost per bandwidth, flash is
a clear winner. Gordon’s flash array delivers over 900MB/s
using ∼$1280 worth of flash at current prices. The disks for
a RAID array that delivers the same bandwidth would cost
$4500 and would consume 100 times more power than Gor-
don’s flash storage system. As flash bus speeds increase and
prices fall further, flash’s bandwidth advantage will continue
to grow.

Ultimately, whether flash is an economically wise design
decision depends on the benefits it can deliver and the new
applications it can enable. Flash offers huge gains relative
to disk in terms of performance, efficiency, density and rel-
ative to DRAM in terms of density and power consumption.
If these gains are, for instance, sufficient to move a data-
intensive application from off-line to on-line, flash could eas-
ily justify its extra cost. More generally, we expect flash’s ca-
pabilities to enable applications that are simply not feasible
with conventional storage technology. This work takes the
first step in that direction, by understanding flash’s strengths
and weakness in existing applications.

6.3 Virtualizing Gordon
Gordon’s strength is providing high-bandwidth, highly-
parallel access to large volumes of data, not in storing that

data. For storage, disks are more cost effective. This means
that a Gordon system is being effectively utilized if the data it
stores are being accessed frequently. Consequently, it makes
sense to manage Gordon systems to maximize bandwidth
utilization.

For some latency-critical workloads and workloads that
need to process all the data stored by a group or organization,
it will make sense to store data in a Gordon system and
process it in place. In other scenarios, we imagine that the
total data stored will be much larger than Gordon’s capacity.
In these cases, we will virtualize the Gordon system so its
data-processing abilities can be brought to bear on much
larger data sets than it can store.

This usage model treats all or part of a Gordon system
as a specialized co-processor for performing computations
on a small part of a much larger quantity of data stored in a
disk-based “data warehouse.” Before a job runs, Gordon will
load the necessary data into flash storage, and once the job
completes, data for another job will take its place.

For instance, a 1024-node system could be partitioned
into 16, 64-node slices, each with NVM storage for 16TB
of data. Each slice provides a total of 112GB/s of I/O band-
width. Assuming dual 1Gb network connections between the
Gordon slice and the data warehouse, loading 10TB of data
(leaving room for scratch data in the flash storage array)
would take about 11 hours. Gordon would perform the com-
putations on the data, transfer the results to the warehouse
and load the data for the next job. Network limitations mean
that transfering data between the Gordon array and the ware-
house utilizes only 0.4% of Gordon’s bandwidth resources.
We can improve the situation by overlapping data transfer
with execution and reducing the storage space allocated to
each job by 50% (to accomodate storing both data sets si-
multaneously). The impact on execution time would be min-
imal, and if jobs spent at least 4 seconds processing each GB
of data, the time cost of loading the next job would be fully
hidden by useful processing.

7. Conclusion
This paper has presented Gordon, a flash memory-based
cluster architecture for large-scale data-intensive applica-
tions. We describe a flash-based system that is carefully
tuned for data-intensive applications. Gordon systems com-
bine this storage array with a conventional low-power pro-
cessor and programming abstractions for large-scale dis-
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tributed programming. The result is a highly-efficient, high-
performance, highly-parallel computing system that is easy
to use.

Compared to disk-based systems, Gordon systems are
1.5× faster and deliver 2.5× more performance per watt. As
flash performance improves, these performance gains will
only increase. Gordon demonstrates that flash affords the
opportunity to re-engineer many aspects of system design,
and, therefore, enables a new class of computing systems.
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