
Model-Based Resource Provisioning in a Web Service Utility

Ronald P. Doyle
�

IBM
Research Triangle Park
rdoyle@us.ibm.com

Jeffrey S. Chase
Omer M. Asad

�
Wei Jin

Amin M. Vahdat
Department of Computer Science

�
Duke University�

chase, jin, vahdat � @cs.duke.edu

Abstract

Internet service utilities host multiple server applications on a
shared server cluster. A key challenge for these systems is to
provision shared resources on demand to meet service qual-
ity targets at least cost. This paper presents a new approach
to utility resource management focusing on coordinated pro-
visioning of memory and storage resources. Our approach is
model-based: it incorporates internal models of service behav-
ior to predict the value of candidate resource allotments under
changing load. The model-based approach enables the system
to achieve important resource management goals, including
differentiated service quality, performance isolation, storage-
aware caching, and proactive allocation of surplus resources
to meet performance goals. Experimental results with a pro-
totype demonstrate model-based dynamic provisioning under
Web workloads with static content.

1 Introduction

The hardware resources available to a network service
determine its maximum request throughput and—under
typical network conditions—a large share of the re-
sponse delays perceived by its clients. As hardware
performance advances, emphasis is shifting from server
software performance (e.g., [19, 26, 27, 37]) to improv-
ing the manageability and robustness of large-scale ser-
vices [3, 5, 12, 31]. This paper focuses on a key
subproblem: automated on-demand resource provision-
ing for multiple competing services hosted by a shared
server infrastructure—a utility. It applies to Web-based
services in a shared hosting center or a Content Distri-
bution Network (CDN).

The utility allocates each service a slice of its resources,
�
R. Doyle is also a PhD student at Duke Computer Science.�
O. Asad is currently at Sun Microsystems.�
This work is supported by the U.S. National Science Foundation

through grants CCR-00-82912, ANI-126231, and EIA-9972879, and
by IBM, Network Appliance, and HP Laboratories.

including shares of memory, CPU time, and available
throughput from storage units. Slices provide perfor-
mance isolation and enable the utility to use its resources
efficiently. The slices are chosen to allow each hosted
service to meet service quality targets (e.g., response
time) negotiated in Service Level Agreements (SLAs)
with the utility. Slices vary dynamically to respond to
changes in load and resource status. This paper ad-
dresses the provisioning problem: how much resource
does a service need to meet SLA targets at its projected
load level? A closely related aspect of utility resource al-
location is assignment: which servers and storage units
will provide the resources to host each service?

Previous work addresses various aspects of utility re-
source management, including mechanisms to enforce
resource shares (e.g., [7, 9, 36]), policies to provision
shares adaptively [12, 21, 39], admission control with
probabilistically safe overbooking [4, 6, 34], scheduling
to meet SLA targets or maximize yield [21, 22, 23, 32],
and utility data center architectures [5, 25, 30].

The key contribution of this paper is to demonstrate the
potential of a new model-based approach to provisioning
multiple resources that interact in complex ways. The
premise of model-based resource provisioning (MBRP)
is that internal models capturing service workload and
behavior can enable the utility to predict the effects
of changes to the workload intensity or resource allot-
ment. Experimental results illustrate model-based dy-
namic provisioning of memory and storage shares for
hosted Web services with static content. Given adequate
models, this approach may generalize to a wide range of
services including complex multi-tier services [29] with
interacting components, or services with multiple func-
tional stages [37]. Moreover, model-based provisioning
is flexible enough to adjust to resource constraints or sur-
pluses exposed during assignment.

This paper is organized as follows. Section 2 motivates
the work and summarizes our approach. Section 3 out-

�
	 � ������

� ����	 � ������ � � ����������

� ��� 	 � ���"!$#��%&�'��()��� *��

+-,/.10/2�.13�45 687 4:9�,;. 7 < 9�=�>

? 3)@ 7 .A3�45 3�B)=19�4 < 2�. 7 3)@/=/>

Figure 1: A utility OS. A feedback-controlled policy module
or executive monitors load and resource status, determines re-
source slices for each service, and issues directives to configure
server shares and direct request traffic to selected servers.

lines simple models for Web services; Section 4 de-
scribes a resource allocator based on the models, and
demonstrates its behavior in various scenarios. Section 5
describes our prototype and presents experimental re-
sults. Section 6 sets our approach in context with related
work, and Section 7 concludes.

2 Overview

Our utility provisioning scheme is designed to run within
a feedback-controlled resource manager for a server
cluster, as depicted in Figure 1. The software that con-
trols the mapping of workloads to servers and storage
units is a utility operating system; it supplements the
operating systems on the individual servers by coordi-
nating traditional OS functions (e.g. resource manage-
ment and isolation) across the utility as a whole. An ex-
ecutive policy component continuously adjusts resource
slices based on smoothed, filtered observations of traf-
fic and resource conditions, as in our previous work on
the Muse system [12]. The utility enforces slices by
assigning complete servers to services, or by partition-
ing the resources of a physical server using a resource
control mechanism such as resource containers [9] or a
virtual machine monitor [36]. Reconfigurable redirect-
ing switches direct request traffic toward the assigned
servers for each service.

This paper deals with the executive’s policies for provi-
sioning resource slices in this framework. Several fac-
tors make it difficult to coordinate provisioning for mul-
tiple interacting resources:

C Bottleneck behavior. Changing the allotment of
resources other than the primary bottleneck has lit-
tle or no effect. On the other hand, changes at a
bottleneck affect demand for other resources.

C Global constraints. Allocating resources under
constraint is a zero-sum game. Even when data cen-
ters are well-provisioned, a utility OS must cope
with constraints when they occur, e.g., due to ab-

normal load surges or failures. Memory is often
constrained; in the general case there is not enough
to cache the entire data set for every service. Mem-
ory management can dramatically affect service
performance [26].

C Local constraints. Assigning service components
(capsules) to specific nodes leads to a bin-packing
problem [3, 34]. Solutions may expose local re-
source constraints or induce workload interference.

C Caching. Sizing of a memory cache in one com-
ponent or stage can affect the load on other com-
ponents. For example, the OS may overcome a lo-
cal constraint at a shared storage unit by increas-
ing server memory allotment for one capsule’s I/O
cache, freeing up storage throughput for use by an-
other capsule.

The premise of MBRP is that network service loads have
common properties that allow the utility OS to predict
their behavior. In particular, service loads are streams of
requests with stable average-case behavior; the model al-
lows the system to adapt to changing resource demands
at each stage by continuously feeding observed request
arrival rates to the models to predict resource demands
at each stage. Moreover, the models enable the system
to account for resource interactions in a comprehensive
way, by predicting the effects of planned resource allot-
ments and placement choices. For example, the mod-
els can answer questions like: “how much memory is
needed to reduce this service’s storage access rate by
20%?”. Figure 2 depicts the use of the models within
the utility OS executive.

MBRP is a departure from traditional resource manage-
ment using reactive heuristics with limited assumptions
about application behavior. Our premise is that MBRP
is appropriate for a utility OS because it hosts a smaller
number of distinct applications that are both heavily
resource-intensive and more predictable in their average
per-request resource demands. In many cases the work-
loads and service behavior have been intensively stud-
ied. We propose to use the resulting models to enable
dynamic, adaptive, automated resource management.

For example, we show that MBRP can provision for
average-case response time targets for Web services with
static content under dynamically varying load. First,
the system uses the models to generate initial candidate
resource allotments that it predicts will meet response
time targets for each service. Next, an assignment phase
maps service components to specific servers and stor-
age units in the data center, balancing affinity, migra-
tion cost, competing workloads, and local constraints on
individual servers and storage units. The system may

DFEHG'IKJKL
M&E
NPOQO IHM NSR ITL

U�V�WYX-Z[X�V�\�]
VS^�^ _�\Y`a]SW�\�b

c]�d)e�_�d�`$V�W�U�]
c d�]�X-Z�U�\8Z _�WYb

fhg-g Oji M NSRki IFl
mnIKoHE O G

Figure 2: Using models to evaluate candidate resource allot-
ments in a utility OS. The executive refines the allotments until
it identifies a resource assignment that meets system goals.

adjust candidate allotments to compensate for local con-
straints or resource surpluses discovered during the as-
signment phase. In this context, MBRP meets the fol-
lowing goals in an elegant and natural way:

C Differentiated service quality. Since the system
can predict the effects of candidate allotments on
service quality, it can plan efficient allotments to
meet response time targets, favoring services with
higher value or more stringent SLAs.

C Resource management for diverse workloads.
Each service has a distinct profile for reference
locality and the CPU-intensity of requests. The
model parameters capture these properties, en-
abling the executive to select allotments to meet
performance goals. These may include allocating
surplus resources to optimize global metrics (e.g.,
global average response time, yield, or profit).

C Storage-aware caching. Storage units vary in their
performance due to differences in their configura-
tions or assigned loads. Models capture these dif-
ferences, enabling the resource scheduler to com-
pensate by assigning different amounts of memory
to reduce the dependence on storage where appro-
priate. Recent work [16] proposed reactive kernel
heuristics with similar goals.

C On-line capacity planning. The models can deter-
mine aggregate resource requirements for all hosted
services at observed or possible load levels. This is
useful for admission control or to vary hosting ca-
pacity with offered load.

This flexibility in meeting diverse goals makes MBRP
a powerful basis for proactive resource management in
utilities.

CPUp�q�q&r s8pHt&q�p�u8v λ

S t o r a g e

O b j e c t c a c h e (M)

D w

λ x

Figure 3: A simple model for serving static Web content. Re-
quests arrive at rate y (which varies with time) and incur an
average service demand z|{ in a CPU. An in-memory cache of
size } absorbs a portion ~ of the requests as hits; the misses
generate requests to storage at rate yk� .

Parameter Meaning� Zipf locality parameter�
Offered load in requests/s

S Average object size
T Total number of objects
M Memory size for object cache���

Average per-request CPU demand�F� , � Peak storage throughput in IOPS

Table 1: Input parameters for Web service models.

3 Web Service Models

This section presents simplified analytical models to pre-
dict performance of Web services with static content,
based on the system model depicted in Figure 3. Table 1
summarizes the model parameters and other inputs. Ta-
ble 2 summarizes the model outputs, which guide the
choices of the resource allocator described in Section 4.

The models are derived from basic queuing theory and
recent work on performance modeling for Web services.
They focus on average-case behavior and abstract away
much detail. For example, they assume that the network
within the data center is well-provisioned. Each of the
models could be extended to improve its accuracy; what
is important is the illustration they provide of the poten-
tial for model-based resource provisioning.

3.1 Server Memory

Many studies indicate that requests to static Web objects
follow a Zipf-like popularity distribution [11, 38]. The
probability �K� of a request to the � th most popular object
is proportional to �8�
�H� , for some parameter � . Many re-
quests target the most popular objects, but the distribu-
tion has a heavy tail of unpopular objects with poor ref-
erence locality. Higher � values increase the concentra-

Parameter Meaning� �
CPU response time�
Object cache hit ratio� � Storage request load in IOPS� � Average storage response time�
Average total response time

Table 2: Performance measures predicted by Web models.

tion of requests on the most popular objects. We assume
that object size is independent of popularity [11], and
that size distributions are stable for each service [35].

Given these assumptions, a utility OS can estimate hit
ratio for a memory size � from two parameters: � , and�

, the total size of the service’s data (consider � and
�

to be in units of objects). If the server effectively caches
the most popular objects (i.e., assuming perfect Least
Frequently Used or LFU replacement), and ignoring ob-
ject updates, the predicted object hit ratio

�
is given by

the portion of the Zipf-distributed probability mass that
is concentrated in the � most popular objects. We can
closely approximate this

�
by integrating over a con-

tinuous form of the Zipf probability distribution func-
tion [11, 38]. The closed form solution reduces to:

��� ���������T�
��� � ���H� (1)

Zipf distributions appear to be common in a large num-
ber of settings, so this model is more generally ap-
plicable. While pure LFU replacement is difficult to
implement, a large body of Web caching research has
yielded replacement algorithms that approximate LFU;
even poor schemes such as LRU are qualitatively simi-
lar in their behavior.

3.2 Storage I/O Rate

Given an estimate of cache hit ratio
�

, the service’s stor-
age I/O load is easily derived: for a Web load of

�
re-

quests per second, the I/O throughput demand
� � for

storage (in IOPS, or I/O operations per second) is:

� � � �K��� ��� ���
(2)

The average object size
�

is given as the number of I/O
operations to access an object on a cache miss.

3.3 Storage Response Time

To determine the performance impact of disk I/O, we
must estimate the average response time

� � from stor-
age. We model each storage server as a simple queuing

0 100 200 300 400 500
5

10

15

20

25

30

35

40

45

Offered Load λ
S
 (IOPS)

R
es

po
ns

e
Ti

m
e

 R
S

(m
se

c) o: Measured response time

*: Calculated by the model

µ
S
 = 453

µ
S
 = 587

µ
S
 = 660

Figure 4: Predicted and observed � � for an NFS server (Dell
4400, �¡ £¢ Seagate Cheetah disks, 256MB, BSD/UFS) un-
der three synthetic file access workloads with different fileset
sizes.

center, parameterized for ¤ disks; to simplify the pre-
sentation, we assume that the storage servers in the util-
ity are physically homogeneous. Given a stable request
mix, we estimate the utilization of a storage server at a
given IOPS request load

� � as
� � � �F� , where �F� is its

saturation throughput in IOPS for that service’s file set
and workload profile. We determine �¥� empirically for a
given request mix. A well-known response time formula
then predicts the average storage response time as:

� � � ¤S� �F�
��� �¦� � � � � � (3)

This model does not reflect variations in cache behavior
within the storage server, e.g., from changes to � or

� � .
Given the heavy-tailed nature of Zipf distributions, Web
server miss streams tend to show poor locality when the
Web server cache (�) is reasonably provisioned [14].

Figure 4 shows that this model closely approximates
storage server behavior at typical utilization levels and
under low-locality synthetic file access loads (random
reads) with three different fileset sizes (

�
). We used the

FreeBSD Concatenated Disk Driver (CCD) to stripe the
filesets across ¤ �¨§

disks, and the fstress tool [2] to
generate the workloads and measure

� � .

Since storage servers may be shared, we extend the
model to predict

� � when the service receives an al-
lotment � of storage server resources, representing the
maximum storage throughput in IOPS available to the
service within its share.

� � � ¤S���
��� �¦� � ��� � (4)

This formula assumes that some scheduler enforces pro-
portional shares �T� � � for storage. Our prototype uses
Request Windows [18] to approximate proportional shar-
ing. Other approaches to differentiated scheduling for
storage [23, 33] are also applicable.

3.4 Service Response Time

We combine these models to predict average total re-
sponse time

�
for the service, deliberately ignoring con-

gestion on the network paths to the clients (which the
utility OS cannot control). Given a measure

�©�
of

average per-request service demand on the Web server
CPU, CPU response time

� �
is given by a simple queu-

ing model similar to the storage model above; previous
work [12] illustrates use of such a model to adaptively
provision CPU resources for Web services. The ser-
vice’s average response time

�
is simply:

�ª�«� �n¬ � � � ��� ���
(5)

This ignores the CPU cost of I/O and the effects of
prefetching for large files. The CPU and storage models
already account (crudely) for these factors in the average
case.

3.5 Discussion

These models are cheap to evaluate and they capture the
key behaviors that determine application performance.
They were originally developed to improve understand-
ing of service behavior and to aid in static design of
server infrastructures; since they predict how resource
demands change as a function of offered load, they can
also act as a basis for dynamic provisioning in a shared
hosting utility. A key limitation is that the models as-
sume a stable average-case per-request behavior, and
they predict only average-case performance. For exam-
ple, the models here are not sufficient to provision for
probabilistic performance guarantees. Also, since they
do not account for interference among workloads us-
ing shared resources, MBRP depends on performance
isolation mechanisms (e.g., [9, 36]) that limit this in-
terference. Finally, the models do not capture over-
load pathologies [37]; MBRP must assign sufficient re-
sources to avoid overload, or use dynamic admission
control to prevent it.

Importantly, the models are independent of the MBRP
framework itself, so it is possible to replace them with
more powerful models or extend the approach to a wider

range of services. For example, it is easy to model sim-
ple dynamic content services with a stable average-case
service demand for CPU and memory. I/O patterns for
database-driven services are more difficult to model, but
a sufficient volume of requests will likely reflect a stable
average-case behavior.

MBRP must parameterize the models for each service
with the inputs from Table 1.

�
and

�
parameters

and average-case service demands are readily obtainable
(e.g., as in Muse [12] or Neptune [32]), but it is an open
question how to obtain � and �¥� from dynamic obser-
vations. The system can detect anomalies by comparing
observed behavior to the model predictions, but MBRP
is “brittle” unless it can adapt or reparameterize the mod-
els when anomalies occur.

4 A Model-Based Allocator

This section outlines a resource provisioning algorithm
that plans least-cost resource slices based on the mod-
els from Section 3. The utility OS executive periodi-
cally invokes it to adjust the allotments, e.g., based on
filtered load and performance observations. The out-
put is an allotment vector for each service, represent-
ing a CPU share together with memory and storage al-
lotments �¯®��k° . The provisioning algorithm comprises
three primitives designed to act in concert with an as-
signment planner, which maps the allotted shares onto
specific servers and storage units within the utility. The
resource provisioning primitives are as follows:

C Candidate plans initial candidate allotment vectors
that it predicts will meet SLA response time targets
for each service at its load

�
.

C LocalAdjust modifies a candidate vector to adapt to
a local resource constraint or surplus exposed dur-
ing assignment. For example, the assignment plan-
ner might place some service on a server with insuf-
ficient memory to supply the candidate � ; Local-
Adjust constructs an alternative vector that meets
the targets within the resource constraint, e.g., by
increasing � to reduce

� � .

C GroupAdjust modifies a set of candidate vectors to
adapt to a resource constraint or surplus exposed
during assignment. It determines how to reduce or
augment the allotments to optimize a global metric,
e.g., to minimize predicted average response time.
For example, the assignment planner might assign
multiple hosted services to share a network stor-
age unit; if the unit is not powerful enough to meet
the aggregate resource demand, then GroupAdjust
modifies each vector to conform to the constraint.

We have implemented these primitives in a prototype ex-
ecutive for a utility OS. The following subsections dis-
cuss each of these primitives in turn.

4.1 Generating Initial Candidates

To avoid searching a complex space of resource combi-
nations to achieve a given performance goal, Candidate
follows a simple principle: build a balanced system. The
allocator configures CPU and storage throughput (�)
allotments around a predetermined average utilization
level ±&²´³)µ;¶)·A² . The ±�²´³�µ�¶)·A² may be set in a “sweet spot”
range from 50-80% that balances efficient use of stor-
age and CPU resources against queuing delays incurred
at servers and storage units. The value for ±�²´³�µ;¶)·A² is a
separate policy choice. Lower values for ±�²´³�µ�¶)·A² provide
more “headroom” to absorb transient load bursts for the
service, reducing the probability of violating SLA tar-
gets. The algorithm generalizes to independent ± ²´³�µ�¶)·A²
values for each

�¦¸�¹�º8»�¼1½)¹ ® º
¹
¸�¾8¿Kº
½)¹ �
pair. ,

The Candidate algorithm consists of the following steps:

C Step 1. Predict CPU response time
�À�

at the con-
figured ± ²´³�µ;¶)·A² , as described in Section 3.4. Select
initial � � � � .

C Step 2. Using � and ±�²´³)µ;¶)·A² , predict storage re-
sponse time

� � using Equation (4). Note that the
allocator does not know

� � at this stage, but it is
not necessary because

� � depends only on � and
the ratio of

� � / � , which is given by ±�²´³�µ�¶)·A² .
C Step 3. Determine the required server memory hit

ratio (
�

) to reach the SLA target response time
�

,
using Equation (5) and solving for

�
as:

�Á� ���
� � � �

� � (6)

C Step 4. Determine the storage arrival rate
� � from�

and
�

, using Equation (2). Determine and as-
sign the resulting candidate storage throughput al-
lotment � =

� � / ± ²´³�µ�¶)·A² .
C Step 5. Loop to step 2 to recompute storage re-

sponse time
� � with the new value of � . Loop until

the difference of � values is within a preconfigured
percentage of �P� .

C Step 6. Determine and assign the memory allot-
ment � necessary to achieve the hit ratio

�
, using

Equation (1).

Note that the candidate � is the minimum required to
meet the response time target. Given reasonable tar-
gets, Candidate leaves memory undercommitted. To il-
lustrate, Figure 5 shows candidate storage and memory

0

50

100

150

200

250

0 100 200 300 400
Arrival Rate (Â)

S
to

ra
ge

 A
llo

tm
en

t (

Ã)

0

10

20

30

40

50

60

70

M
em

or
y

(M
B

)

Storage Allotment (Ä)

Memory Allotment

Figure 5: Using Candidate and LocalAdjust to determine
memory and storage allotments for a service. As service load
(y) increases, Candidate increases the storage share Å to meet
response time targets. After encountering a resource constraint
at Å© ÇÆYÈ�È IOPS, LocalAdjust transforms the candidate allot-
ments to stay on target by adding memory instead.

allotments �¯®��k° for an example service as offered Web
load

�
increases along the � -axis. Candidate responds

to increasing load by increasing � rather than � . This
is because increasing

�
does not require a higher hit ra-

tio
�

to meet a fixed response time target. For a fixed
� and corresponding

�
,

� � grows linearly with
�

, and
so the storage allotment � also grows linearly following� � �'� � ±&²´³�µ�¶)·A² .
Figure 5 also shows how the provisioning scheme ad-
justs the vectors to conform to a resource constraint.
This example constrains � to 200 IOPS, ultimately forc-
ing the system to meet its targets by increasing the can-
didate � . Candidate itself does not consider resource
constraints; the next two primitives adapt allotment vec-
tors on a local or group basis to conform to resource
constraints, or to allocate surplus resources to improve
performance according to system-wide metrics.

4.2 Local Constraint or Surplus

The input to LocalAdjust is a candidate allotment vector
and request arrival rate

�
, together with specified con-

straints on each resource. The output of LocalAdjust is
an adjusted vector that achieves a predicted average-case
response time as close as possible to the target, while
conforming to the resource constraints. Since this pa-
per focuses primarily on memory and storage resources,
we ignore CPU constraints. Specifically, we assume that
the expected CPU response time

� �
for a given ±�²´³�µ�¶)·A²

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100
Available Memory (MB)

M
em

or
y

A
llo

tm
en

t (
M

B
)

É = .6, T= 20000 ObjectsÉ = .6, T= 40000 ObjectsÉ = .9, T = 20000 ObjectsÉ = .9, T = 40000 Objects

0

5

10

15

20

25

30

35

40

45

50

0 20 40 60 80 100

Available Memory (MB)

M
em

or
y

A
llo

tm
en

t (
M

B
)

Ê
 = 25Ê
 = 50Ê
 = 75Ê
 = 100

Figure 6: Memory allotments by GroupAdjust for four competing services with different caching profiles (left) and different
request arrival rates (right).

is fixed and achievable. CPU allotments are relatively
straightforward because memory and storage allotments
affect per-request CPU demand only minimally. For ex-
ample, if the CPU is the bottleneck, then the allotments
for other resources are easy to determine: set

�
to the

saturation request throughput rate, and provision other
resources as before.

If the storage constraint falls below the candidate stor-
age allotment � , then LocalAdjust assigns the maximum
value to � , and rebalances the system by expanding the
memory allotment � to meet the response time target
given the lower allowable request rate

� � for storage.
Determine the allowable

� � � �S± ²´³�µ�¶)·A² at the precon-
figured ± ²´³)µ;¶)·A² . Determine the hit ratio

�
needed to

achieve this
� � using Equation (2), and the memory al-

lotment � to achieve
�

using Equation (1).

Figure 5 illustrates the effect of LocalAdjust on the can-
didate vector under a storage constraint at � �ÌË�Í&Í
IOPS. As load

�
increases, LocalAdjust meets the re-

sponse time target by holding � to the maximum and
growing � instead. The candidate � varies in a
(slightly) nonlinear fashion because

�
grows as � in-

creases, so larger shares of the increases to
�

are ab-
sorbed by the cache. This effect is partially offset by the
dynamics of Web content caching captured in Equation
(1): due to the nature of Zipf distributions,

�
grows log-

arithmically with � , requiring larger marginal increases
to � to effect the same improvement in

�
.

If memory is constrained, LocalAdjust sets � to the
maximum and rebalances the system by expanding �
(if possible). The algorithm is as follows: determine

�
and

� � at � using Equations (1) and (2), and use� � to determine the adjusted storage allotment as � �
� � �
± ²´³)µ;¶)·A² . Then compensate for the reduced

�
by in-

creasing � further to reduce storage utilization levels be-
low ±�²´³�µ�¶)·A² , improving the storage response time

� � .

If both � and � are constrained, assign both to their
maximum values and report the predicted response time
using the models in the obvious fashion. LocalAdjust ad-
justs allotments to consume a local surplus in the same
way. This may be useful if the service is the only load
component assigned to some server or set of servers.
Surplus assignment is more interesting when the system
must distribute resources among multiple competing ser-
vices, as described below.

4.3 Group Constraint or Surplus

GroupAdjust adjusts a set of candidate allotment vec-
tors to consume a specified amount of memory and/or
storage resource. GroupAdjust may adapt the vectors to
conform to resource constraints or to allocate a resource
surplus to meet system-wide goals.

For example, GroupAdjust can reprovision available
memory to maximize hit ratio across a group of hosted
services. This is an effective way to allocate surplus
memory to optimize global response time, to degrade
service fairly when faced with a memory constraint, or
to reduce storage loads in order to adapt to a storage con-
straint. Note that invoking GroupAdjust to adapt to con-
straints on specific shared storage units is an instance of
storage-aware caching [16], achieved naturally as a side
effect of model-based resource provisioning.

0

5

10

15

20

25

30

45 55 65 75 85
Increase Total Memory (MB) ->

M
em

or
y

A
llo

tm
en

t (
M

B
)

Highest SLA Response Time
2nd Highest SLA Response
3rd Highest SLA Reponse
Lowest SLA Response Time

Figure 7: Using Candidate and GroupAdjust to allocate mem-
ory to competing services; in this example, the services are
identical except for differing SLA response time targets. Can-
didate determines the minimum memory to meet each ser-
vice’s target; GroupAdjust allocates any surplus to the services
with the least memory.

GroupAdjust assigns available memory to maximize hit
ratio across a group as follows. First, multiply Equation
(1) for each service by its expected request arrival rate�

. This gives a weighted value of service hit rates (hits
or bytes per unit of time) for each service, as a function
of its memory allotment � . The derivative of this func-
tion gives the marginal benefit for allocating a unit of
memory to each service at its current allotment � . A
closed form solution is readily available, since Equation
(1) was obtained by integrating over the Zipf probabil-
ity distribution (see Section 3.1). GroupAdjust uses a
gradient-climbing approach (based on the Muse MSRP
algorithm [12]) to assign each unit of memory to the ser-
vice with the highest marginal benefit at its current � .
This algorithm is efficient: it runs in time proportional to
the product of the number of candidate vectors to adjust
and the number of memory units to allocate.

To illustrate, Figure 6 shows the memory allotments of
GroupAdjust to four competing services with different
cache behavior profiles

� � ® � ® �h�
, as available memory

increases on the � -axis. The left-hand graph varies the� and
�

parameters, holding offered load
�

constant
across all services. Services with higher � concentrate
more of their references on the most popular objects,
improving cache effectiveness for small � , while ser-
vices with lower

�
can cache a larger share of their ob-

jects with a given � . The graph shows that for services
with the same � values, GroupAdjust prefers to allocate

memory to services with lower
�

. In the low-memory
cases, it prefers higher-locality services (higher �); as
total memory increases and the most popular objects of
higher � services fit in cache, the highest marginal ben-
efit for added memory moves to lower � services. These
properties of Web service cache behavior result in the
crossover points for services with differing � values.

The right-hand graph in Figure 6 shows four services
with equal � and

�
but varying offered load

�
. Higher�

increases the marginal benefit of adding memory for a
service, because a larger share of requests go to that ser-
vice’s objects. GroupAdjust effectively balances these
competing demands. When the goal is to maximize
global hit ratio, as in this example, a global perfect-
LFU policy in the Web servers would ultimately yield
the same � shares devoted to each service. Our model-
based partitioning scheme produces the same result as
the reactive policy (if the models are accurate), but it
also accommodates other system goals in a unified way.
For example, GroupAdjust can use the models to opti-
mize for global response time in a storage-aware fash-
ion; it determines the marginal benefit in response time
for each service as a function of its � , factoring in the
reduced load on shared storage. Similarly, it can account
for service priority by optimizing for “utility” [12, 21] or
“yield” [32], composing the response time function for
each service with a yield function specifying the value
for each level of service quality.

4.4 Putting It All Together

Candidate and GroupAdjust work together to combine
differentiated service with other system-wide perfor-
mance goals. Figure 7 illustrates how they allocate sur-
plus memory to optimize global response time for four
example services. In this example, the hosted services
have identical

�
and caching profiles

� � ® � ® �h�
, but their

SLAs specify different response time targets. Candidate
allocates the minimum memory (total 46 MB) to meet
the targets, assigning more memory to services with
more stringent targets. GroupAdjust then allocates sur-
plus memory to the services that offer the best marginal
improvement in overall response time. Since the ser-
vices have equivalent behavior, the surplus goes to the
services with the smallest allotments.

Figure 8 further illustrates the flexibility of MBRP to
adapt to observed changes in load or system behavior.
It shows allotments �¯®��S° for three competing services
s0, s1, and s2. The system is configured to consolidate
all loads on a shared server and storage unit, meet min-
imal response time targets when possible, and use any
surplus resources to optimize global response time. The
services begin with identical arrival rates

�
, caching pro-

files
� � ® � ® �"�

, and response time targets. The experi-

1 Services Equal

2 Svc 0: increase Î * 2

3 Svc 1: increase Î * 3

4 Svc 2: reduce α from .9 to .6

5 Svc 2: reduce SLA 40%

6 Reduce total memory 10%

Storage Bandwidth Memory

Service 0 Service 1 Service 2

Figure 8: Allotments Ï }�Ð;Å�Ñ for three competing services in a multiple step experiment. For each step, the graphs represent the
allotment percentage of each resource received by each service.

ment modifies a single parameter in each of six steps and
shows its effect on the allotments; the changes through
the steps are cumulative.

C In the base case, all services receive equal shares.

C Step 2 doubles
�

for s0. The system shifts memory
to s0 to reflect its higher share of the request load,
and increases its � to rebalance storage utilization
to ±�²´³�µ�¶�·1² , compensating for a higher storage load.

C Step 3 triples the arrival rate for s1. The system
shifts memory to s1; note that the memory shares
match each service’s share of the total request load.
The system also rebalances storage by growing s1’s
share at the expense of the lightly loaded s2.

C Step 4 reduces the cache locality of s2 by reducing
its � from Ò Ó to Ò Ô . This forces the system to shift
resources to s2 to meet its response time target, at
the cost of increasing global average response time.

C Step 5 lowers the response time target for s2 by§�Í�Õ
. The system further compromises its global

response time goal by shifting even more memory
to s2 to meet its more stringent target. The addi-
tional memory reduces the storage load for s2, al-
lowing the system to shift some storage resource to
the more heavily loaded services.

C The final step in this experiment reduces the
amount of system memory by � Í�Õ

. Since s2 holds
the minimum memory needed to meet its target, the
system steals memory from s0 and s1, and rebal-
ances storage by increasing s1’s share slightly.

0

20

40

60

80

100

120

140

0 10 20 30 40 50
Time (Minutes)

C
ac

he
 S

iz
e

(M
B

)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Th
ou

sa
nd

s

Ö S
 (I

O
P

S
)

Allotted Memory

Consumed Memory

Predicted × Storage (IOPS)

Storage IOPS Moving Average

Figure 9: Predicted and observed storage I/O request rate
vary with changing memory allotment for a Dash server un-
der a typical static Web load (a segment of a 2001 trace of
www.ibm.com).

5 Prototype and Results

To evaluate the MBRP approach, we prototyped key
components of a Web service utility (as depicted in
Figure 1) and conducted initial experiments using Web
traces and synthetic loads. The cluster testbed consists
of load generating clients, a reconfigurable L4 redirect-
ing switch (from [12]), Web servers, and network stor-
age servers accessed using the Direct Access File Sys-
tem protocol (DAFS [13, 24]), an emerging standard for
network storage in the data center. We use the DAFS im-
plementation from [24] over an Emulex cLAN network.

0

20

40

60

80

100

120

140

160

0 20 40 60 80 100

Ø (R
eq

ue
st

s/
S

ec
)

Service 1 Ù
Service 1 Smoothed Ù
Service 2 Ù
Service 2 Smoothed Ù

Figure 10: Arrival rate y for two services handling synthetic
load swells under the Dash Web server.

The prototype utility OS executive coordinates resource
allocation as described in Section 4. It periodically
observes request arrival rates (

�
) and updates resource

slices to adapt to changing conditions. The executive
implements its actions through two mechanisms. First,
it issues directives to the switch to configure the active
server sets for each hosted service; the switch distributes
incoming requests for each service evenly across its ac-
tive set. Second, it controls the resource shares allocated
to each service on each Web server.

To allow external resource control, our prototype uses
a new Web server that we call Dash [8]. Dash acts as
a trusted component of the utility OS; it provides a pro-
tected, resource-managed execution context for services,
and exports powerful resource control and monitoring
interfaces to the executive. Dash incorporates a DAFS
user-level file system client, which enables user-level re-
source management in the spirit of Exokernel [19], in-
cluding full control over file caching and and data move-
ment [24]. DAFS supports fully asynchronous access
to network storage, enabling a single-threaded, event-
driven Web server structure as proposed in the Flash
Web server work [27]—hence the name Dash. In addi-
tion, Dash implements a decentralized admission control
scheme called Request Windows [18] that approximates
proportional sharing of storage server throughput. The
details and full evaluation of Dash and Request Windows
are outside the scope of this paper.

For our experiments, the Dash and DAFS servers run
on SuperMicro SuperServer 6010Hs with 866 MHz
Pentium-III Xeon CPUs; the DAFS servers use one 9.1
GB 10,000 RPM Seagate Cheetah drive. Dash con-

0

10

20

30

40

50

60

70

80

0 20 40 60 80 100

C
ac

he
 S

iz
e

(M
B

)

Svc 1 Memory (M)

Svc 2 Memory (M)

Figure 11: Memory allotments } for two services handling
synthetic load swells under the Dash Web server. As load in-
creases, LocalAdjust provisions additional memory to the ser-
vices to keep the response time within SLA limits. Service 1
is characterized by higher storage access costs and therefore
receives more memory to compensate.

trols memory usage as reported in the experiments. Web
traffic originates from a synthetic load generator ([10])
or Web trace replay as reported; the caching profiles� � ® � ® �h�

are known a priori and used to parameterize
the models. All machines run FreeBSD 4.4.

We first present a simple experiment to illustrate the
Dash resource control and to validate the hit ratio model
(Equation (2)). Figure 9 shows the predicted and ob-
served storage request rate

� � in IOPS as the service’s
memory allotment � varies. The Web load is an accel-
erated 40-minute segment of a 2001 IBM trace [12] with
steadily increasing request rate

�
. Larger � improves

the hit ratio for the Dash server cache; this tends to re-
duce

� � , although
� � reflects changes in

�
as well as

hit ratio. The predicted
� � approximates the observed

I/O load; the dip at Ú �ÜÛ&Í
minutes is due to a tran-

sient increase in request locality, causing an unpredicted
transient improvement in cache hit ratio. Although the
models tend to be conservative in this example, the ex-
periment demonstrates the need for a safety margin to
protect against transient deviations from predicted be-
havior.

To illustrate the system’s dynamic behavior in storage-
aware provisioning, we conducted an experiment with
two services with identical caching profiles

� � ® � ® �"�
and response time targets, serving identical synthetic
load swells on a Dash server. The peak IOPS through-

0

50

100

150

200

250

Time

R
eq

ue
st

s
P

er
 S

ec
on

d
Service 1 Arrival, Moving Average

Service 2 Arrival, Moving Average

Service 3 Arrival, Moving Average

0

50

100

150

200

250

300

350

Time

R
es

po
ns

e
Ti

m
e

(m
s)

Service 2, switching

Service 2, no switching

Figure 13: Arrival rates for competing services (left) and client response time with and without a bin-packing assignment phase to
switch Web servers (right) handling the service.

0

200

400

600

800

1000

1200

1400

1600

1800

0 20 40 60 80 100

Ý S
 (I

O
P

S
)

Svc 1 Storage Þ (IOPS)

Svc 2 Storage Þ (IOPS)

Figure 12: I/O rate (yk�) for two services handling synthetic
load swells under the Dash Web server. As additional memory
is allocated to the services to meet SLA targets, the storage ar-
rival rate decreases. Service 1 storage load reduces at a greater
rate due to the additional memory allocated to this service.

puts available at the storage server for each service (re-
flected in the �Pß parameters) are constrained at different
levels, with a more severe constraint for service 1. Fig-
ure 10 shows the arrival rates

�
and the values smoothed

by a “flop-flip” stepped filter [12] for input to the exec-
utive. Figure 11 shows the memory allotments for each
service during the experiments, and Figure 12 shows the
resulting storage loads

� � . The storage constraints force
the system to assign each service more memory to meet

its target; as load increases, it allocates proportionally
more memory to service 1 because it requires a higher�

to meet the same target. As a result, service 1 shows
a lower I/O load on its more constrained storage server.
This is an example of how the model-based provisioning
policies (here embodied in LocalAdjust) achieve similar
goals to storage-aware caching [16].

The last experiment uses a rudimentary assignment plan-
ner to illustrate the role of assignment in partitioning
cluster resources for response time targets. We com-
pared two runs of three services on two Dash servers
under the synthetic loads shown on the left-hand side
of Figure 13, which shows a saturating load spike for
service 3. In the first run, service 1 is bound to serverà

and services 2 and 3 are bound to server á . This
results in a response time jump for service 2, shown
in the right-hand graph in Figure 13; since the system
cannot meet targets for both services, it uses GroupAd-
just to provision á ’s resources for the best average-case
response time. The second run employs a simple bin-
packing scheme to assign the provisioned resource slices
to servers. In this run, the system reassigns service 2 toà

when the load spike for service 3 exposes the local
resource constraint on á ; this is possible because Can-
didate determines that there are sufficient resources on

à
to meet the response time targets for both services 1 and
2. To implement this choice, the executive directs the
switch to route requests for service 2 to

à
rather than

á . This allows service 2 to continue meeting its tar-
get. This simple example shows the power of the model-
based provisioning primitives as a foundation for com-
prehensive resource management for cluster utilities.

6 Related Work

Adaptive resource management for servers. Aron [6]
uses kernel-based feedback schedulers to meet latency
and throughput goals for network services running on
a single shared server. Abdelzaher et. al. [1] have
addressed the control-theoretical aspects of feedback-
controlled Web server performance management.

SEDA [37] reactively provisions CPU resources (by
varying the number of threads) across multiple service
stages within a single server. SEDA emphasizes re-
quest admission control to degrade gracefully in over-
load. A utility can avoid overload by expanding re-
source slices and recruiting additional servers as traffic
increases. SEDA does not address performance isolation
for shared servers.

Resource management for cluster utilities. Several
studies use workload profiling to estimate the resource
savings of multiplexing workloads in a shared utility.
They focus on the probability of exceeding performance
requirements for various degrees of CPU overbook-
ing [4, 6, 34]. Our approach varies the degree of over-
booking to adapt to load changes, but our current models
consider only average-case service quality within each
interval. The target utilization parameters (± ²´³)µ;¶)·A²) al-
low an external policy to control the “headroom” to han-
dle predicted load bursts with low probability of violat-
ing SLA targets.

There is a growing body of work on adaptive re-
source management for cluster utilities under time-
varying load. Our work builds on Muse [12], which
uses a feedback-controlled policy manager and redirect-
ing switch to partition cluster resources; [39] describes
a similar system that includes a priority-based admis-
sion control scheme to limit load. Levy [21] presents an
enhanced framework for dynamic SOAP Web services,
based on a flexible combining function to optimize con-
figurable class-specific and cluster-specific objectives.
Liu [22] proposes provisioning policies (SLAP) for e-
commerce traffic in a Web utility, and focuses on max-
imizing SLA profits. These systems incorporate analyt-
ical models of CPU behavior; MBRP extends them to
provision for multiple resources including cluster mem-
ory and storage throughput.

Several of these policy-based systems rely on resource
control mechanisms—such as Resource Containers [9]
or VMware ESX [36]— to allow performance-isolated
server consolidation. Cluster Reserves [7] extends a
server resource control mechanism (Resource Contain-
ers) to a cluster. These mechanisms are designed to en-
force a provisioning policy, but they do not define the
policy. Cluster Reserves adjusts shares on individual
servers to bound aggregate usage for each hosted ser-

vice. It is useful for utilities that do not manage request
traffic within the cluster. In contrast, our approach uses
server-level (rather than cluster-level) resource control
mechanisms in concert with redirecting switches.

The more recent Neptune [32] work proposes an alter-
native to provisioning (or partitioning) cluster resources.
Neptune maximizes an abstract SLA yield metric, simi-
larly to other utility resource managers [12, 21, 22]. Like
SLAP, each server schedules requests locally to max-
imize per-request yield. Neptune has no explicit pro-
visioning; it distributes requests for all services evenly
across all servers, and relies on local schedulers to max-
imize global yield. While this approach is simple and
fully decentralized, it precludes partitioning the clus-
ter for software heterogeneity [5, 25], memory local-
ity [14, 26], replica control [17, 31], or performance-
aware storage placement [3].

Virtual Services [29] proposes managing services with
multiple tiers on different servers. This paper shows
how MBRP coordinates provisioning of server and stor-
age tiers; we believe that MBRP can extend to multi-tier
services.

Memory/storage management. Kelly [20] proposes a
Web proxy cache replacement scheme that considers the
origin server’s value in its eviction choices. Storage-
Aware Caching [16] develops kernel-based I/O caching
heuristics that favor blocks from slower storage units.
MBRP shares the goal of a differentiated caching ser-
vice, but approaches it by provisioning memory shares
based on a predictive model of cache behavior, rather
than augmenting the replacement policy. MBRP sup-
ports a wide range of system goals in a simple and direct
way, but its benefits are limited to applications for which
the system has accurate models.

Several systems use application-specific knowledge to
manage I/O caching and prefetching. Patterson et.
al. [28] uses application knowledge and a cost/benefit
algorithm to manage resources in a shared I/O cache
and storage system. Faloutsos [15] uses knowledge of
database access patterns to predict the marginal benefit
of memory to reduce I/O demands for database queries.

Hippodrome [3] automatically assigns workload compo-
nents to storage units in a utility data center. Our work
is complementary and uses a closely related approach.
Hippodrome is model-based in that it incorporates de-
tailed models of storage system performance, but it has
no model of the applications themselves; in particular,
it cannot predict the effect of its choices on application
service quality. Hippodrome employs a backtracking as-
signment planner (Ergastulum); we believe that a similar
approach could handle server assignment in a utility data
center using our MBRP primitives.

7 Conclusion

Scalable automation of large-scale network services is
a key challenge for computing systems research in the
next decade. This paper deals with a software frame-
work and policies to manage network services as utilities
whose resources are automatically provisioned and sold
according to demand, much as electricity is today. This
can improve robustness and efficiency of large services
by multiplexing shared resources rather than statically
overprovisioning each service for its worst case.

The primary contribution of this work is to demon-
strate the potential of model-based resource provision-
ing (MBRP) for resource management in a Web hosting
utility. Our approach derives from established models of
Web service behavior and storage service performance.
We show how MBRP policies can adapt to resource
availability, request traffic, and service quality targets.
These policies leverage the models to predict the perfor-
mance effects of candidate resource allotments, creating
a basis for informed, policy-driven resource allocation.
MBRP is a powerful way to deal with complex resource
management challenges, but it is only as good as the
models. The model-based approach is appropriate for
utilities running a small set of large-scale server applica-
tions whose resource demands are a function of load and
stable, observable characteristics.

Acknowledgments

Darrell Anderson and Sara Sprenkle contributed to the ideas
in this paper, and assisted with some experiments. We thank
Mike Spreitzer, Laura Grit, and the anonymous reviewers for
their comments, which helped to improve the paper.

References
[1] T. F. Abdelzaher, K. G. Shin, and N. Bhatti. Per-

formance guarantees for Web server end-systems: A
control-theoretical approach. IEEE Transactions on Par-
allel and Distributed Systems, June 2001.

[2] D. C. Anderson and J. S. Chase. Fstress: A flexible net-
work file service benchmark. Technical Report CS-2002-
01, Duke University, Department of Computer Science,
January 2002.

[3] E. Anderson, M. Hobbs, K. Keeton, S. Spence, M. Uysal,
and A. Veitch. Hippodrome: running circles around stor-
age administration. In Proceedings of the First Usenix
Conference on File and Storage Technologies (FAST),
January 2002.

[4] A. Andrzejak, M. Arlitt, and J. Rolia. Bounding the re-
source savings of utility computing models. Technical
Report HPL-2002-339, HP Labs, November 2002.

[5] K. Appleby, S. Fakhouri, L. Fong, G. Goldszmidt,
M. Kalantar, S. Krishnakumar, D. Pazel, J. Pershing, and

B. Rochwerger. Oceano - SLA based management of a
computing utility. In Proceedings of the 7th IFIP/IEEE
International Symposium on Integrated Network Man-
agement, May 2001.

[6] M. Aron. Differentiated and Predictable Quality of Ser-
vice in Web Server Systems. PhD thesis, Department of
Computer Science, Rice University, October 2000.

[7] M. Aron, P. Druschel, and W. Zwaenepoel. Clus-
ter reserves: A mechanism for resource management
in cluster-based network servers. In Proceedings of
the Joint International Conference on Measurement and
Modeling of Computer Systems (ACM SIGMETRICS
2000), pages 90–101, June 2000.

[8] O. M. Asad. Dash: A direct-access Web server with
dynamic resource provisioning. Master’s thesis, Duke
University, Department of Computer Science, December
2002.

[9] G. Banga, P. Druschel, and J. C. Mogul. Resource Con-
tainers: A new facility for resource management in server
systems. In Proceedings of the Third Symposium on
Operating Systems Design and Implementation (OSDI),
February 1999.

[10] P. Barford and M. E. Crovella. Generating representa-
tive Web workloads for network and server performance
evaluation. In Proceedings of Performance ’98/ACM
SIGMETRICS ’98, pages 151–160, June 1998.

[11] L. Breslau, P. Cao, L. Fan, G. Phillips, and S. Shenker.
Web caching and Zipf-like distributions: Evidence and
implications. In Proceedings of IEEE Infocom ’99,
March 1999.

[12] J. S. Chase, D. C. Anderson, P. N. Thakar, A. M. Vahdat,
and R. P. Doyle. Managing energy and server resources
in hosting centers. In Proceedings of the 18th ACM Sym-
posium on Operating System Principles (SOSP), pages
103–116, October 2001.

[13] M. DeBergalis, P. Corbett, S. Kleiman, A. Lent,
D. Noveck, T. Talpey, and M. Wittle. The Direct Access
File System. In Proceedings of the 2nd USENIX Con-
ference on File and Storage Technologies (FAST), March
2003.

[14] R. P. Doyle, J. S. Chase, S. Gadde, and A. M. Vah-
dat. The trickle-down effect: Web caching and server re-
quest distribution. Computer Communications: Selected
Papers from the Sixth International Workshop on Web
Caching and Content Delivery (WCW), 25(4):345–356,
March 2002.

[15] C. Faloutsos, R. T. Ng, and T. K. Sellis. Flexible and
adaptable buffer management techniques for database
management systems. IEEE Transactions on Computers,
44(4):546–560, April 1995.

[16] B. C. Forney, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dusseau. Storage-aware caching: Revisiting caching for
heterogeneous storage systems. In Proceedings of the
First Usenix Conference on File and Storage Technolo-
gies (FAST), January 2002.

[17] S. D. Gribble, E. A. Brewer, J. M. Hellerstein, and
D. Culler. Scalable, distributed data structures for In-
ternet service construction. In Proceedings of the Fourth
Symposium on Operating Systems Design and Implemen-
tation (OSDI), October 2000.

[18] W. Jin, J. S. Chase, and J. Kaur. Proportional sharing for a
storage utility. Technical Report CS-2003-02, Duke Uni-
versity, Department of Computer Science, January 2003.

[19] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M.
Briceno, R. Hunt, D. Mazieres, T. Pinckney, R. Grimm,
J. Jannotti, and K. Mackenzie. Application performance
and flexibility on Exokernel systems. In Proceedings of
the 16th ACM Symposium on Operating Systems Princi-
ples, October 1997.

[20] T. P. Kelly, S. Jamin, and J. K. MacKie-Mason. Variable
QoS from shared Web caches: User-centered design and
value-sensitive replacement. In Proceedings of the MIT
Workshop on Internet Service Quality Economics (ISQE
99), December 1999.

[21] R. Levy, J. Nagarajarao, G. Pacifici, M. Spreitzer,
A. Tantawi, and A. Youssef. Performance management
for cluster-based Web services. In Proceedings of the 8th
International Symposium on Integrated Network Man-
agement (IM 2003), March 2003.

[22] Z. Liu, M. S. Squillante, and J. L. Wolf. On maximiz-
ing service-level-agreement profits. In Proceedings of
the ACM Conference on Electronic Commerce (EC’01),
October 2001.

[23] C. R. Lumb, A. Merchant, and G. A. Alvarez. Facade:
Virtual storage devices with performance guarantees. In
Proceedings of the 2nd Usenix Conference on File and
Storage Technologies (FAST), March 2003.

[24] K. Magoutis, S. Addetia, A. Fedorova, M. Seltzer,
J. Chase, R. Kisley, A. Gallatin, R. Wickremisinghe, and
E. Gabber. Structure and performance of the Direct Ac-
cess File System. In USENIX Technical Conference,
pages 1–14, June 2002.

[25] J. Moore, D. Irwin, L. Grit, S. Sprenkle, and J. Chase.
Managing mixed-use clusters with Cluster-on-Demand.
Technical report, Duke University, Department of Com-
puter Science, November 2002.

[26] V. S. Pai, M. Aron, G. Banga, M. Svendsen, P. Druschel,
W. Zwaenopoel, and E. Nahum. Locality-aware request
distribution in cluster-based network servers. In Proceed-
ings of the Eighth International Conference on Architec-
tural Support for Programming Languages and Operat-
ing Systems (ASPLOS VIII), October 1998.

[27] V. S. Pai, P. Druschel, and W. Zwaenepoel. Flash: An
efficient and portable Web server. In Proceedings of the
1999 Annual Usenix Technical Conference, June 1999.

[28] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed prefetching and caching. In
Proceedings of the Fifteenth ACM Symposium on Operat-
ing Systems Principles, pages 79–95, Copper Mountain,
CO, December 1995. ACM Press.

[29] J. Reumann, A. Mehra, K. G. Shin, and D. Kandlur. Vir-
tual Services: A new abstraction for server consolidation.
In Proceedings of the Usenix 2000 Technical Conference,
June 2000.

[30] J. Rolia, S. Singhal, and R. Friedrich. Adaptive Inter-
net data centers. In Proceedings of the International
Conference on Advances in Infrastructure for Electronic
Business, Science, and Education on the Internet (SSGRR
’00), July 2000.

[31] Y. Saito, B. N. Bershad, and H. M. Levy. Manageabil-
ity, availability and performance in Porcupine: A highly
scalable cluster-based mail service. In Proceedings of the
17th ACM Symposium on Operating Systems Principles
(SOSP), pages 1–15, Kiawah Island, December 1999.

[32] K. Shen, H. Tang, T. Yang, and L. Chu. Integrated re-
source management for cluster-based Internet services.
In Proceedings of the 5th Symposium on Operating Sys-
tems Design and Implementation (OSDI ’02), December
2002.

[33] P. Shenoy and H. M. Vin. Cello: A disk scheduling
framework for next-generation operating systems. In
Proceedings of the International Conference on Mea-
surement and Modeling of Computer Systems (SIGMET-
RICS), June 1998.

[34] B. Urgaonkar, P. Shenoy, and T. Roscoe. Resource over-
booking and application profiling in shared hosting plat-
forms. In Proceedings of the 5th Symposium on Oper-
ating Systems Design and Implementation (OSDI ’02),
December 2002.

[35] A. Venkataramani, P. Yalagandula, R. Kokku, S. Sharif,
and M. Dahlin. The potential costs and benefits of
long-term prefetching for content distribution. Computer
Communications: Selected Papers from the Sixth Interna-
tional Workshop on Web Caching and Content Delivery
(WCW), 25(4):367–375, March 2002.

[36] C. A. Waldspurger. Memory resource management in
VMware ESX server. In Proceedings of the 5th Sympo-
sium on Operating Systems Design and Implementation
(OSDI ’02), December 2002.

[37] M. Welsh, D. Culler, and E. Brewer. SEDA: An architec-
ture for well-conditioned, scalable Internet services. In
Proceedings of the Eighteenth Symposium on Operating
Systems Principles (SOSP-18), Banff, Canada, October
2001.

[38] A. Wolman, G. Voelker, N. Sharma, N. Cardwell, A. Kar-
lin, and H. Levy. On the scale and performance of coop-
erative Web proxy caching. In Proceedings of the 17th
ACM Symposium on Operating Systems Principles, De-
cember 1999.

[39] H. Zhu, H. Tang, and T. Yang. Demand-driven service
differentiation in cluster-based network servers. In Pro-
ceedings of IEEE Infocom 2001, April 2001.

