
Optimizing NUCA Organizations and Wiring Alternatives for Large Caches
With CACTI 6.0 ∗

Naveen Muralimanohar†, Rajeev Balasubramonian†, Norm Jouppi‡
† School of Computing, University of Utah

‡ Hewlett-Packard Laboratories

Abstract

A significant part of future microprocessor real
estate will be dedicated to L2 or L3 caches. These
on-chip caches will heavily impact processor perfor-
mance, power dissipation, and thermal management
strategies. There are a number of interconnect design
considerations that influence power/performance/area
characteristics of large caches, such as wire mod-
els (width/spacing/repeaters), signaling strategy
(RC/differential/transmission), router design, etc.
Yet, to date, there exists no analytical tool that takes all
of these parameters into account to carry out a design
space exploration for large caches and estimate an
optimal organization. In this work, we implement two
major extensions to the CACTI cache modeling tool that
focus on interconnect design for a large cache. First, we
add the ability to model different types of wires, such as
RC-based wires with different power/delay characteristics
and differential low-swing buses. Second, we add the
ability to model Non-uniform Cache Access (NUCA). We
not only adopt state-of-the-art design space exploration
strategies for NUCA, we also enhance this exploration
by considering on-chip network contention and a wider
spectrum of wiring and routing choices. We present a
validation analysis of the new tool (to be released as
CACTI 6.0) and present a case study to showcase how the
tool can improve architecture research methodologies.

Keywords: cache models, non-uniform cache archi-
tectures (NUCA), memory hierarchies, on-chip intercon-
nects.

1. Introduction

Multi-core processors will incorporate large and com-
plex cache hierarchies. The Intel Montecito employs two
12 MB private L3 caches, one for each core [25]. In-
tel is already prototyping an 80-core processor [30, 38]
and there is speculation that entire dies in a 3D package
may be employed for large SRAM caches or DRAM main
memory [7, 23, 30]. Therefore, it is expected that future
processors will have to intelligently manage many mega-
bytes of on-chip cache. Future research will likely ex-
plore architectural mechanisms to (i) organize the L2 or

∗We thank the anonymous reviewers for their helpful suggestions.
This work was supported in parts by NSF grant CCF-0430063 andNSF
CAREER award CCF-0545959.

L3 cache into shared/private domains, (ii) move data to
improve locality and sharing, (iii) optimize the network
parameters (topology, routing) for efficient communica-
tion between cores and cache banks. Examples of on-
going research in these veins include [5, 6, 10, 11, 12, 15,
19, 20, 21, 22, 33, 44].

Many cache evaluations employ the CACTI cache ac-
cess modeling tool [43] to estimate delay, power, and area
for a given cache size1. The CACTI estimates are invalu-
able in setting up baseline simulator parameters, comput-
ing temperatures of blocks neighboring the cache, eval-
uating the merits/overheads of novel cache organizations
(banking, reconfiguration, additional bits of storage), etc.
While CACTI 5.0 produces reliable delay/power/area es-
timates for moderately sized caches, it does not model the
requirements of large caches in sufficient detail. Besides,
the search space of the tool is limited and hence so is its
application in power/performance trade-off studies. With
much of future cache research focused on multi-megabyte
cache hierarchy design, this is a serious short-coming.
Hence, in this work, we extend the CACTI tool in many
ways, with the primary goal of improving the fidelity of
its large cache estimates. The tool can also aid in trade-off
analysis: for example, with a comprehensive design space
exploration, CACTI 6.0 can identify cache configurations
that consume three times less power for about a 25% delay
penalty.

The main enhancement provided in CACTI 6.0 is a
very detailed modeling of the interconnect between cache
banks. A large cache is typically partitioned into many
smaller banks and an inter-bank network is responsible
for communicating addresses and data between banks and
the cache controller. Earlier versions of CACTI have em-
ployed a simple H-tree network with global wires and
have assumed uniform access times for every bank (a
uniform cache access architecture, referred to as UCA).
Recently, non-uniform cache architectures (NUCA [21])
have also been proposed that employ a packet-switched
network between banks and yield access times that are a
function of where data blocks are found (not a function of
the latency to the most distant bank). We add support for
such an architecture within CACTI.

Whether we employ a packet-switched or H-tree net-
work, the delay and power of the network components
dominate the overall cache access delay and power as the

1The first four versions of CACTI [31, 32, 35, 43] have been cited by
more than 1000 papers and are also incorporated into other architectural
simulators such as Wattch [8].

70%
H-tree delay percentage

60% H-tree power percentage

50%

30%

40%

20%

30%

10%

20%

0%

10%

2 4 8 16 32

Cache Size (MB)()

Figure 1. Contribution of H-tree network to overall

cache delay and power.

size of the cache scales up. Figure 1 shows that the H-tree
of the CACTI 5.0 model contributes an increasing percent-
age to the overall cache delay as the cache size is increased
from 2 to 32 MB. Its contribution to total cache power is
also sizeable- around 50%2. The inter-bank network it-
self is sensitive to many parameters, especially the wire
signaling strategy, wire parameters, topology, router con-
figuration, etc. The new version of the tool carries out
a design space exploration over these parameters to esti-
mate a cache organization that optimizes a combination
of power/delay/area metrics for UCA and NUCA archi-
tectures. Network contention plays a non-trivial role in
determining the performance of an on-chip network de-
sign. We also augment the design space exploration with
empirical data on network contention.

Components of the tool are partially validated against
detailed Spice simulations. We also present an example
case study to demonstrate how the tool can facilitate ar-
chitectural evaluations. The paper is organized as follows.
Section 2 describes related work. Section 3 describes the
baseline CACTI 5.0 model. Section 4 provides details on
the new interconnect models and other enhancements in-
tegrated into CACTI 6.0. A case study using CACTI 6.0 is
discussed in Section 5. We draw conclusions in Section 6.

2. Related Work

The CACTI tool was first released by Wilton and
Jouppi in 1993 [43] and it has undergone four major re-
visions since then [31, 32, 35]. More details on the latest
CACTI 5.0 version are provided in Section 3. The primary
enhancements of CACTI 2.0 [31] were power models and
multi-ported caches; CACTI 3.0 [32] added area models,
independently addressed banks, and better sense-amp cir-
cuits; CACTI 4.0 [35] improved upon various SRAM cir-
cuit structures, moved from aluminium wiring to copper,
and included leakage power models; CACTI 5.0 adds sup-
port for DRAM modeling. The CACTI 6.0 extensions de-
scribed in this paper represent a major shift in focus and

2As the cache size increases, the bitline power component also grows.
Hence, the contribution of H-tree power as a percentage remains roughly
constant.

add support for new interconnect components that domi-
nate cache delay and power. Unlike the prior revisions of
CACTI that focused on bank and SRAM cell modeling,
the current revision focuses on interconnect design. The
results in later sections demonstrate that the estimates of
CACTI 6.0 are a significant improvement over the esti-
mates of CACTI 5.0.

A few other extensions of CACTI can also be found in
the literature, including multiple different versions ofe-
CACTI (enhanced CACTI). eCACTI from the University
of California-Irvine models leakage parameters and gate
capacitances within a bank in more detail [24] (some of
this is now part of CACTI 4.0 [35]). A prior version of
eCACTI [1] has been incorporated into CACTI 3.0 [32].
3DCACTI is a tool that implements a cache across multi-
ple stacked dies and considers the effects of various inter-
die connections [37].

A number of tools [3, 9, 14, 16, 34, 39, 41] exist in
the literature to model network-on-chip (NoC). The Orion
toolkit from Princeton does a thorough analytical quan-
tification of dynamic and leakage power within router el-
ements [41] and some of this is included in CACTI 6.0.
However, Orion does not consider interconnect options,
nor carry out a design space exploration (since it is obliv-
ious of the properties of the components that the net-
work is connecting). NOCIC [39] is another model that
is based on Spice simulations of various signaling strate-
gies. Given a tile size, it identifies the delay and area needs
of each signaling strategy.

A recent paper by Muralimanohar and Balasubramo-
nian [27] describes a methodology to extend CACTI’s
design space exploration to estimate an optimal NUCA
cache organization. That work also proposed techniques
to exploit specific wires and topologies for the address net-
work. This work adopts a similar initial strategy when
considering NUCA organizations. In addition to the cre-
ation of a tool for public distribution, we include a number
of features that are not part of prior work:

• Extend the design space exploration to different wire
and router types.

• Consider the use of low-swing differential signaling
in addition to traditional global wires.

• Incorporate the effect of network contention during
the design space exploration.

• Take bank cycle time into account in estimating the
cache bandwidth.

• Validate a subset of the newly incorporated models.

• Improve upon the tool API, including the ability to
specify novel metrics involving power, delay, area,
and bandwidth.

• Provide insight on the tool’s design space exploration
and trade-off analysis, as well as example case stud-
ies.

3. Background

This section presents some basics on the CACTI 5.0
cache access model. Figure 2(a) shows the basic logical

Input address

D
ec

od
er

Wordline

Bitlines

T
ag

 a
rr

ay

D
at

a
ar

ra
y

Column muxes
Sense Amps

Comparators

Output driver

Valid output?

Mux drivers

Data output

Output driver

(a) Logical organization of a cache.

Data output bits

Bank

Address bits

(b) Example physical organization of the data array.

Figure 2. Logical and physical organization of the cache (from CACTI 3 .0 [32]).

structure of a uniform cache access (UCA) organization.
The address is provided as input to the decoder, which
then activates a wordline in the data array and tag array.
The contents of an entire row (referred to as aset) are
placed on the bitlines, which are then sensed. The multiple
tags thus read out of the tag array are compared against
the input address to detect if one of the ways of the set
does contain the requested data. This comparator logic
drives the multiplexor that finally forwards at most one of
the ways read out of the data array back to the requesting
processor.

The CACTI cache access model [35] takes in the fol-
lowing major parameters as input: cache capacity, cache
block size (also known as cache line size), cache associa-
tivity, technology generation, number of ports, and num-
ber of independent banks (not sharing address and data
lines). As output, it produces the cache configuration that
minimizes delay (with a few exceptions), along with its
power and area characteristics. CACTI models the de-
lay/power/area of eight major cache components: decoder,
wordline, bitline, senseamp, comparator, multiplexor, out-
put driver, and inter-bank wires. The wordline and bit-
line delays are two of the most significant components
of the access time. The wordline and bitline delays are
quadratic functions of the width and height of each array,
respectively. In practice, the tag and data arrays are large
enough that it is inefficient to implement them as single
large structures. Hence, CACTI partitions each storage
array (in the horizontal and vertical dimensions) to pro-
duce smallersub-arraysand reduce wordline and bitline
delays. The bitline is partitioned intoNdbl different seg-
ments, the wordline is partitioned intoNdwlsegments, and
so on. Each sub-array has its own decoder and some cen-
tral pre-decoding is now required to route the request to
the correct sub-array. The most recent version of CACTI
employs a model for semi-global (intermediate) wires and
an H-tree network to compute the delay between the pre-
decode circuit and the furthest cache sub-array. CACTI
carries out an exhaustive search across different sub-array
counts (different values of Ndbl, Ndwl, etc.) and sub-array
aspect ratios to compute the cache organization with op-
timal total delay. Typically, the cache is organized into a
handful of sub-arrays. An example of the cache’s physical
structure is shown in Figure 2(b).

4. CACTI 6.0 Enhancements

4.1. Interconnect Modeling for UCA Caches

As already shown in Figure 1, as cache size increases,
the interconnect (within the H-tree network) plays an in-
creasingly greater role in terms of access time and power.
The interconnect overhead is impacted by (i) the number
of sub-arrays, (ii) the signaling strategy, and (iii) the wire
parameters. While prior versions of CACTI iterate over
the number of sub-arrays by exploring different values of
Ndbl, Ndwl, Nspd, etc., the model is restricted to a sin-
gle signaling strategy and wire type (global wire). Thus,
the design space exploration sees only a modest amount
of variation in the component that dominates the overall
cache delay and power. We therefore extend the design
space exploration to also include a low-swing differential
signaling strategy as well as the use of local andfat wires.

The delay of a wire is a function of itsRC time con-
stant which increases quadratically with the length of the
wire. The insertion of optimally sized repeaters at reg-
ular intervals makes the delay a linear function of wire
length. For long latency wires, the wire throughput can
be increased by inserting pipelined latches at regular in-
tervals. However, the use of repeaters and pipeline latches
at regular intervals requires that the voltage levels on these
wires swing across the full range (0 − Vdd) for proper op-
eration. Given the quadratic dependence between voltage
and power, these full-swing wires dissipate a large amount
of power. Also, the silicon area requirement imposed by
repeaters and latches precludes the possibility of routing
these wires on top of other modules. In essence, tradi-
tional global wires, of the kind employed in CACTI 5.0,
are fast but entail high power and routing complexity. Fur-
ther, the delay, power, and bandwidth properties of these
wires can be varied by changing the following parameters:
(i) wire width, (ii) wire spacing, (iii) repeater size, and (iv)
repeater spacing. By considering these choices, a segment
on the H-tree network can be made to have optimal delay
while having much higher power and area requirements.
Alternatively, the segment can be made to have low power
requirements while incurring a delay or area penalty. The
considered wire types and their properties are summa-
rized later in this section. By examining these choices and
carrying out a more comprehensive design space explo-

(a) Design space exploration with global wires

(b) Design space exploration with full-swing global wires (red, bottom region),

wires with 30% delay penalty (yellow, middle region), and differential

low-swing wires (blue, top region)

Figure 3. Power/Delay trade-off in a 16MB UCA cache

Receiver
D i f f e r e n t i a l

wires

Sub-array

Transmitter

Figure 4. 8-bank data array with a differential low-

swing broadcast bus.

Memory intensive applu, fma3d, swim, lucas
benchmarks equake, gap, vpr, art

L2/L3 latency ammp, apsi, art, bzip2,
sensitive benchmarks crafty, eon, equake, gcc

Half latency sensitive & ammp, applu, lucas, bzip2
half non-latency crafy, mgrid,

sensitive benchmarks mesa, gcc
Random benchmark set Entire SPEC suite

Table 1. Benchmark sets

ration, CACTI 6.0 is able to identify cache organizations
that better meet the user-specified metrics. Figure 3(a)
shows a power-delay curve where each point represents
one of the many hundreds of cache organizations consid-
ered by CACTI 5.0. The red points represent the cache
organizations that would have been considered by CACTI
5.0 with its limited design space exploration with a sin-
gle wire type (global wire with delay-optimal repeaters).
The yellow points (middle region) in Figure 3(b) represent
cache organizations with different wire types that are con-
sidered by CACTI 6.0. Clearly, by considering the trade-
offs made possible with wires and expanding the search
space, CACTI 6.0 is able to identify cache organizations
with very relevant delay and power values.

One of the primary reasons for the high power dissi-
pation of global wires is the full swing requirement im-
posed by the repeaters. While we are able to somewhat
reduce the power requirement by reducing repeater size
and increasing repeater spacing, the requirement is still
relatively high. Low voltage swing alternatives repre-
sent another mechanism to vary the wire power/delay/area
trade-off. Reducing the voltage swing on global wires
can result in a linear reduction in power. In addition, as-
suming a separate voltage source for low-swing drivers
will result in a quadratic savings in power. But, these lu-
crative power savings are accompanied by many caveats.
Since we can no longer use repeaters or latches, the delay
of a low-swing wire increases quadratically with length.
Since such a wire cannot be pipelined, they also suffer
from lower throughput. A low-swing wire requires special
transmitter and receiver circuits for signal generation and
amplification. This not only increases the area require-
ment per bit, but also assigns a fixed cost in terms of both
delay and power for each bit traversal. In spite of these
issues, the power savings possible through low-swing sig-
nalling makes it an attractive design choice. The detailed
methodology for the design of low-swing wires and their
overhead is described later in this section. In general, low-
swing wires have superior power characteristics but incur
high area and delay overheads.

The choice of an H-tree network for CACTI 5.0 (and
earlier versions of CACTI) was made for the following
reason: it enables uniform access times for each bank,
which in turn, simplifies the pipelining of requests across
the network. Since low-swing wires cannot be pipelined
and since they better amortize the transmitter/receiver
overhead over long transfers, we adopt a different network
style when using low-swing wires. Instead of the H-tree
network, we adopt a collection of simple broadcast buses
that span across all the banks (each bus is shared by half
the banks in a column – an example with eight banks is
shown in Figure 4). The banks continue to have uniform
access times, as determined by the worst-case delay. Since
the bus is not pipelined, the wire delay limits the through-
put as well and decreases the operating frequency of the

Fetch queue size 64 Branch predictor comb. of bimodal and 2-level
Bimodal predictor size 16K Level 1 predictor 16K entries, history 12

Level 2 predictor 16K entries BTB size 16K sets, 2-way
Branch mispredict penalty at least 12 cycles Fetch width 8 (across up to 2 basic blocks)
Dispatch and commit width 8 Issue queue size 60 (int and fp, each)

Register file size 100 (int and fp, each) Re-order Buffer size 80
L1 I-cache 32KB 2-way L1 D-cache 32KB 2-way set-associative,
L2 cache 32MB 8-way SNUCA 3 cycles, 4-way word-interleaved

L2 Block size 64B
I and D TLB 128 entries, 8KB page size Memory latency 300 cycles for the first chunk

Network topology Grid Flow control mechanism Virtual channel
No. of virtual channels 4 /physical channel Back pressure handling Credit based flow control

Table 2. Simplescalar simulator parameters.

cache. The cycle time of a cache is equal to the maximum
delay of a segment that cannot be pipelined. Typically, the
sum of bitline and sense amplifier delay decides the cycle
time of a cache. In a low-swing model, the cycle time is
determined by the maximum delay of the low-swing bus.
We also consider low-swing wires with varying width and
spacing that further play into the delay/power/area trade-
offs.

With low-swing wires included in the CACTI design
space exploration, the tool is able to identify many more
points that yield low power at a performance and area
cost. The blue points (top region) in Figure 3(b) represent
the cache organizations considered with low-swing wires.
Thus, by leveraging different wire properties, it is possible
to generate a broad range of cache models with different
power/delay characteristics.

4.2. NUCA Modeling

The UCA cache model discussed so far has an access
time that is limited by the delay of the slowest sub-bank.
A more scalable approach for future large caches is to re-
place the H-tree bus with a packet-switched on-chip grid
network. The latency for a bank is determined by the de-
lay to route the request and response between the bank that
contains the data and the cache controller. Such a NUCA
model was first proposed by Kim et al. [21] and has been
the subject of many architectural evaluations. We there-
fore extend CACTI to support such NUCA organizations
as well.

The tool first iterates over a number of bank organiza-
tions: the cache is partitioned into2N banks (whereN
varies from 1 to 12); for eachN , the banks are organized
in a grid with 2M rows (whereM varies from 0 toN).
For each bank organization, CACTI 5.0 is employed to
determine the optimal sub-array partitioning for the cache
within each bank. Each bank is associated with a router.
The average delay for a cache access is computed by es-
timating the number of network hops to each bank, the
wire delay encountered on each hop, and the cache ac-
cess delay within each bank. We further assume that each
traversal through a router takes upR cycles, whereR is
a user-specified input. Router pipelines can be designed
in many ways: a four-stage pipeline is commonly advo-
cated [13], and recently, speculative pipelines that take
up three, two, and one pipeline stage have also been pro-
posed [13, 26, 28]. While we give the user the option to
pick an aggressive or conservative router, the tool defaults
to employing a moderately aggressive router pipeline with

three stages.
More partitions lead to smaller delays (and power)

within each bank, but greater delays (and power) on the
network (because of the constant overheads associated
with each router and decoder). Hence, the above design
space exploration is required to estimate the cache parti-
tion that yields optimal delay or power. The above algo-
rithm was recently proposed by Muralimanohar and Bala-
subramonian [27]. We further extend this algorithm in the
following ways.

First, we explore different wire types for the links be-
tween adjacent routers. These wires are modeled as low-
swing differential wires as well as local/global/fat wiresto
yield many points in the power/delay/area spectrum.

Second, we model different types of routers. The sizes
of buffers and virtual channels within a router have a
major influence on router power consumption as well as
router contention under heavy load. By varying the num-
ber of virtual channels per physical channel and the num-
ber of buffers per virtual channel, we are able to achieve
different points on the router power-delay trade-off curve.

Third, we model contention in the network in much
greater detail. This itself has two major components. If
the cache is partitioned into many banks, there are more
routers/links on the network and the probability of two
packets conflicting at a router decrease. Thus, a many-
banked cache is more capable of meeting the bandwidth
demands of a many-core system. Further, certain as-
pects of the cache access within a bank cannot be easily
pipelined. The longest such delay within the cache access
(typically the bitline and sense-amp delays) represents the
cycle time of the bank – it is the minimum delay between
successive accesses to that bank. A many-banked cache
has relatively small banks and a relatively low cycle time,
allowing it to support a higher throughput and lower wait-
times once a request is delivered to the bank. Both of these
two components (lower contention at routers and lower
contention at banks) tend to favor a many-banked system.
This aspect is also included in estimating the average ac-
cess time for a given cache configuration.

The contention values for each considered NUCA
cache organization are empirically estimated for typical
workloads and incorporated into CACTI 6.0 as look-up
tables. For each of the grid topologies considered (for
different values ofN andM), we simulated L2 requests
originating from single-core, two-core, four-core, eight-
core, and sixteen-core processors. Each core executes a
mix of programs from the SPEC benchmark suite. We di-
vide the benchmark set into four categories, as described

0

50

100

150

200

250

300

2 4 8 16 32 64

C
o

n
te

n
ti

o
n

 C
y
c
le

s

Bank Count

16-core

8-core

4-core

(a) Total network contention value/access for CMPs with different

NUCA organizations

0

50

100

150

200

250

300

350

400

2 4 8 16 32 64

L
a
te

n
c
y
 (

c
y
c
le

s
)

No. of Banks

Total No. of Cycles

Network Latency

Bank access latency

Network contention Cycles

(b) Optimal NUCA organization

Figure 5. NUCA design space exploration.

in Table 1. For every CMP organization, we run four sets
of simulations, corresponding to each benchmark set tab-
ulated. The generated cache traffic is then modeled on a
detailed network simulator with support for virtual chan-
nel flow control. Details of the architectural and network
simulator are listed in Table 2. The contention value (av-
eraged across the various workloads) at routers and banks
is estimated for each network topology and bank cycle
time. Based on the user-specified inputs, the appropriate
contention values in the look-up table are taken into ac-
count during the design space exploration. Some of this
empirical data is represented in Figure 5(a). We observe
that for many-core systems, the contention in the network
can be as high as 30 cycles per access (for a two banked
model) and cannot be ignored during the design space ex-
ploration.

For a network with completely pipelined links and
routers, these contention values are only a function of the
router topology and bank cycle time and will not be af-
fected by process technology or L2 cache size3. If CACTI
is being employed to compute an optimal L3 cache orga-
nization, the contention values will likely be much less
because the L2 cache filters out most requests. To han-
dle this case, we also computed the average contention
values assuming a large 2 MB L1 cache and this is incor-
porated into the model as well. In summary, the network
contention values are impacted by the following param-
eters: M , N , bank cycle time, number of cores, router
configuration (VCs, buffers), size of preceding cache. We
plan to continue augmenting the tool with empirical con-
tention values for other relevant sets of workloads such
as commercial, multi-threaded, and transactional bench-
marks with significant traffic from cache coherence.

Figure 5(b) shows an example design space exploration
for a 32 MB NUCA L2 cache while attempting to min-

3We assume here that the cache is organized as static-NUCA
(SNUCA), where the address index bits determine the unique bank where
the address can be found and the access distribution does notvary greatly
as a function of the cache size. CACTI is designed to be more generic
than specific. The contention values are provided as a guideline to most
users. If a user is interested in a more specific NUCA policy, there is no
substitute to generating the corresponding contention values and incor-
porating them in the tool. As a case study in Section 5, we examine a
different NUCA policy.

imize latency. The X-axis shows the number of banks
that the cache is partitioned into. For each point on the
X-axis, many different bank organizations are considered
and the organization with optimal delay (averaged across
all banks) is finally represented on the graph. The Y-axis
represents this optimal delay and it is further broken down
to represent the contributing components: bank access
time, link and router delay, router and bank contention.
We observe that the optimal delay is experienced when
the cache is organized as a2 × 4 grid of 8 banks.

4.3. Wire Models

This section details the analytical model for delay and
power calculation of different wires. We begin with
a description of the delay and power model for global
wires, then describe how wires with different power-delay
characteristics can be modeled. Finally, we discuss the
methodology for calculating delay and power for low-
swing wires.

4.3.1 Full-Swing Repeated Wires

For full-swing wires, the delay of a wire is governed by its
RC time constant (R is resistance,C is capacitance). The
resistance and capacitance per unit length are governed by
the following equations [17]:

Rwire =
ρ

(thickness − barrier)(width − 2 barrier)
(1)

Cwire =

ǫ0(2Kǫhoriz

thickness

spacing
+ 2ǫvert

width

layerspacing
)

+fringe(ǫhoriz, ǫvert)

Thickness andwidth represent the geometrical dimen-
sions of the wire cross-section,barrier represents the thin
barrier layer around the wire to prevent copper from dif-
fusing into surrounding oxide, andρ is the material re-
sistivity. The potentially different relative dielectrics for
the vertical and horizontal capacitors are represented by

ǫhoriz andǫvert, K accounts for Miller-effect coupling ca-
pacitances,spacing represents the gap between adjacent
wires on the same metal layer, andlayerspacing repre-
sents the gap between adjacent metal layers.

A change in the width and spacing of wires yields dif-
ferent delay and power characteristics. For the CACTI
design space exploration, we restrict ourselves to semi-
global, global, and fat wires that have width and spacing
in the ratio 1:2:16. As a result, the latencies for these wires
are in the ratio 8:4:1, and their power consumption is in the
ratio 2:1.8:1.

It has also been derived that a wire yields optimal delay
if repeaters have the following spacing (Loptimal) and size
(Soptimal) [4]:

Loptimal =

√

2rs(c0 + cp)

RwireCwire

(2)

Soptimal =

√

rsCwire

Rwirec0

(3)

In the above equations,c0 is the capacitance of the mini-
mum sized repeater,cp is its output parasitic capacitance,
andrs is its output resistance. Banerjee et al. [4] describe
a methodology to compute a repeater configuration that
minimizes power while giving up performance. We adopt
a similar methodology to compute the power-delay trade-
off for various repeater configurations. Figure 6 shows the
relative power and delay as a function of wire length for
a delay-optimal global wire and wires that trade-off delay
for lower power.

4.3.2 Differential Low-swing Wires

A low-swing interconnect system consists of three main
components: (1) a transmitter that generates the low-
swing signal, (2) twisted differential wires, and (3) a re-
ceiver amplifier. For the transmitter circuit, we employ
the model proposed by Ho et al. [18]. To improve de-
lay characteristics (equations not reproduced here), the
transmitter circuit uses pre-emphasis and pre-equalization
optimization techniques. Pre-emphasis reduces the wire
charging/discharging time by using a drive voltage signif-
icantly higher than the minimum signal required by the
receiver. Pre-equalizing the wires enables signal transfer
with half the voltage swing.

The total capacitance of the low-swing segment is
given by

Cload = Cwire + 2 ∗ Cdrain + Csense amp

Cdrain is the drain capacitance of the driver
transistor. The dynamic energy is expressed as
Cload.VoverDrive.Vlowswing. For our evaluations,
we assume an overdrive voltage of 200mV and a low
swing voltage of 100mV. At the receiver, we employ the
same sense-amplifier circuit used by CACTI for its bitline
sensing [35]. The power and delay characteristics of
low-swing wires are also represented in Figure 6.

4.4. Router Models

As discussed earlier, various routers have been pro-
posed with differing levels of speculation and pipeline

stages [13, 26, 28]. The number of stages for each
router is left as a user-specified input, defaulting to 3 cy-
cles. For router power, we employ the analytical power
models for crossbars and arbiters employed in the Orion
toolkit [41]. CACTI’s RAM model is employed for router
buffer power. These represent the primary contributors
to network power (in addition to link power, that was
discussed in the previous sub-section). We restrict our-
selves to a grid topology where each router has 5 inputs
and 5 outputs, and consider three points on the power-
performance trade-off curve. Each point provides a dif-
ferent number of buffers per virtual channel and a differ-
ent number of virtual channels per physical channel. Ac-
cordingly, we see a significant variation in buffer capacity
(and power) and contention cycles at routers. As before,
the contention cycles are computed with detailed network
simulations. Table 3 specifies the three types of routers
and their corresponding buffer, crossbar, and arbiter en-
ergy values.

4.5. Improvement in Trade-Off Analysis

For architectural studies, especially those related to
memory hierarchy design, an early estimate of cache ac-
cess time and power for a given input configuration is cru-
cial in making a sound evaluation. As described in Sec-
tion 3, CACTI 5.0 carries out a design space exploration
over various sub-array partitions; it then eliminates orga-
nizations that have an area that is 50% higher than the op-
timal area; it further eliminates those organizations that
have an access time value more than 10% the minimum
value; and finally selects an organization using a cost func-
tion that minimizes power and cycle time.

Modern processor design is not singularly focused on
performance and many designers are willing to compro-
mise some performance for improved power. Many future
studies will likely carry out trade-off analyses involving
performance, power, and area. To facilitate such analy-
ses, the new version of the tool adopts the following cost
function to evaluate a cache organization (taking into ac-
count delay, leakage power, dynamic power, cycle time,
and area):

cost =

Wacc time

acc time

min acc time
+

Wdyn power

dyn power

min dyn power
+

Wleak power

leak power

min leak power
+

Wcycle time

cycle time

min cycle time
+

Warea

area

min area

The weights for each term
(Wacc time, Wdyn power, Wleak power, Wcycle time, Warea)
indicate the relative importance of each term and these
are specified by the user as input parameters in the
configuration file:

-weight 100 20 20 10 10

2.50E-09

2.00E-09
Low Swing

30 % penalty

1 50E 09

30 % penalty

20 % penalty

10% lt1.50E-09

(s
)

10% penalty

Global

1.00E-09

D
e
la

y
(

5.00E-10

D

0.00E+000.00E+00

1 2 3 4 5 6 7 8 9 10

Wire Length (mm)Wire Length (mm)

(a) Delay characteristics of different wires

0.00E+00

5.00E-13

1.00E-12

1.50E-12

2.00E-12

2.50E-12

3.00E-12

3.50E-12

4.00E-12

1 2 3 4 5 6 7 8 9 10

E
n

e
rg

y

(J
)

Wire Length (mm)

Global wire

10% delay

20% delay

30% delay

Low-swing

(b) Energy characteristics of different wires

Figure 6. Energy/Delay values for different wires

Component Configuration 1 Configuration 2 Configuration 3
4 VCs/PC; 16 buffers/VC 2VCs/PC; 8 buffers/VC 2 VCs/PC; 2 buffers/VC

Arbiter 0.33e-12 0.27e-12 0.27e-12
Crossbar (avg) 0.99e-11 0.99e-11 0.99e-11

Buffer read operation/VC 0.11e-11 0.76e-12 0.50e-12
Write buffer operation/VC 0.14e-11 0.10e-11 0.82e-12

Table 3. Energy consumed (in J) by arbiters, buffers and crossbars fo r various router configurations at 32nm technology

(flit size of 128 bits).

The above default weights used by the tool reflect the pri-
ority of these metrics in a typical modern design. In ad-
dition, the following default line in the input parameters
specifies the user’s willingness to deviate from the opti-
mal set of metrics:

-deviate 1000 1000 1000 1000 1000

The above line dictates that we are willing to consider
a cache organization where each metric, say the access
time, deviates from the lowest possible access time by
1000%. Hence, this default set of input parameters spec-
ifies a largely unconstrained search space. The following
input lines restrict the tool to identify a cache organiza-
tion that yields least power while giving up at most 10%
performance:

-weight 0 100 100 0 0
-deviate 10 1000 1000 1000 1000

4.6. Validation

In this work, we mainly focus on validating the new
modules added to the framework. This includes low-
swing wires, router components, and improved bitline and
wordline models. Since SPICE results depend on the
model files for transistors, we first discuss the technology
modeling changes made to the recent version of CACTI
(version 5) and later detail our methodology for validating
the newly added components to CACTI 6.0.

Earlier versions of CACTI (version one through four)
assumed linear technology scaling for calculating cache
parameters. All the power, delay, and area values are first
calculated for 800nm technology and the results are lin-
early scaled to the user specified process value. While this

approach is reasonably accurate for old process technolo-
gies, it can introduce non-trivial error for deep sub-micron
technologies (less than 90nm). This problem is fixed in
CACTI 5 [36] by adopting ITRS parameters for all cal-
culations. The current version of CACTI supports four
different process technologies (90nm, 65nm, 45nm, and
32nm) with process specific values obtained from ITRS.
Though ITRS projections are invaluable for quick ana-
lytical estimates, SPICE validation requires technology
model files with greater detail and ITRS values cannot
be directly plugged in for SPICE verification. The only
non-commercial data available publicly for this purpose
for recent process technologies is the Predictive Technol-
ogy Model (PTM) [2]. For our validation, we employ
the HSPICE tool along with the PTM 65 nm model file
for validating the newly added components. The simu-
lated values obtained from HSPICE are compared against
CACTI 6.0 analytical models that take PTM parameters
as input4. The analytical delay and power calculations
performed by the tool primarily depend on the resistance
and capacitance parasitics of transistors. For our valida-
tion, the capacitance values of source, drain, and gate of
n and p transistors are derived from the PTM technology
model file. The threshold voltage and the on-resistance
of the transistors are calculated using SPICE simulations.
In addition to modeling the gate delay and wire delay of
different components, our analytical model also considers
the delay penalty incurred due to the finite rise time and
fall time of an input signal [42].

Figure 7 (a) & (b) show the comparison of delay
and power values of the differential, low-swing analyti-

4The PTM parameters employed for verification can be directlyused
for CACTI simulations. Since most architectural and circuit studies rely
on ITRS parameters, CACTI by default assumes ITRS values to maintain
consistency.

Transmitter Delay, SPICE - 84ps, CACTI - 92ps Power, SPICE - 7.2fJ , CACTI - 7.5fJ
Differential Wires Delay, SPICE - 1.204ns, CACTI - 1.395ns Power, SPICE - 29.9fJ, CACTI - 34fJ
Sense amplifier Delay, SPICE - 200ps Power, SPICE - 5.7fJ

Table 4. Delay and energy values of different components for a 5mm low -swing wire.

4500

5000

4000

4500 CACTI 6.0

SPICE

3000

3500

s
)

SPICE

2500

3000

n

(p

s

1500

2000

e
la

y
 i

500

1000

D

0

500

1 2 3 4 5 6 7 8 9 101 2 3 4 5 6 7 8 9 10

Wire Length (mm)Wire Length (mm)

(a) Delay verification

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10

E
n

e
rg

y
/a

c
c
e
s
s
 (

fJ
)

Length (mm)

CACTI 6.0

SPICE

(b) Energy verification
Figure 7. Low-swing model verification

cal models against SPICE values. As mentioned earlier,
a low-swing wire model can be broken into three compo-
nents: transmitter (that generates the low-swing signal),
differential wires5, and sense amplifiers. The modeling
details of each of these components are discussed in sec-
tion 4.3.2. Table 4 shows the delay and power val-
ues of each of these compenents for a 5mm low-swing
wire. Though the analytical model employed in CACTI
6.0 dynamically calculates the driver size appropriate for
a given wire length, for the wire length of our interest, it
ends up using the maximum driver size (which is set to
100 times the minimum transistor size) to incur minimum
delay overhead. Earlier versions of CACTI also had the
problem of over estimating the delay and power values of
the sense-amplifier. CACTI 6.0 eliminates this problem
by directly using the SPICE generated values for sense-
amp power and delay. On an average, the low-swing wire
models are verified to be within 12% of the SPICE values.

The lumped RC model used in prior versions of CACTI
for bitlines and wordlines are replaced with a more ac-
curate distributed RC model in CACTI 6.0. Based on a
detailed spice modeling of the bitline segment along with
the memory cells, we found the difference between the old
and new model to be around 11% at 130 nm technology.
This difference can go up to 50% with shrinking process
technologies as wire parasitics become the dominant fac-
tor compared to transistor capacitance [29]. Figure 8 (a)
& (b) compare the distributed wordline and bitline delay
values and the SPICE values. The length of the word-
lines or bitlines (specified in terms of memory array size)
are carefully picked to represent a wide range of cache
sizes. On an average, the new analytical models for the
distributed wordlines and bitlines are verified to be within
13% and 12% of SPICE generated values.

Buffers, crossbars, and arbiters are the primary com-
ponents in a router. CACTI 6.0 uses its scratch RAM
model to calculate read/write power for router buffers. We
employ Orion’s arbiter and crossbar model for calculat-

5Delay and power values of low-swing driver is also reported as part
of differential wires.

ing router power and these models have been validated by
Wang et al. [40].

5. Case Study

We expect that CACTI 6.0 will continue to be used in
architectural evaluations in many traditional ways: it is
often used to estimate cache parameters while setting up
architectural simulators. The new API makes it easier for
users to make power/delay/area trade-offs and we expect
this feature to be heavily used for architectural evalua-
tions that focus on power-efficiency or are attempting to
allocate power/area budgets to cache or processing. With
many recent research proposals focused on NUCA organi-
zations, we also expect the tool to be heavily used in that
context. Since it is difficult to generalize NUCA imple-
mentations, we expect that users modeling NUCA designs
may need to modify the model’s parameters and details to
accurately reflect their NUCA implementation. Hence, as
a case study of the tool’s operation, we present an example
NUCA evaluation and its inter-play with CACTI 6.0.

Many recent NUCA papers have attempted to im-
prove average cache access time by moving heavily ac-
cessed data to banks that are in close proximity to the
core [6, 12, 19, 20, 21]. This is commonly referred to as
dynamic-NUCA or D-NUCA becasue a block is no longer
mapped to a unique bank and can move between banks
during its L2 lifetime. We first postulate a novel idea and
then show how CACTI 6.0 can be employed to evaluate
that idea. Evaluating and justifying such an idea could
constitute an entire paper – we are simply focusing here
on a high-level evaluation that highlights the changes re-
quired to CACTI 6.0.

The Proposal: For a D-NUCA organization, most re-
quests will be serviced by banks that are close to the cache
controller. Further, with D-NUCA, it is possible that ini-
tial banks will have to be searched first and the request for-
warded on if the data is not found. All of this implies that
initial banks see much higher activity than distant banks.
To reduce the power consumption of the NUCA cache, we

1

10

100

1000

1 2 8 2 5 6 5 1 2 1 0 2 4D
e

la
y
 (

p
s

)

Memory Cells

CACTI 6.0

SPICE

(a) Wordline

1

10

100

1000

32 64 128 256

D
e

la
y
 (

p
s

)

No. of Cells

CACTI 6.0

SPICE

(b) Bitline
Figure 8. Distributed wordline and bitline model verification

propose that heterogeneous banks be employed: the initial
banks can employ smaller power-efficient banks while the
distant banks can employ larger banks.

For our case study evaluation, we will focus on a grid-
based NUCA cache adjacent to a single core. The ways of
a set are distributed across the banks, so a given address
may reside in one of many possible banks depending on
the way it is assigned to. Similar to D-NUCA propos-
als in prior work [21], when a block is brought into the
cache, it is placed in the most distant way and it is gradu-
ally migrated close to the cache controller with a swap be-
tween adjacent ways on every access. While looking for
data, each candidate bank is sequentially looked up until
the data is found or a miss is signaled.

Recall that CACTI 6.0 assumes an S-NUCA organi-
zation where sets are distributed among banks and each
address maps to a unique bank. When estimating average
access time during the design space exploration, it is as-
sumed that each bank is accessed with an equal probabil-
ity. The network and bank contention values are also es-
timated for an S-NUCA organization. Thus, two changes
have to be made to the tool to reflect the proposed imple-
mentation:

• The design space exploration must partition the
cache space into two: the bank sizes for each parti-
tion are estimated independently, allowing the initial
banks to have one size and the other banks to have a
different size.

• Architectural evaluations have to be performed to es-
timate the access frequencies for each bank and con-
tention values so that average access time can be ac-
curately computed.

With our simulation infrastructure, we considered a
32 MB 16-way set-associative L2 cache and modeled the
migration of blocks across ways as in the above D-NUCA
policy. Based on this, the access frequency as shown in
Figure 9 was computed, with many more accesses to ini-
tial banks (unlike the S-NUCA case where the accesses
per bank are uniform). With this data integrated into
CACTI 6.0, the design space exploration loop of CACTI
6.0 was wrapped around with the following loop structure:

for i = 0 to 100

120.00%

100.00%

80.00%

60.00%

40 00%

20 00%

40.00%

0 00%

20.00%

0.00%

3
2

,7
6

8

9
8

3
,0

4
0

,9
3

3
,3

1
2

,8
8

3
,5

8
4

,8
3

3
,8

5
6

,7
8

4
,1

2
8

,7
3

4
,4

0
0

,6
8

4
,6

7
2

,6
3

4
,9

4
4

,5
8

5
,2

1
6

,5
3

5
,4

8
8

,4
8

5
,7

6
0

,4
3

6
,0

3
2

,3
8

6
,3

0
4

,3
3

6
,5

7
6

,2
8

6
,8

4
8

,2
3

7
,1

2
0

,1
8

7
,3

9
2

,1
3

7
,6

6
4

,0
8

7
,9

3
6

,0
3

8
,2

0
8

,9
8

8
,4

8
0

,9
3

8
,7

5
2

,8
8

9
,0

2
4

,8
3

9
,2

9
6

,7
8

9
,5

6
8

,7
3

9
,8

4
0

,6
9

0
,1

1
2

,6
4

0
,3

8
4

,5
9

0
,6

5
6

,5
4

0
,9

2
8

,4
9

1
,2

0
0

,4
4

1
,4

7
2

,3
9

1
,7

4
4

,3
4

2
,0

1
6

,2
9

2
,2

8
8

1
,

2
,

3
,

4
,

5
,

6
,

7
,

8
,

9
,

1
0

,

11
,

1
2

,

1
3

,

1
4

,

1
5

,

1
6

,

1
7

,

1
8

,

1
9

,

1
9

,

2
0

,

2
1

,

2
2

,

2
3

,

2
4

,

2
5

,

2
6

,

2
7

,

2
8

,

2
9

,

3
0

,

3
1

,

3
2

,

3
3

,

Figure 9. Access frequency for a 32MB cache. The

y-coordinate of a point in the curve corresponds to the

percentage of accesses that can be satisfied with x KB

of cache.

Assume i% of the cache has one
bank size and the remaining
(100-i)% has a different bank size
for the first i% of cache,

perform CACTI 6.0 exploration
(with new access frequencies
and contention)

for the remaining (100-i)% of cache,
perform CACTI 6.0 exploration
(with new access frequencies
and contention)

As an input, we provide the-weight and-deviate
parameters to specify that we are looking for an organi-
zation that minimizes power while yielding performance
within 10% of optimal. The output from this modified
CACTI 6.0 indicates that the optimal organization em-
ploys a bank size of 4MB for the first 16MB of the cache
and a bank size of 8MB for the remaining 16MB. The
average power consumption for this organization is 20%
lower than the average power per access for the S-NUCA
organization yielded by unmodified CACTI 6.0.

6. Conclusions

This paper describes major revisions to the CACTI
cache modeling tool. Interconnect plays a major role in
the delay and power of large caches and we extended
CACTI’s design space exploration to carefully consider
many different implementation choices for the intercon-
nect components, including different wire types, routers,
signaling strategy, and modeling contention. We also
added modeling support for a wide range of NUCA
caches. CACTI 6.0 identifies a number of relevant design
choices on the power-delay-area curves. The estimates
of CACTI 6.0 can differ from the estimates of CACTI
5.0 significantly, especially when more fully exploring the
power-delay trade-off space. CACTI 6.0 is able to iden-
tify cache configurations that can reduce power by a fac-
tor of three, while incurring a 25% delay penalty. We
validated components of the tool against Spice simula-
tions and showed good agreement between analytical and
transistor-level models. Finally, we present an example
case study of heterogeneous NUCA banks that demon-
strates how the tool can benefit architectural evaluations.

References

[1] V. Agarwal, M. Hrishikesh, S. Keckler, and D. Burger.
Clock Rate versus IPC: The End of the Road for Con-
ventional Microarchitectures. InProceedings of ISCA-27,
pages 248–259, June 2000.

[2] Arizona State University. Predictive Technology Model.
http://www.eas.asu.edu/˜ptm.

[3] H. Bakoglu and J. Meindl. A System-Level Circuit Model
for Multi- and Single-Chip CPUs. InProceedings of
ISSCC, 1987.

[4] K. Banerjee and A. Mehrotra. A Power-optimal Re-
peater Insertion Methodology for Global Interconnects in
Nanometer Designs.IEEE Transactions on Electron De-
vices, 49(11):2001–2007, November 2002.

[5] B. Beckmann, M. Marty, and D. Wood. ASR: Adaptive
Selective Replication for CMP Caches. InProceedings of
MICRO-39, December 2006.

[6] B. Beckmann and D. Wood. Managing Wire Delay in
Large Chip-Multiprocessor Caches. InProceedings of
MICRO-37, December 2004.

[7] B. Black, M. Annavaram, E. Brekelbaum, J. DeVale,
L. Jiang, G. Loh, D. McCauley, P. Morrow, D. Nelson,
D. Pantuso, P. Reed, J. Rupley, S. Shankar, J. Shen, and
C. Webb. Die Stacking (3D) Microarchitecture. InPro-
ceedings of MICRO-39, December 2006.

[8] D. Brooks, V. Tiwari, and M. Martonosi. Wattch: A
Framework for Architectural-Level Power Analysis and
Optimizations. InProceedings of ISCA-27, pages 83–94,
June 2000.

[9] A. Caldwell, Y. Cao, A. Kahng, F. Koushanfar, H. Lu,
I. Markov, M. Oliver, D. Stroobandt, and D. Sylvester.
GTX: The MARCO GSRC Technology Extrapolation Sys-
tem. InProceedings of DAC, 2000.

[10] J. Chang and G. Sohi. Co-Operative Caching for Chip
Multiprocessors. InProceedings of ISCA-33, June 2006.

[11] Z. Chishti, M. Powell, and T. Vijaykumar. Distance As-
sociativity for High-Performance Energy-Efficient Non-
Uniform Cache Architectures. InProceedings of MICRO-
36, December 2003.

[12] Z. Chishti, M. Powell, and T. Vijaykumar. Optimizing
Replication, Communication, and Capacity Allocation in
CMPs. InProceedings of ISCA-32, June 2005.

[13] W. Dally and B. Towles.Principles and Practices of In-
terconnection Networks. Morgan Kaufmann, 1st edition,
2003.

[14] J. Eble. A Generic System Simulator (Genesys) for ASIC
Technology and Architecture Beyond 2001. InProceed-
ings of 9th IEEE International ASIC Conference, 1996.

[15] N. Eisley, L.-S. Peh, and L. Shang. In-Network Cache Co-
herence. InProceedings of MICRO-39, December 2006.

[16] B. M. Geuskins.Modeling the Influence of Multilevel In-
terconnect on Chip Performance. PhD thesis, Rensselaer
Polytechnic Institute, Troy, New York, 1997.

[17] R. Ho, K. Mai, and M. Horowitz. The Future of Wires.
Proceedings of the IEEE, Vol.89, No.4, April 2001.

[18] R. Ho, K. Mai, and M. Horowitz. Managing Wire Scaling:
A Circuit Prespective. Interconnect Technology Confer-
ence, pages 177–179, June 2003.

[19] J. Huh, C. Kim, H. Shafi, L. Zhang, D. Burger, and
S. Keckler. A NUCA Substrate for Flexible CMP Cache
Sharing. InProceedings of ICS-19, June 2005.

[20] Y. Jin, E. J. Kim, and K. H. Yum. A Domain-Specific On-
Chip Network Design for Large Scale Cache Systems. In
Proceedings of HPCA-13, February 2007.

[21] C. Kim, D. Burger, and S. Keckler. An Adaptive, Non-
Uniform Cache Structure for Wire-Dominated On-Chip
Caches. InProceedings of ASPLOS-X, October 2002.

[22] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, N. Vijaykr-
ishnan, and M. Kandemir. Design and Management of 3D
Chip Multiprocessors Using Network-in-Memory. InPro-
ceedings of ISCA-33, June 2006.

[23] G. Loi, B. Agrawal, N. Srivastava, S. Lin, T. Sherwood,
and K. Banerjee. A Thermally-Aware Performance Anal-
ysis of Vertically Integrated (3-D) Processor-Memory Hi-
erarchy. InProceedings of DAC-43, June 2006.

[24] M. Mamidipaka and N. Dutt. eCACTI: An Enhanced
Power Estimation Model for On-Chip Caches. Technical
Report CECS Technical Report 04-28, University of Cali-
fornia, Irvine, September 2004.

[25] C. McNairy and R. Bhatia. Montecito: A Dual-Core,
Dual-Thread Itanium Processor. IEEE Micro, 25(2),
March/April 2005.

[26] R. Mullins, A. West, and S. Moore. Low-Latency Virtual-
Channel Routers for On-Chip Networks. InProceedings
of ISCA-31, May 2004.

[27] N. Muralimanohar and R. Balasubramonian. Interconnect
Design Considerations for Large NUCA Caches. InPro-
ceedings of the 34th International Symposium on Com-
puter Architecture (ISCA-34), June 2007.

[28] L.-S. Peh and W. Dally. A Delay Model and Specula-
tive Architecture for Pipelined Routers. InProceedings
of HPCA-7, 2001.

[29] J. M. Rabaey.Digital Integrated Circuits.
[30] J. Rattner. Predicting the future, 2005. Keynote at Intel

Developer Forum, http://www.anandtech.com/tradeshows
/showdoc.aspx?i=2367&p=3.

[31] G. Reinman and N. Jouppi. CACTI 2.0: An Integrated
Cache Timing and Power Model. Technical Report 2000/7,
WRL, 2000.

[32] P. Shivakumar and N. P. Jouppi. CACTI 3.0: An Integrated
Cache Timing, Power, and Area Model. Technical Report
TN-2001/2, Compaq Western Research Laboratory, Au-
gust 2001.

[33] E. Speight, H. Shafi, L. Zhang, and R. Rajamony. Adaptive
Mechanisms and Policies for Managing Cache Hierarchies
in Chip Multiprocessors. InProceedings of ISCA-32, June
2005.

[34] D. Sylvester and K. Keutzer. System-Level Performance
Modeling with BACPAC - Berkeley Advanced Chip Per-
formance Calculator. InProceedings of 1st International
Workshop on System-Level Interconnect Prediction, 1999.

[35] D. Tarjan, S. Thoziyoor, and N. Jouppi. CACTI 4.0. Tech-
nical Report HPL-2006-86, HP Laboratories, 2006.

[36] S. Thoziyoor, N. Muralimanohar, and N. P. Jouppi. CACTI
5.0: An Integrated Cache Timing, Power, and Area Model.
Technical report, HP Laboratories Palo Alto, 2007.

[37] Y.-F. Tsai, Y. Xie, N. Vijaykrishnan, and M. Irwin. Three-
Dimensional Cache Design Using 3DCacti. InProceed-
ings of ICCD, October 2005.

[38] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson,
J. Tschanz, D. Finan, P. Iyer, A. Singh, T. Jacob, S. Jain,
S. Venkataraman, Y. Hoskote, and N. Borkar. An 80-Tile
1.28TFLOPS Network-on-Chip in 65nm CMOS. InPro-
ceedings of ISSCC, February 2007.

[39] V. Venkatraman, A. Laffely, J. Jang, H. Kukkamalla,
Z. Zhu, and W. Burleson. NOCIC: A Spice-Based Inter-
connect Planning Tool Emphasizing Aggressive On-Chip
Interconnect Circuit Methods. InProceedings of Interna-
tional Workshop on System Level Interconnect Prediction,
February 2004.

[40] H.-S. Wang, L.-S. Peh, and S. Malik. A Power Model for
Routers: Modeling Alpha 21364 and InfiniBand Routers.
volume 23, January/February 2003.

[41] H.-S. Wang, X. Zhu, L.-S. Peh, and S. Malik. Orion:
A Power-Performance Simulator for Interconnection Net-
works. InProceedings of MICRO-35, November 2002.

[42] S. Wilton and N. Jouppi. An Enhanced Cache Access and
Cycle Time Model.IEEE Journal of Solid-State Circuits,
May 1996.

[43] S. J. E. Wilton and N. Jouppi. An Enhanced Access and
Cycle Time Model for On-Chip Caches. Technical Report
93/5, WRL, 1994.

[44] M. Zhang and K. Asanovic. Victim Replication: Maxi-
mizing Capacity while Hiding Wire Delay in Tiled Chip
Multiprocessors. InProceedings of ISCA-32, June 2005.

