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ABSTRACT

Phase Change Memory (PCM) is an emerging memory technol-
ogy that can increase main memory capacity in a cost-effective and
power-efficient manner. However, PCM cells can endure only a
maximum of 107 - 108 writes, making a PCM based system have
a lifetime of only a few years under ideal conditions. Furthermore,
we show that non-uniformity in writes to different cells reduces the
achievable lifetime of PCM system by 20x. Writes to PCM cells
can be made uniform with Wear-Leveling. Unfortunately, existing
wear-leveling techniques require large storage tables and indirec-
tion, resulting in significant area and latency overheads.

We propose Start-Gap, a simple, novel, and effective wear-leveling
technique that uses only two registers. By combining Start-Gap

with simple address-space randomization techniques we show that
the achievable lifetime of the baseline 16GB PCM-based system is
boosted from 5% (with no wear-leveling) to 97% of the theoretical
maximum, while incurring a total storage overhead of less than 13
bytes and obviating the latency overhead of accessing large tables.

We also analyze the security vulnerabilities for memory systems
that have limited write endurance, showing that under adversarial
settings, a PCM-based system can fail in less than one minute. We
provide a simple extension to Start-Gap that makes PCM-based
systems robust to such malicious attacks.

Categories and Subject Descriptors:

B.3.1 [Semiconductor Memories]: Phase Change Memory

General Terms: Design, Performance, Reliability.

Keywords: Phase Change Memory, Wear Leveling, Endurance.

1. INTRODUCTION
Chip multiprocessors increase the on-chip concurrency by allow-

ing different threads or applications to execute concurrently. This
increases the demand on the main memory system to retain the
working set of all the concurrently executing instruction streams.
Typically, the disk is about four orders of magnitude slower than the
main memory making frequent misses in system main memory a
major bottleneck to overall performance. Therefore, it has become
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important to increase main memory capacity in order to maintain
the performance growth. Unfortunately, main memory consisting
entirely of DRAM is already hitting power and cost limits [9].
Exploiting emerging memory technologies, such as Phase-Change
Memory (PCM) and Flash, has become crucial to build larger ca-
pacity memory systems in the future while remaining within the
overall system cost and power budgets. Flash has already found
widespread use as a Disk Cache [7] or Solid State Disk (SSD).
However, Flash is about 200x slower than DRAM and can endure a
maximum of only 104 − 105 writes [1], which makes it unsuitable
for main memory. PCM, on the other hand, is only 2x-4x slower
than DRAM and can provide up to 4x more density than DRAM
which makes it a promising candidate for main memories [16]. The
higher latency of PCM can be tolerated by combining it with a rela-
tively small DRAM buffer, so that DRAM can provide low latency
and PCM can provide increased capacity. A recent study [15] has
proposed such a PCM-based hybrid memory system.

The physical properties of PCM dictate a limited number of writes
to each cell. PCM devices are expected to last for about 107 − 108

writes per cell [1][5]. Although the endurance of PCM is much
higher than Flash, it is still in a range where the limited system
lifetime due to endurance constraints is still a concern. For a sys-
tem with write traffic of B GBps, an ideal PCM-based memory
system of size S GB and a cell endurance of Wmax will last for a
duration as given by the following equation [15]:

System Lifetime =
Wmax · S

B
Seconds (1)

Figure 1 shows the effect on expected lifetime of the baseline
system with 16GB PCM main memory (details of our experimen-
tal methodology are in Section 3) when the write traffic is varied
from 1GBps to 4GBps. With an endurance of 32 million writes
per cell, the baseline system has an expected lifetime between 4-
20 years for the range of write traffic shown in Figure 1. This
data assumes that writes are distributed uniformly across the en-
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Figure 1: Impact of PCM endurance on system lifetime.
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tire main memory system. However, typically there is a significant
non-uniformity in write traffic to memory lines. This causes the
heavily written lines to fail much earlier than expected system life-
time. We show that, for the baseline system, this non-uniformity
causes the actual lifetime to be 20x lower than lifetime achievable
under ideal conditions.

The lifetime of a PCM system can be improved by making writes
uniform throughout the entire memory space. Wear leveling is
a mechanism that tries to make the writes uniform by remapping
heavily written lines to less frequently written lines. Existing pro-
posals for wear-leveling need tables to track write counts associated
with each line and an indirection table to perform address mapping
to achieve uniform wear-out of the system. Unfortunately, the hard-
ware required for these structures scales linearly with the memory
being tracked and is typically in the range of several Mega Bytes
(MB). Also, table look-up adds significant latency to each access
and also increases the overall power consumption. Furthermore,
addition of each structure requires additional design, verification,
and testing cost. The goal of this paper is to design a simple and
effective wear-leveling mechanism that obviates all the above over-
heads and still achieves a lifetime close to perfect wear-leveling.

The storage tables of wear-leveling can be eliminated if an al-
gebraic mapping can be provided between the logical and physical
address. Based on this key insight, we propose Start-Gap, a simple
and effective technique that uses two registers (Start and Gap)
to do wear-leveling. Every ψ writes to main memory, Start-Gap
moves one line from its location to a neighboring location (we use
one of the spare lines in memory to aid movement of lines). The
Gap register keeps track of how many lines have moved. When
all the lines have moved, the Start register is incremented to keep
track of the number of times all lines have moved. The mapping of
lines from logical address to physical address is done by a simple
arithmetic operation of Gap and Start registers with the logical
address. By using Start-Gap the achievable lifetime of the base-
line system is improved from 5% of the maximum possible lifetime
to 53% while incurring a total storage overhead of less than eight
bytes. Furthermore, we regulate Start-Gap to limit the extra writes
caused by wear leveling to less than 1% of the total writes.

Although Start-Gap increases the endurance of the baseline by
10x it is still 2x lower than perfect wear-leveling. The main reason
for this is that Start-Gap moves a line only to its neighboring lo-
cation. Our analysis shows that heavily written lines are likely to
be spatially close to each other. This causes a heavily written re-
gion to dictate the lifetime of the system. The likelihood of heavily
written lines being spatially nearby can be reduced if the addresses
are randomized. We propose two simple schemes for address-space
randomization: Random Invertible Binary (RIB) matrix and Feis-

tel Network. We show that combining Start-Gap with randomiza-
tion increases the endurance to 97%. The proposed randomization
schemes incur a small storage overhead (5 bytes for Feistel Net-
work and 85 bytes for RIB matrix) and negligible latency overhead.

Write limited memories such as PCM and Flash pose a unique
security threat. An adversary who knows about the wear leveling
technique can design an attack that stresses a few lines in memory
and cause the system to fail. We analyze wear leveling under ad-
versarial settings and show that, for both the baseline system and
the system with Randomized Start-Gap, a malicious program can
cause the memory system to fail within a short period of time (< 1
minute). We extend Start-Gap to tolerate such attacks by dividing
the memory into few regions and managing each region indepen-
dently using its own Start and Gap registers. We show that Region

Based Start-Gap can make the PCM-based memory system with-
stand such malicious attacks continuously for several years.

2. BACKGROUND AND MOTIVATION
Phase Change Memory (PCM) [20][19] has emerged as a promis-

ing candidate to build scalable memory systems [16][5]. One of
the major challenges in architecting a PCM-based memory sys-
tem is the limited write endurance, currently projected between
107 − 108 [1][5]. After the endurance limit is reached, the cell
may lose its ability to change state, potentially giving data errors.
If writes were uniformly distributed to each line in memory, this en-
durance limit would result in a lifetime of 4-20 years for the base-
line system (Figure 1). However, write accesses in typical programs
show significant non-uniformity. Figure 2 shows the distribution of
write traffic to the baseline memory system (memory contains 64M
lines of 256B each, writes occur after eviction from DRAM cache)
for the db2 workload in a given time quanta. For db2 most of the
writes are concentrated to a few lines. The maximum write count
per line is 9175, much higher than the average (64). The heavily
written lines will fail much faster than the rest of the lines and will
cause system failure much earlier than the expected lifetime.
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Figure 2: Non-uniformity in write traffic for db2

Figure 3 shows the expected lifetime of the baseline system nor-
malized to the case when writes are assumed to be uniform. To
avoid the pathological case when only very few lines cause system
failure we use a strong baseline that contains 64K spare lines; the
system fails when the number of defective lines is greater than the
number of spare lines. Even with significant spares, the baseline
system can achieve an average lifetime of only 5% relative to life-
time achieved if writes were uniformly distributed.
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Figure 3: Expected lifetime of baseline system normalized to

uniform-writes. Y axis is log-scale.

The lifetime of a PCM system can be increased by making the
writes uniform throughout the memory space. Wear leveling tech-
niques try to make writes uniform by remapping frequently writ-
ten lines to less frequently written lines. Existing proposals for
wear-leveling [7][12][2][3][6] use storage tables to track the write
counts on a per line basis. The mapping of logical lines to physical
lines is changed periodically and the mapping is stored in a sepa-
rate indirection table. Table based wear-leveling methods require
significant hardware overhead (several megabytes) and suffer from
increased latency as the indirection table must be consulted on each
memory access to obtain the physical location of a given line. The
goal of this work is to develop a simple mechanism that avoids the
storage and latency overheads of existing wear-leveling algorithms
and still achieves a lifetime close to perfect wear-leveling. We de-
scribe our evaluation methodology before presenting our solution.
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3. EXPERIMENTAL METHODOLOGY

3.1 Configuration

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������
��������

PCM WRITE QUEUE

FLASH−BASED
SSD DRIVE

PCM−BASED
MAIN

(16GB)

MEMORY

(L2 = 2MB/CORE)

8−CORE CMP CHIP

DRAM CACHE
(256MB)

Figure 4: Baseline System.

Figure 4 gives an overview of our baseline system. The base-
line is a eight-core CMP system with the parameters given in Table
1. We use a simple in-order core model so that we can evaluate
our proposal for several hundred billion instructions. Each core
consists of private L1 and L2 caches. The baseline consists of
256MB write back DRAM buffer organized as a 32MB per core
private cache. The DRAM cache uses a linesize of 256B.1 The
16GB PCM-based main memory can be accessed in 1024 cycles
for reads. We assume that PCM has a high write latency of 4096
cycles, so a large PCM write queue is provided. Note that writes
arrive at PCM only on DRAM cache evictions. PCM endurance
per cell is 225 (32 Million). The baseline has 64K spare lines and
the system fails if the total number of defective lines is greater than
spare lines. A page size of 4KB is assumed, and virtual to physi-
cal address translation is performed using a page table built in our
simulator. A clock style algorithm with one reference bit per page
is used to perform page replacements. Page misses are serviced by
a Flash-based SSD (solid state disk).

Table 1: Baseline Configuration
System 8-Core single-issue in-order CMP, 4GHz

L2 cache (private) 2MB, 4-way, LRU, writeback policy
DRAM cache 32MB, 8-way, 256B linesize, writeback

(private) policy, 50 ns(200 cycle) access

Main memory 16GB PCM, 4 ranks of 8 banks each
64K spare lines for fault tolerance

PCM latency reads : 250ns (1024 cycles), writes: 1 µs
PCM write queue 64 lines (256B each) per rank, FIFO order

PCM bus 16B-wide split-transaction bus, 2x slower

Flash-based SSD 25µs (100K cycles), 100% hit rate

3.2 Workloads
Table 2 shows the description and relevant characteristics of the

benchmarks used in our studies. We use three industry-standard
commercial benchmarks (oltp, db1 and db2) derived from a main-
frame server. We also use fast fourier transform (fft) and a stride

kernel, which is representative of key transformations in important
numerical applications. The stride kernel writes to every 16th line
in memory repeatedly. The workload stress is a multiprogrammed
workload consisting of eight main-memory write-intensive bench-
marks from the SPEC2006 suite (milc-GemsFDTD-leslie3d-astar-
soplex-zeusmp-omnetpp-bwaves). This workload represents a stress
case for wear leveling as it concentrates all the writes to only 3%
of memory. We simulate all the workloads for four billion memory

1The commercial applications used in this study were derived from
a server machine that uses a linesize of 256B.

writes (corresponding to 1 terabyte of write traffic) and then use the
per-line write profile to compute lifetime. Table 2 also shows the
write traffic to memory, system lifetime (if write traffic was uniform
to all lines), and footprint for each workload. Footprint is computed
as the number of unique pages touched times the pagesize (4KB).

Table 2: Workload Summary (GBPS=GigaBytesPerSecond)

Name Description Wr-traffic Lifetime
(Memory Footprint) to PCM (Ideal)

oltp Online Trans. Proc. (32GB+) 0.82 GBPS 19.5 years
db1 Commercial database (32GB+) 0.98 GBPS 16.3 years
db2 Commercial database (32GB+) 1.06 GBPS 15.1 years
fft fast fourier transform (12.6GB) 3.6 GBPS 4.44 years

stride writes every 16thline (16GB) 1.5 GBPS 10.7 years
stress 8 SPEC benchmarks (1.2GB) 1.96 GBPS 8.16 years

3.3 Figure of Merit
The objective of a wear-leveling algorithm is to endure as many

writes as possible by making the write traffic uniform. If Wmax
is the endurance per line, then a system with perfect wear-leveling
would endure a total of (Wmax×Num Lines In Memory) writes. We
define “Normalized Endurance (NE)” as:

NE =
Total Line Writes Before System Failure

Wmax× Num Lines In Memory
× 100%

(2)
Normalized Endurance close to 100% indicates that the wear-leveling
algorithm can achieve system lifetime similar to maximum possible
lifetime. We use this metric as the figure of merit in our evaluations.

4. START-GAP WEAR LEVELING
Existing wear leveling algorithms require large tables to track

write counts and to relocate a line in memory to any other location
in memory in an unconstrained fashion. The storage and latency
overhead of the indirection table in table based wear leveling can
be eliminated if instead an algebraic mapping of logical address to
physical address is used. Based on this key insight, we propose
Start-Gap wear leveling that uses an algebraic mapping between
logical addresses and physical addresses, and avoids tracking per-
line write counts. Start-Gap performs wear leveling by periodically
moving each line to its neighboring location, regardless of the write
traffic to the line. It consists of two registers: Start and Gap,
and an extra memory line GapLine to facilitate data movement.
Gap tracks the number of lines relocated in memory and Start
keeps track of how many times all the lines in memory have been
relocated. We explain the Start-Gap algorithm with an example.

4.1 Design
Figure 5(a) shows a memory system consisting of 16 lines (0-

15). To implement Start-Gap, an extra line (GapLine) is added at
location with address 16. The 17 lines can be visualized as forming
a circular buffer. GapLine is a memory location that contains no
useful data. Two registers, Start and Gap are also added. Start
initially points to location 0, and Gap always points to the location
of the GapLine. To perform wear leveling, Gap is moved by 1
location once everyψ writes to memory. The move is accomplished
simply by copying the content of location of [Gap-1] to GapLine
and decrementing the Gap register. This is shown by movement of
Gap to line 15 in Figure 5(b). Similarly, after 8 movements ofGap
all the lines from 8-15 get shifted by 1, as indicated in Figure 5(c).
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Figure 5: Start-Gap wear leveling on a memory containing 16 lines.

Figure 5(d) shows the case when Gap reaches location 0, and
Line 0 - Line 15 have each moved by 1 location. As with any
circular buffer, in the next movement, Gap is moved from location
0 to location 16 as shown in Figure 5(e). Note that Figure 5(e) is
similar to Figure 5(a) except that the contents of all lines (Line 0
to Line 15) have shifted by exactly 1 location, and hence the Start
register is incremented by 1. Every movement of Gap provides
wear leveling by remapping a line to its neighboring location. For
example, a heavily written line may get moved to a nearby read-
only line. To aid discussion, we define the terms Gap Movement

and Gap Rotation as follows:
Gap Movement: This indicates movement of Gap by one, as

shown in Figure 5(a) to Figure 5(b). We perform Gap Movement
once every ψ writes to the main memory, where ψ is a parame-
ter that determines the wear leveling frequency. Gap register is
decremented at every Gap Movement. If Gap is 0, then in the next
movement it is set to N (the number of locations in memory).

Gap Rotation: This indicates all lines in the memory have per-
formed one Gap Movement for a given value of Start. The Start
register is incremented (modulo number of memory lines) on each
Gap Rotation. Thus, for a memory containing N lines, Gap Rota-
tion occurs once every (N + 1) Gap Movement. The flowchart for
Gap Movement (and Gap Rotation) is described in Figure 6.

GAP == 0

YES NO

[GAP] = [GAP−1]START = (START+1)%N

[GAP] = [N] GAP = GAP−1

GAP = N

N = Number of Lines in Memory (Excluding GapLine)

Figure 6: Flowchart for Gap Movement.

4.2 Mapping of Addresses
TheGap and Start registers change continuously which changes

the mapping of logical to physical memory addresses. The mapping
is accomplished by making two observations: (1) In Figure 5(c) all
addresses more than or equal to Gap, are moved by 1 and all loca-
tion less than Gap remain unchanged. (2) When Start moves as

in Figure 5(e) all locations have moved by 1, so the value of Start
must be added to the logical address to obtain physical address. The
mapping is captured by the pseudo-code shown in Figure 7, which
may be trivially implemented in hardware using few gates. If PA is
less than N then memory is accessed normally. If PA=N then the
spare line (Location 16 in Figure 5) is accessed.

(Excluding GapLine)

PA = (LA + Start) Mod N

PA = PA + 1

NO

PA >= GAP

YES

Return PA

INPUTS:

PA = Physical Address

OUTPUT:

N = Number of Lines in Memory

LA = Logical Address

Figure 7: Mapping of Logical Address to Physical Address.

4.3 Overheads
A Gap Movement incurs a write (copying data from the line next

toGapLine toGapLine). Start andGapmust move fast enough
to spread hot spots across the entire memory over the expected life
time of the memory. However, Gap must move slow enough to
not incur too many writes. Otherwise these spurious writes may
consume a significant fraction of cell endurance, and would lead to
higher power consumption. The frequency of Gap Movement can
easily be controlled using the parameter Gap Write Interval (ψ). A
Gap Movement occurs once every ψ writes. Thus, the extra writes
due to wear leveling are limited to 1

ψ+1
of the total writes. We

use ψ = 100, which means Gap Movement happens once every
100th write to the memory. Thus, less than 1% of the wearout
occurs due to the wear-leveling, and the increase in write traffic and
power consumption is also bounded to less than 1%. To implement
the effect of ψ = 100, we use one global 7-bit counter that is
incremented on every write to memory. When this counter reaches
100, a Gap Movement is initiated and the counter is reset.

The Start-Gap algorithm requires storage for two registers: Start
andGap, each less than four bytes (given that there are 226 lines in
baseline system). Thus, Start-Gap incurs a total storage overhead
of less than eight bytes for the entire memory. We assume that the
GapLine is taken from one of the spare lines in the system. If the
memory system does not provision any spare line, a separate 256B
line will be required.
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Figure 8: Normalized Endurance with Start-Gap wear leveling with ψ = 100.

4.4 Results
Figure 8 shows the Normalized Endurance for baseline, Start-

Gap, and perfect wear leveling (uniform writes). Gmean denotes
the geometric mean over all six workloads. Start-Gap achieves
20%-60% of the achievable endurance for the three database work-
loads. The stride kernel writes to every 16th line, therefore, after
every 16th Gap Movement all the writes become uniform and Start-
Gap achieves close to perfect endurance. The average endurance
with Start-Gap is 53% which is 10x higher than the baseline.

4.5 A Shortcoming of Start-Gap
Although Start-Gap improves endurance by 10x compared to the

baseline, it is still 2x lower than the ideal. This happens because in
each Gap Movement, Start-Gap restricts that a line can be moved
only to its neighboring location. If writes are concentrated in a
spatially close region, then Start-Gap can move a heavily written
line to another heavily written line, which can cause early wear-
out. As a counter-example, consider the stride kernel. The heavily
written lines are uniformly placed at a distance of 16 from each
other. So, Start-Gap is guaranteed to move a heavily written line
to 15 lines that are written infrequently before moving it to another
heavily written line. Therefore, it is able to achieve close to ideal
endurance. Unfortunately, in typical programs heavily written lines
tend to be located spatially close to each other, partly because the
clock replacement algorithm [4] commonly used in current operat-
ing systems searches from spatially nearby pages for allocation.
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Figure 9: Spatial correlation in heavily written lines. Write

traffic per region (128K lines each).

Figure 9 shows the spatial distribution of writes in the baseline
system for db1, fft and stride. To keep the data tractable, we di-
vide the memory in 512 equal regions (128K lines each) and the
total writes per region is shown for a period when memory receives
4 Billion writes. Thus, the average writes per region is always 8
Million. For db1, heavily written regions are spatially close be-
tween regions 400-460. For fft, about half of the regions are heav-
ily written and are located before region 250. If write traffic can
be spread uniformly across regions (like for stride) then Start-Gap
can achieve near perfect endurance. In the next section, we present
cost-effective techniques to make the write traffic per region uni-
form.

5. ADDRESS-SPACE RANDOMIZATION
The spatial correlation in location of heavily written lines can be

reduced by using a randomizing function on the address space. Fig-
ure 10 shows the architecture of Randomized Start-Gap algorithm.
The randomizer provides a (pseudo) random mapping of a given
Logical Address (LA) to an Intermediate Address (IA). Due to ran-
dom assignment of LA to IA, all regions are likely to get a total
write traffic very close to the average, and the spatial correlation of
heavily written lines among LA is unlikely to be present among IA.
Note that this is a hardware only technique and it does not change
the virtual to physical mapping generated by the operating system.
The Logical Address (LA) used in Figure 10 is in fact the address
generated after the OS-based translation and Physical Address (PA)
is the physical location in PCM-based main memory.

LA

PA TO PCM

MAIN MEMORY

IA

RANDOMIZER

STATIC

DRAM BUFFER

FROM

PA = Physical Address 

IA = Intermediate Address 

LA = Logical Address 

START−GAP 

MAPPING

Figure 10: Architecture for Randomized Start-Gap.

To ensure correctness, the randomizer must map each line in IA
to exactly one line in LA. Thus, the randomizer must be an invert-
ible function. To avoid remapping, we use a static randomizer that
keeps the randomized mapping constant throughout program exe-
cution. The randomizer logic can be programmed either at design
time or at boot time. To be implementable, the randomizing logic
must incur low latency and have low hardware overhead. We pro-
pose two such practical designs for randomization.
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Figure 11: Three-stage Feistel Network.

5.1 Feistel Network Based Randomization

In cryptography, block ciphers provide a one-to-one mapping
from a B-bit plain text to B-bit cypher text. We can use block
cypher for randomization. One popular method to build block ci-
phers is to use the Feistel Network [13]. Feistel networks are simple
to implement and are widely used including in the Data Encryption
Standard (DES). Figure 11 shows the logic for a three stage Feistel
network. Each stage splits the B-bit input into two parts (L and R)
and provides output which is split into two as well (L’ and R’). R’ is
equal to L. L’ is provided by an XOR operation of R and the output
of a function (F1) on L and some randomly chosen key (K).

Feistel network has been studied extensively and theoretical work
[11] has shown that 3 stages can be sufficient to make the block ci-
pher a pseudo-random permutation. We experimentally found that
three stages were in fact sufficient for our purpose, hence we use
a three-stage network. The secret keys (key1, key2, key3) are ran-
domly generated and are kept constant. For ease of implementation
we chose the Function (F1) to be the squaring function of (L XOR
key) as shown in Figure 11.

If the memory has B-bit address space (B = log2N , where N is
the number of lines in memory), then each stage of Feistel network
requires n-bits (n = B/2) bits of storage for the key. The squaring
circuit for n-bits requires approximately 1.5 · n2 gates [10]. The
latency for each stage is n+ 1 gates [10], which for B = 26 is less
than 1 cycle even for a very aggressively pipelined processor. Thus,
a 3 stage Feistel network would require 1.5B bit storage, less than
2 ·B2 gates, and a delay of 3 cycles.

5.2 Random Invertible Binary Matrix

A linear mapping from LA to IA can be performed using a Ran-

dom Invertible Binary (RIB) matrix. The elements of a RIB matrix
are populated randomly from {0,1} such that the matrix remains
invertible. Figure 12 shows the RIB matrix based randomization
for an address space of 4 bits. Each bit of IA address is obtained by
multiplying one row of RIB with the vector LA. We use a binary
arithmetic in which addition is the XOR operation and multipli-
cation is the AND operation. Each bit of randomization can be
obtained independently (as shown in Figure 12 (ii)).

For a memory with B-bit address space (B = log2N ), com-
puting each bit requires B AND gates and (B-1) two-input XOR
gates. Thus, the total storage overhead of RIB is B2 bits for ma-
trix, and approximately 2 ·B2 gates for logic. The latency is delay
of log2(B) logic gates which is less than 1 cycle even for a very
aggressively pipelined processor.
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1 0 1

00 1 1
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d
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a

Row0 LA

1

(ii)

0

Figure 12: RIB Matrix based randomization for 4-bit address

space: (i) concept (ii) circuit for one IA bit

5.3 Comparison of Randomization Schemes
Randomization can also be performed by simply shuffling the

bits of LA to provide IA. However, we found that such Random-
ized Bit Shuffling (RBS) does not provide sufficient address space
randomization. Table 3 compares RIB and Feistel Network with
RBS in terms of storage complexity, latency, number of possible
mappings, and normalized endurance. All proposed randomization
schemes incur less than 100 bytes of storage overhead and negligi-
ble latency overhead (< 0.5% of PCM read latency of 1024 cycles).

Table 3: Comparison of randomization schemes for B-bit ad-

dress space (In our case B=26)
Parameter RIB Matrix Feistel Nw. RBS

Storage Overhead B2 bits 1.5 ·B bits B · log2B
(For B=26) (85bytes) (5bytes) (17bytes)

Latency 1 cycle 3 cycles 1 cycle

Possible ≈ 2B
2
−1 21.5B B!

mappings
Norm. Endurance 97% 97% 82%
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Figure 13: Normalized Endurance of Start-Gap (SGap) with different Randomization Schemes.

5.4 Results of Randomized Start-Gap
Figure 13 shows the normalized endurance of the baseline, Start-

Gap, and Randomized Start-Gap with RIB-based and Feistel Net-
work based randomization. For the RIB-based scheme, we initial-
ized the matrix with random binary values, ensuring that the ma-
trix remains invertible. For the Feistel Network, the three keys are
chosen randomly. There is minor variation (< 1%) in normalized
endurance obtained from these schemes depending on the random
seed. So, for each workload, we repeat the experiments for both
schemes 30 times (each time with a different random seed) and re-
port the average value.

Randomized Start-Gap achieves more than 90% normalized en-
durance for all workloads. The stride kernel is ideal for Start-Gap
as all heavily written lines are equally spaced. Randomizing the
address space breaks this uniformity which reduces the endurance
slightly. The average across all workloads for Randomized Start-
Gap is 97% (with RIB or with Feistel). The total storage required
for RIB matrix is 85 bytes and for Feistel network is 5 bytes.2 So,
Randomized Start-Gap requires 93 bytes with RIB and 13 bytes
with Feistel network. Thus, Randomized Start-Gap is a practical
and effective way to do wear leveling as it achieves near-perfect
endurance while incurring negligible hardware overhead.

5.5 Analytical Model for Rand. Start-Gap
We now provide an analytical model for Randomized Start-Gap

that explains why it consistently achieves endurance of >96%. Let
there be N lines in memory, each of which can be written Wmax
times. Let Gap be moved after every ψ writes to memory, there-
fore Gap Rotation happens once every N · ψ writes. We will use
the number of Gap Rotations before the line fails as a measure of
lifetime. Let µ1 be the average writes per line and σ1 be the stan-
dard deviation, during one Gap Rotation. Let us focus on a generic
physical address p. The physical address p will be associated to a
logical address l for exactly 1 Gap Rotation (N · ψ writes). After
that time unit is elapsed, the physical address p will be associated
with a different logical address. Due to the randomness of the ad-
dress space mapping function we can assume that the new logical
address will be chosen at random.3 After a large number of Gap
Rotations, the total writes for line p can be approximated with a
Gaussian distribution using the Central Limit Theorem[17].

2We use B=26, assuming all bits in line address can be randomized.
If the memory supports open-page policy then all the lines in the
page are required to be spatially contiguous. In that case, only the
bits in the address space that form the page address are randomized
(randomizing on line granularity or page granularity does not have
a significant effect on normalized endurance).
3This is not rigorously true because the new logical address associ-
ated with p cannot be any of the previous logical addresses associ-
ated with p. However, if the number of start register moves is much
less than N, this approximation is quite accurate.

After k Gap Rotations, the expected value of sum of writes (Sumk)
and the standard deviation (σk) to line p is:

Sumk = k · µ1 σk =
√
k · σ1 (3)

The probability that the line p fails after k Gap Rotations:

P{Line p fails} = P{Z >
Wmax − Sumk

σk
} (4)

where Z is a zero mean unit variance Gaussian random variable.
If each line fails independently, the probability that none of the N
lines fail after k time-units is:

P{Memory lifetime > k} =

„

1 − P{Z >
Wmax − k · µ1√

k · σ1

}
«N

.

(5)
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Figure 14: Prob (No line fails) vs. Total writes.

Given µ1 = ψ (100 in our case), value for only σ1 is required to
compute lifetime for a workload. Figure 14 shows the probability
that there are no failures in the memory as the number of writes is
increased (value normalized to maximum write count N ·Wmax).

Table 4: Normalized lifetime: analytical and experimental

Workload oltp db1 db2 fft stride stress Avg.
Std. dev.(σ) 152 205 242 100 386 801 314

Analytical 98.5 98 97.7 99 96.3 92.5 97

RIB matrix 97.6 98.1 97.4 98.3 95.7 94.1 96.8
Feistel Nw. 97.3 96.4 97.4 97.2 97.8 94.1 96.7

Table 4 shows the σ1 for the workloads studied and the expected
lifetime obtained analytically and experimentally. For most work-
loads, σ1 < 400, hence Randomized Start-Gap gets endurance of
> 96%. The analytical model matches with the experimental re-
sults obtained with both RIB matrix and Feistel network.
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6. WEAR LEVELING UNDER

ADVERSARIAL SETTINGS

Thus far, we have considered only typical workloads. However,
write limited memories such as PCM and Flash pose a unique se-
curity threat. An adversary who knows about the wear leveling
technique can design an attack that stresses a few lines in mem-
ory and cause the system to reach the endurance limit, and fail. It is
important to address such security loopholes before these technolo-
gies can be used in main memories. In this section, we describe the
possible vulnerabilities, analyze how soon the simplest attack can
cause system failure and provide solutions that make the system
robust to such malicious attacks.

6.1 A Simple Attack
An adversary can render a memory line unusable by writing

to it repeatedly.4 In a main memory consisting of N lines where
there is one gap movement every ψ writes, all the lines will move
once every N · ψ writes to memory. For our baseline system,
N ·ψ >> Wmax, where Wmax is the endurance of line (N=226

lines, ψ=100, Wmax=225). Therefore, if the attacker can write to
the same address repeatedly, it can cause line failure. Randomiza-
tion of address space does not help with this attack, because instead
of some line (line A), some other line (line B) becomes unusable.
Figure 15 shows the pseudo-code of such an attack.

while(1){

      array[ii].element[0]++;
}

Do aligned alloc of (W+1) arrays each of size S

W = Maximum associativity of any cache in system

S  =  Size of largest cache in system

for(ii=0; ii<W+1; ii++)

Figure 15: Code for attacking few lines.

The above code causes thrashing in LRU managed cache (assum-
ing address-bits based cache indexing) and causes a write toW +1
lines of PCM in each iteration. The loop can be trivially modified
to write to only one line repeatedly in each iteration to result in an
even quicker system failure. If it takes 212 cycles to write to PCM,
then the number of seconds to make a line fail is given by:

Time To Failure = (Cell Endurance)×(Cycles Per Write)
Cycles Per Second

= 225
·212

232 = 32 seconds

Thus, an attacker can cause system failure in less than 1 minute
(assuming no spare lines). Note that such an attack causes failure
for the baseline as well, so Start-Gap is not making security worse.
The next section provides solutions to make the system robust to
such attacks.

4If Start-Gap is implemented without randomization, the adversary
can anticipate Start movement and increment the write address, and
write repeatedly to the same physical line. Randomization makes
it harder to guess the logical to physical mapping without access to
the physical address. It is possible to physically probe the machine
to get the physical address and guess the random mapping. How-
ever, the adversary would still be able to break only one machine
because each machine has a different (random) key in the Feistel
network or RIB matrix.

6.2 Solution
Start-Gap can tolerate the repeated writes to the same line if

the number of lines in memory managed by Start-Gap is less than
Wmax
ψ

. In this scenario, the line will undergo Gap Movement
before the cell endurance is reached. Based on this insight, we
propose Region Based Start-Gap (RBSG). RBSG is identical to
Start-Gap except that it divides the memory into several regions
and manages each region independently using a separate Start and
Gap. If a region is written heavily it will now undergo Gap Move-
ment faster than other regions, preventing line failure from repeated
writes. The maximum number of lines (K) in the RBSG region is:

K <
Wmax

ψ
=⇒ K <

225

100
=⇒ K < 1.28 · 218

(6)

Thus, a RBSG with each region containing 218 lines can tolerate
attacks. Each region of 64MB now require separate Start andGap
registers ( < 3B each). As there are 256 regions, the total storage
overhead is less than 256 x 6B = 1.5KB. The GapLine for each
region is taken from the spare lines in the system.

Another orthogonal approach to tolerate attacks is to increase
the time to write to the same line. This can be done simply by
changing the PCM write queue policy to delay the write until the
write queue reaches some defined occupancy. For example, in our
baseline system the PCM write queue is 64 entries. We can delay
the write to PCM unless there are at least 16 writes in the write
queue. Under this scenario, the attacker will have to write to more
than 16 lines repeatedly, but each write will be delayed by a factor
of 16. We call this Delayed Write Policy with a Delay Write Factor

(DWF) of 16.

6.3 Results
RBSG makes the line incur a Gap Movement before the line

reaches Wmax. If there are K lines in a region, then it will take
the attacker a total of Wmax · K writes to cause system failure.
And with the delayed write policy each write can be made slower
by a factor of DWF. Figure 16 shows the time to failure for a sys-
tem with RBSG as region size is varied, and with different values
of DWF. To cause a failure in a system with RBSG, the adversary
now requires from 4 months (with DWF=1) to 64 months (with
DWF=16). We believe such a long duration is sufficient to make
the system safe because attacks are unlikely to last continuously for
several months. Also, the malicious program is unlikely to retain
its page for several months. Once the page is reclaimed by the OS,
the attack is rendered futile. Finally, a machine that can be attacked
for several months represents a potentially bigger vulnerability in a
larger system, so the lifetime of such a machine is probably not a
serious concern.
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Figure 16: Time to failure under attack for a system with RBSG

+ Delayed Write. Y axis in log scale.

We also evaluated RBSG on our workloads and found that for all
workloads the normalized endurance obtained with RBSG is nearly
identical to Randomized Start-Gap. The average for both is 97%.
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Figure 17: Comparison of Table-Based Wear Leveling (TBWL) with Randomized Start-Gap.

7. RELATED WORK

7.1 Related Work in Wear Leveling
Wear leveling has been studied extensively for Flash based stor-

age structures [7][12][2][3][6]. The most common version of wear
leveling is to have a storage table that tracks lifetime wear-out for
each block. Periodically, the blocks that are written heavily in a
given time quanta are remapped to blocks that have the lowest
wear-out. A separate indirection table keeps track of the logical
to physical mapping of the block. The storage overhead of this
method is approximately 10 bytes per block (26 bits each for life-
time write count, temporal write count, and indirection). For Flash
memories the write erasures happen at block granularity of 128KB,
so wear leveling is done at 128KB granularity as well. However,
PCM is not constrained by block erasures and can be managed at
much finer granularity (256B linesize in our system).

Figure 17 shows the endurance of Table Based Wear Leveling
(TBWL) with: block-size = 1 line (storage overhead 640MB), block-
size = 2 lines (320MB overhead) and block-size = 128KB (1.25MB
overhead). TBWL gets near perfect endurance only when blocks-
size equals linesize. Start-Gap operates at a line granularity while
obviating the huge storage overhead of TBWL and still gets com-
parable endurance. Also, the indirection in TBWL adds latency of
several tens of cycles (or hundreds of cycles if tables are made us-
ing DRAM) to each access, whereas, Start-Gap requires few cycles
(< 10) to perform the logical to physical mapping.

Wear leveling can also be done at OS level, where OS period-
ically remaps a heavily written page. However, OS-based wear
leveling still requires per-page write-tracking counters and incurs
slowdown due to remapping. Our simple hardware-based proposal
avoids the storage overhead for per-page write counters (16MB),
OS changes to support wear leveling, performance degradation due
to remapping, and still achieves near-perfect lifetime.

7.2 Related Work in PCM Management
Qureshi et al. [15] propose Fine-Grain Wear Leveling (FGWL)

to shift cache lines within a page to achieve uniform wear out of
all lines in the page. FGWL requires storage and latency for per-
page shift-counter. More importantly, it relies on a separate wear-
leveling mechanism at page granularity, which typically incurs sev-
eral megabytes of storage and indirection. We avoid the per-page
storage of FGWL, the reliance on separate (expensive) mechanism
at page granularity(40MB), the latency overhead of indirection, and
still get near-perfect lifetime.

Zhou et al. [21] propose several layers of wear leveling: shifting
bits in a line, shifting lines in a segment, and segment swapping.
The segment swapping requires wearout counters and indirection

table for doing wear leveling (similar to TBWL). This incurs sig-
nificant storage overhead and latency overhead. We show in Fig-
ure 17, that our proposal achieves lifetime similar to a hardware
unconstrained version of [21] (total overhead 640MB), while re-
quiring <13 bytes overhead and no table-lookup based indirection.
Furthermore, in their scheme, segment swapping is done by lock-
ing the memory for millions of cycles. Such latencies may be unac-
ceptable for service level agreements or real time guarantees. Our
proposal avoids the storage, latency, and complexity overheads of
their scheme.

The lifetime of a PCM system can also be increased by reduc-
ing the write traffic to PCM. Several write filtering schemes have
been proposed recently. For example, partial writes [8], line level
writeback [15], lazy write [15] and silent store removal [21]. These
schemes are orthogonal to wear leveling, in that wear leveling tries
to make the write traffic uniform, regardless of the magnitude of
the write traffic.

7.3 Related Work in Fault Tolerant Memories
Memory systems typically provision few spare units to improve

reliability and lifetime [18]. We can use such spare units to toler-
ate endurance related wear-out. In our baseline memory system of
64M lines, we use 64K spare lines. Table 5 shows the average nor-
malized endurance of the baseline and Randomized Start-Gap, as
number of spare lines is varied from 0 to 6.4M lines. Baseline with-
out spare line achieves less than 2% normalized endurance, hence
we use a stronger baseline of 64K spare lines. Increasing spare lines
further increases endurance of baseline to 9% (for 640K lines) and
25% (for 6.4M lines) at the overhead of 0.16GB and 1.6GB respec-
tively. Therefore, relying only on spare lines to mitigate endurance
related wear-out is ineffective and more expensive than wear lev-
eling. As such, Start-Gap is insensitive to spare lines as all lines
wear out at similar time. Therefore, with Start-Gap the PCM mem-
ory system may not have to provision significantly more spare lines
just for tolerating endurance related wear out.

Table 5: Norm. endurance (average) as spare lines is varied
Number of spare lines 0 64K 640K 6.4M

Baseline 1.5% 5.0% 9.2% 25.0%

Randomized Start-Gap 96.8% 97.0% 97.5% 97.7%

7.4 Related Work in Memory Security
We show that an adversary may cause PCM memories to fail

quickly. Such an attack is more severe than Denial of Service

(DoS) [14] in that memory resource (line) becomes permanently
incapable of servicing future requests, whereas, in DoS attacks the
resource is capable of – but unavailable for – service.
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8. CONCLUSION
Phase Change Memory (PCM) is a promising candidate for in-

creasing main memory capacity. One of the main challenges in a
PCM system is the limited write endurance of PCM devices. We
showed that if write traffic to each PCM cell is uniform, the PCM
system can last for a few years. However, non-uniformity in write
traffic of typical programs can reduce the effective lifetime of a
PCM system by 20x. Writes can be made uniform using Wear lev-

eling. Unfortunately, existing wear leveling algorithms – developed
mainly in the context of Flash – use large storage tables for tracking
wear-out and doing logical to physical mapping. These tables incur
significant area and latency overhead which make them unsuitable
for main memories. These overheads can be avoided by using an
algebraic mapping between logical and physical addresses. Based
on this key insight, this paper makes the following contributions:

• We propose the Start-Gap wear leveling algorithm. Start-
Gap requires less than 8 bytes of total storage overhead and
increased the achievable lifetime of the baseline 16GB PCM-
based system from 5% to 53% of the theoretical maximum.

• Start-Gap moves lines to spatially nearby locations. Ran-
domizing address space increases the effectiveness of Start-
Gap. We propose two cost-effective techniques, Random In-

vertible Binary (RIB) matrix and Feistel Network, to random-
ize the address space. Randomized Start-Gap obtains aver-
age lifetime of more than 97% of the ideal algorithm, while
still incurring negligible storage overhead.

• To our knowledge, this is the first paper to analyze wear-
leveling algorithms under adversarial settings for PCM based
main memories. We show that an adversary can cause PCM
system to fail within a short period of time, emphasizing the
need for security-aware wear leveling.

• We provide a simple extension to Randomized Start-Gap that
can make the PCM system robust to such attacks. We pro-
pose to partition the memory into several regions and man-
age each region with its own Start-Gap. Such a Region Based

Start-Gap (RBSG) increases the time to failure under attack
by 4-5 orders of magnitude to several months or years.

The latency, area, and power requirements of Randomized Start-
Gap are negligible. While we used Start-Gap only for wear level-
ing at the line level, a simple variant of Start-Gap that rotates the
line by one bit at each movement of Gap can also perform intra-
line wear leveling while consuming no extra storage overhead (the
rotate value of each line can be obtained easily from the Start reg-
ister). We assume that when a cell wears out the ECC mechanism
can identify write failures. Other error detection and correction
mechanisms better suited to PCM can be investigated. While we
evaluated Start-Gap for only PCM, it is applicable to all lifetime
limited memories, including Flash. We discuss some of security
vulnerabilities for lifetime limited memories; however, we believe
this is only a first step in making such memories robust to attacks.
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