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ABSTRACT
Dynamic voltage and frequency scaling (DVFS) is an effective tech-
nique for controlling microprocessor energy and performance. Ex-
isting DVFS techniques are primarily based on hardware, OS time-
interrupts, or static-compiler techniques. However, substantially
greater gains can be realized when control opportunities are also
explored in a dynamic compilation environment. There are several
advantages to deploying DVFS and managing energy/performance
tradeoffs through the use of a dynamic compiler. Most importantly,
dynamic compiler driven DVFS is fine-grained, code-aware, and
adaptive to the current microarchitecture environment.

This paper presents a design framework of the run-time DVFS
optimizer in a general dynamic compilation system. A prototype of
the DVFS optimizer is implemented and integrated into an industrial-
strength dynamic compilation system. The obtained optimization
system is deployed in a real hardware platform that directly mea-
sures CPU voltage and current for accurate power and energy read-
ings. Experimental results, based on physical measurements for
over 40 SPEC or Olden benchmarks, show that significant energy
savings are achieved with little performance degradation. SPEC2K
FP benchmarks benefit with energy savings of up to 70% (with
0.5% performance loss). In addition, SPEC2K INT show up to
44% energy savings (with 5% performance loss), SPEC95 FP save
up to 64% (with 4.9% performance loss), and Olden save up to 61%
(with 4.5% performance loss). On average, the technique leads to
an energy delay product (EDP) improvement that is 3X-5X better
than static voltage scaling, and is more than 2X (22% vs. 9%) bet-
ter than the reported DVFS results of prior static compiler work.
While the proposed technique is an effective method for micropro-
cessor voltage and frequency control, the design framework and
methodology described in this paper have broader potential to ad-
dress other energy and power issues such as di/dt and thermal con-
trol.

1. Introduction
Dynamic voltage and frequency scaling (DVFS) is an effective

technique for microprocessor energy and power control and has
been implemented in many modern processors [4, 11]. Current
practice for DVFS control is OS-based power scheduling and man-
agement (i.e., the OS selects a new voltage setting when a new
application or task is scheduled or if the processor is switched be-
tween idle/active states) [4, 10]. In this work, we focus instead on
more fine-grained intra-task DVFS, in which the voltage and fre-

quency can be scaled during program execution to take advantage
of the application phase changes.

While significant research efforts have been devoted to the intra-
task DVFS control, most of them are based on hardware [16, 19,
22], OS time-interrupt [7, 23], or static compiler techniques [14,
25]. (A brief description of these existing techniques is available in
Section 2.) Very little has been done to explore DVFS control op-
portunities in a dynamic compilation or optimization environment.
In this paper, we consider dynamic compiler DVFS techniques,
which optimize the application binary code and insert DVFS con-
trol instructions at program execution time.

A dynamic compiler is a run-time software system that com-
piles, modifies, and optimizes a program’s instruction sequence as
it runs. In recent years, dynamic compilation is becoming increas-
ingly important as a foundation for run-time optimization, binary
translation, and information security. Examples of dynamic com-
piler based infrastructures include HP Dynamo [2], IBM DAISY
[8], Intel IA32EL [3], and Intel PIN [18]. Since most DVFS imple-
mentations allow direct software control via mode set instructions
(by accessing special mode set registers), a dynamic compiler can
be used to insert DVFS mode set instructions into application bi-
nary code at run time. If there exists CPU execution slack (i.e.,
CPU idle cycles waiting for memory ), these instructions will scale
down the CPU voltage and frequency to save energy with no or
little impact on performance.

Using dynamic compiler driven DVFS offers some unique fea-
tures and advantages not present in other approaches. Most impor-
tantly, it is more fine-grained and more code-aware than hardware
or OS interrupt based schemes. Also it is more adaptive to the run-
time environment than static compiler DVFS. In Section 2, we will
give statistical results to further motivate dynamic compiler driven
DVFS, and discuss its advantages and disadvantages.

This paper presents a design framework of the run-time DVFS
optimizer (RDO) in a dynamic compilation environment. Key de-
sign issues that have been considered include code region selection,
DVFS decision, and code insertion/transformation. In particular,
we propose a new DVFS decision algorithm based on an analytic
DVFS decision model. A prototype of the RDO is implemented and
integrated into an industrial-strength dynamic optimization system
(a variant of the Intel PIN system [18]). The obtained optimiza-
tion system is deployed into a real hardware platform (an Intel de-
velopment board with a Pentium-M processor), that allows us to
directly measure CPU current and voltage for accurate power and
energy readings. The evaluation is based on experiments with phys-
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Figure 1: Number of L2 cache misses for every million instruc-
tions retired during the execution of SPEC2000 benchmark
173.applu. Numbers 1 to 5 mark five memory characteristic
phases. The symbol ˆ in the figure marks the recurring point
of the program phases.

ical measurements for over 40 SPEC or Olden benchmarks. Eval-
uation results show that significant energy efficiency is achieved.
For example, up to 70% energy savings (with 0.5% performance
loss) is accomplished for SPEC benchmarks. On average, the tech-
nique leads to energy delay product (EDP) improvements of 22.4%
for SPEC95 FP, 21.5% for SPEC2K FP, 6.0% for SPEC2K INT,
and 22.7% for Olden benchmarks. These average results are 3X-
5X better than those from static voltage scaling (22.4% vs. 5.6%,
21.5% vs. 6.8%, 6.0% vs. -0.3%, 22.7% vs.6.3%), and are more
than 2X better (21.5% vs. 9%) than those reported by a static com-
piler DVFS scheme [14].

Overall, the main contributions of this paper are twofold. First,
we have designed and implemented a run-time DVFS optimizer,
and deployed it on real hardware with physical power measure-
ments. The optimization system is more effective in terms of en-
ergy and performance efficiency, as compared to existing approaches.
Second, to our knowledge, this is one of the first efforts to develop
dynamic compiler techniques for microprocessor voltage and fre-
quency control. A previous work [12] provides a partial solution to
the Java Method DVFS in a Java Virtual Machine, while we provide
a complete design framework and apply DVFS in a more general
dynamic compilation environment with general applications.

The structure for the rest of the paper is as follows. Section 2
further motivates dynamic compiler DVFS. Section 3 presents the
design framework of the RDO. Section 4 describes the implemen-
tation and deployment of the RDO system. This is followed by
the experimental results in Section 5. Section 6 highlights related
work. Section 7 discusses future work. Finally, our conclusions are
offered in Section 8.

2. Why Dynamic Compiler Driven DVFS?
In this section, we discuss in more detail the unique features,

advantages, and disadvantages of dynamic compiler driven DVFS,
as compared to existing DVFS techniques.

2.1 Advantages over hardware or OS DVFS
Existing hardware or OS time-interrupt based DVFS techniques

typically monitor some system statistics (such as issue queue occu-
pancy [22]) in fixed time intervals, and decide DVFS settings for
future time intervals [7, 19, 22, 23]. Since the time intervals are
pre-determined and independent of program structure, the DVFS
control by these methods may not be efficient in adapting to pro-
gram phase changes. One reason is that program phase changes
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Figure 2: Average number of memory bus transactions (per 1M
instructions) for the function qsort() (as in stdlib.h) with differ-
ent input sizes and different input patterns (random input:•
versus pre-sorted input: ∗).

are generally caused by the invocation of different code regions, as
observed in [15]. Thus, the hardware or OS techniques may not be
able to infer enough about the application code attributes and find
the most effective adaptation points. Another reason is that pro-
gram phase changes are often recurrent (i.e., loops). In this case,
the hardware or OS schemes would need to detect and adapt to the
recurring phase changes repeatedly.

To illustrate the above reasoning, Figure 1 shows an example
trace of program phase changes for the SPEC2000 benchmark 173.ap-
plu. (The trace is from a part of the program with about 4500 mil-
lion instructions.) The y-axis is the number of L2 cache misses for
every 1M instructions during the program execution. (All results
in the section were obtained using hardware performance counters
in a processor setup described in Section 5.) From the figure, we
see that there are about 5 distinct memory phases characterized by
different L2 cache miss values and duration. As will be shown in
Section 5, these phases actually correspond to 5 distinct code re-
gions (functions) in the program. Also, we see the phase changes
are recurrent, as shown by the marked points in the figure.

Compiler driven DVFS schemes (static or dynamic) can apply
DVFS to fine-grained code regions so as to adapt naturally to pro-
gram phase changes. Hardware or OS-based DVFS schemes with
fixed intervals lack this fine-grained, code-aware adaptation.

2.2 Advantages over static compiler DVFS
Existing compiler DVFS work is primarily based on static com-

piler techniques [14, 25]. Typically profiling is used to learn about
program behavior. Then some offline analysis techniques (such
as linear programming [14]) are used to decide DVFS settings for
some code regions.

One limitation to static compiler DVFS is that, due to different
runtime environments for the profiler and the actual program, the
DVFS setting obtained at static compile time may not be appropri-
ate for the program at runtime. The reasoning is that DVFS deci-
sions are dependent on the program’s memory boundedness (i.e.,
the CPU can be slowed down if it is waiting for memory opera-
tion completion). Then, the program behavior in term of memory
boundedness is in turn dependent on run-time system settings such
as machine/architecture configuration, program input size and pat-
terns. For example, machine/architecture settings such as cache
configuration or memory bus speed may affect how much CPU
slack or idle time exists. Also, different program input sizes or
patterns may affect how much memory is to be used and how it is
going to be used.

As an illustration, Figure 2 shows the average number of memory
bus transactions (per 1M instructions) for the function qsort() (as



Table 1: Examples of different memory behavior for SPEC pro-
grams with reference and train inputs.

L2: Average Num of L2 cache misses per 1M instructions
Mem: Average Num of memory bus transactions per 1M inst
4L sweep(): means 4th loop in function sweep()

Benchmark Code reference train
region L2 Mem L2 Mem

103.su2cor corr() 3.9K 13.6K 1.4K 5.7K
103.su2cor 4L sweep() 4.3K 14.4K 1.8K 6.1K
107.mgrid mg3p() 2.6K 9.5K 0.6K 2.3K
189.lucas fftSquare() 6.8K 18.1K 0.06K 0.1K

DoRevers-
256.bzip2 Transform() 7.8K 11.9K 1.3K 3.1K

in the stdlib). The curve with • is for random input elements with
different input sizes, while the curve with ∗ is for pre-sorted input
elements. Figure 2 shows that the average numbers of memory bus
transactions vary significantly for different input sizes and input
patterns. (Not surprisingly, larger input sizes lead to more L2 cache
misses and thus more memory bus transactions.)

While the above example is from a small program for illustra-
tion, Table 1 shows examples of different memory behavior from
the SPEC programs with reference or train inputs. We show the av-
erage number of L2 cache misses and the average number of mem-
ory bus transactions ( per 1M instructions) for some example code
regions. Similarly, we see these numbers may become very differ-
ent if input is changed from reference to train, or vice versa.

Based on the above observation, we see, for different input sizes
or patterns, different DVFS might be needed to have the best en-
ergy/performance results. For the qsort() example in Figure 2,
a more aggressive (i.e., lower) DVFS setting should be used for
a large input size (like 100M) to take advantage of the memory
boundedness in the program and save more energy. Conversely, a
more conservative (i.e., higher) DVFS setting should be used for a
small input size (like 10K) to avoid excessive performance losses.
For the SPEC benchmark 103.su2cor in Table 1, the code region
in the function sweep() might need different DVFS settings for dif-
ferent input sets. Our empirical experience on the Intel Pentium-M
processor shows that, assuming a performance loss constraint of
4%, this code region can be clocked at 1.0Ghz with the reference
input, while it has to be clocked at the maximum 1.6Ghz for the
train input.

While it is inherently difficult for a static compiler to make DVFS
decisions adaptive to the above factors, dynamic compiler DVFS
can utilize run-time system information and make input-adaptive
and architecture-adaptive decisions.

2.3 Disadvantages and challenges
Having discussed its advantages, we would like to point out that

dynamic compiler DVFS also has its disadvantages. The most sig-
nificant one is that, just as for any dynamic optimization technique,
every cycle spent for optimization might be a cycle lost to execu-
tion (unless optimizations are performed as side-line optimizations
on a chip multiple-processor [5]). Therefore, one challenge to dy-
namic compiler driven DVFS is to design simple and inexpensive
analysis and decision algorithms in order to minimize the run-time
optimization cost.

3. Design Framework and DVFS Decision
Algorithms

In this section, we present a design framework for the run-time
DVFS optimizer (RDO) in a dynamic compilation and optimization
environment. We start by considering some key design issues in
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Run-time
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Optimizer
(RDO)
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Hot code 
execution

Cold code 
execution

OS and hardware

Figure 3: The overall block diagram showing the operation and
interactions among different components of a dynamic com-
piler DVFS optimization system.

general. Then we give the detailed design of a new DVFS decision
algorithm.

3.1 Key design issues
Candidate code region selection: Like other dynamic optimiza-

tion techniques, we want only to optimize those frequently ex-
ecuted code regions (so-called hot code regions), in order to be
cost effective. In addition, since DVFS is a relative slow pro-
cess (the voltage transition rate is typically around 1mv/1µs), we
also want to only optimize long-running code regions. In our de-
sign, we choose functions and loops as candidate code regions.
Since most dynamic optimization systems are already equipped
with some light-weight profiling mechanism to identify hot code
regions (for example DynamoRio profiles every possible loop tar-
get [5]), we will extend the existing profiling infrastructure to mon-
itor and identify hot functions or loops.

DVFS decisions: For each candidate code region, an important
step is to decide whether it is beneficial to apply DVFS to it (i.e.,
whether it can operate at a lower voltage and frequency to save
energy without significant impact on the overall performance) and
what the appropriate DVFS setting is. As we mentioned earlier,
for a dynamic optimization system, the analysis or decision algo-
rithm needs to be simple and fast to minimize overhead. Thus, the
offline analysis techniques used by static compiler DVFS [14] are
typically too time-consuming and are not appropriate here. For our
work, we have designed a fast DVFS decision algorithm, which is
based on an analytical decision model and uses hardware feedback
information.

DVFS code insertion and transformation: If a candidate code
region is found beneficial for DVFS, DVFS mode set instructions
will be inserted at every entry point of the code region to start the
DVFS, and at every exit point of the code region to restore the volt-
age level. One design question is how many adjusted regions we
want to have in a program. Some existing static compiler algo-
rithms choose only a single DVFS code region for a program [14]
(to avoid the excessively long analysis time). In our design, we will
allow/identify multiple DVFS regions to provide more energy sav-
ing opportunities. But things become complicated when two DVFS
regions are nested. (If a child region is nested in a parent region,
then a child may not know the DVFS setting for the parent at its
exit points.) We provide two design solutions. One is to maintain
a relation graph at run time, and only allow the parent region to be
scaled. The other one is to have a DVFS-setting stacked so that
both the parent and the child regions can be scaled. In addition



to the code insertion, the dynamic compiler can also perform code
transformation to create more energy saving opportunities. One
example is to merge two separate (small) memory bound code re-
gions into one big one. Of course, we need to check that this code
merging does not hurt the performance (or the correctness) of the
program. So there will exist interactions among the DVFS opti-
mizer and the conventional performance optimizer.

Overall operation block diagram: The block diagram in Fig-
ure 3 shows the overall operation and interactions between different
components of a dynamic compiler DVFS optimization system. At
the start, the dynamic optimizer dispatches or patches original bi-
nary code and delivers the code to execution by the hardware. At
this moment, the system is in a cold-code execution mode. While
the cold code is being executed, the dynamic optimization system
monitors and identifies the frequently executed or hot code regions.
Then, the RDO optimization is applied to the hot code regions,
either before or after the conventional performance optimizations
have been conducted. (For a hot code region, the RDO optimiza-
tion can be applied once per program execution, or multiple times
– which we call periodic re-optimization.) Lastly, if a code trans-
formation is desirable, the RDO will query the regular performance
optimizer to check the feasibility of the code transformation.

Next, we describe in detail a key design component: the DVFS
decision algorithm.

3.2 DVFS decision algorithms
To make DVFS decisions, RDO first inserts some testing and

decision code at the entry and exit points of a candidate code re-
gion. (A candidate region can be viewed as a single entry, multiple
exits code region.) The testing and decision code collects some
run-time information (such as number of cache misses or memory
bus transactions for this code region). If enough information has
been collected, RDO decides the appropriate DVFS setting for a
candidate code region based on the collected information and the
RDO setup. After a decision is made, RDO removes the testing and
decision code and prepares for possible DVFS code insertion and
transformation.

The above testing steps assume that a candidate code region has
relatively stable or slowly-varying run-time characteristics for a
given input. Therefore, the obtained decision based on the test-
ing information will be valid for the rest of the program execution,
or valid until the next re-optimization point if we choose periodic
re-optimizations. Note that this assumption has been shown rea-
sonable or valid in practice by studies such as [26].

The key testing step in the above is the DVFS decision making.
As we mentioned earlier, in order to be beneficial for DVFS, a code
region first needs to be long-running, which can be easily checked.
The harder question is, for a long running code region, how to de-
cide whether it is beneficial to have DVFS and what an appropriate
DVFS setting is. To answer this question, we first look at an ana-
lytical decision model for DVFS.

3.2.1 An analytical decision model for DVFS
The discussion and analysis model in this section assume that the

goal of our energy control is to minimize the energy consumption,
subject to some performance constraints. (Note that the analytical
model for a different objective, such as thermal control, might be
different.)

In general, scaling down the CPU voltage and frequency will cer-
tainly reduce processor power consumption, but it will also slow
down the CPU execution speed (and the resulting energy delay
product improvement might be low or even negative). The key in-
sight to a beneficial DVFS (which saves energy but with no or little
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Nconcurrent
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Figure 4: An analytical decision model for DVFS. tasyn mem

is the asynchronous memory access time, Nconcurrent is the
number of execution cycles for the concurrent CPU operation,
Ndependent is the number of cycles for the dependent CPU op-
eration, f is the CPU frequency.

performance impact) is that there exists an asynchronous memory
system, which is independent of the CPU clock and is many times
slower than the CPU. Therefore, if we can identify the CPU execu-
tion slack (i.e., CPU stall or idle cycles waiting for the completion
of memory operations), we can scale down the CPU voltage and
frequency to save energy without much performance impact.

Based on the above rationale, Figure 4 shows our analytical deci-
sion model for DVFS, which is an extension of the analytical model
proposed in [25]. As in Figure 4, the processor operations are cat-
egorized into two groups: memory operation and CPU operation.
Since memory is asynchronous with respect to the CPU frequency
f , we denote the time for memory operation as tasyn mem . The
CPU operation time can be further separated into two parts: part
1 is those CPU operations that can run concurrently with memory
operations; part 2 is those CPU operations that depend on the final
results of the pending memory operations. Since the CPU operation
time is dependent on the CPU frequency f , we denote the concur-
rent CPU operation time as Nconcurrent/f , where Nconcurrent is
the number of clock cycles for the concurrent CPU operation. Simi-
larly, we denote the dependent CPU operation time as Ndependent/f .
(Note, in actual program execution, the memory operation and the
CPU operation, either concurrent or dependent, will be interleaved
somehow. However, for an analytical model, we abstract the exe-
cution model by lumping all the occurrences of each category to-
gether. This is the same treatment as that in [25].)

From Figure 4, we see if the overlap period is memory bound, i.e
tasyn mem > Nconcurrent

f
, there exists a CPU slack time defined

as
CPU slack time = tasyn mem −

Nconcurrent

f
(1)

Ideally, the concurrent CPU operation can be slowed down to con-
sume the CPU slack time.

With the above model, we want to decide the frequency scaling
factor β for a candidate code region. (So, if the original clock fre-
quency is f , the new clock frequency will be β f ; and the voltage
will be scaled accordingly.) We assume the execution time for a
candidate code region can be categorized according to Figure 4.
So frequency scaling will have two effects on the CPU operation.
First, it will increase the concurrent CPU operation time and re-
duce the CPU slack time (if any). Second, it will dilate the depen-
dent CPU operation time, which will cause performance loss unless
Ndependent = 0.

Next we will give a detailed method to select or compute the
scaling factor β.



3.2.2 DVFS selection method
We introduce a new concept called relative CPU slack time. Based

on the definition of CPU slack time in (1), we define
relative CPU slack time = tasyn mem − Nconcurrent/f

total time
(2)

where the total time is the total execution time in Figure 4. For a
memory bound case, total time = tasyn mem + Ndependent/f .
From Figure 4, we see the larger the relative CPU slack, the more
frequency reduction the system can have without affecting the over-
all performance. So the frequency reduction (i.e., 1 − β) is propor-
tional to the relative CPU slack time. We have

(1 − β) = k0

„

tasyn mem

total time
−

Nconcurrent/f

total time

«

(3)

where k0 is a constant coefficient. Note that the value of k0 can
be chosen to be either relatively large to have more aggressive en-
ergy reduction, or relatively small to preserve performance more.
Therefore, to take into account the effect of the maximum allowed
performance loss Ploss, we replace k0 in (3) by k0 Ploss, and we
have

β = 1 − Ploss k0

tasyn mem

total time
+ Ploss k0

Nconcurrent/f

total time
(4)

Intuitively, the above equation means the scaling factor is nega-
tively proportional to the memory intensity level (the term with
tasyn mem), and positively proportional to the CPU intensity level
(the term with Nconcurrent). The time ratios in the above equa-
tion can be estimated using hardware feedback information such
as hardware performance counter (HPC) events. For example, for
an x86 processor, the two time ratios in the above equation can be
estimated by ratios of some HPC events [11].

tasyn mem

total time
' k1

Num of mem bus transactions
Num of µops retired (5)

Nconcurrent/f

total time
' k2

Num of FP INT instructions
Num of µops retired (6)

where in (5) the first HPC event is the number of memory bus trans-
action, which is what we have used in Section 2 to measure mem-
ory busy-ness. The second HPC event is the total number of µops
retired. The ratio of these two events is used to estimate the rela-
tive memory busy-ness. Similarly, in (6), the first HPC event is the
number of FP/INT instruction retired (while there is an outstanding
memory operation). The second event is also the number of µops
retired. The ratio of these two HPC event is used to estimate the
concurrent CPU busy-ness. Like k0 in (3), k1 and k2 in the above
are constant coefficients which depend on machine configurations
and can be estimated empirically and reset at the installation time
of a dynamic compiler.

Because the above method computes β directly from some run-
time hardware information, it is simple and fast. The downside
is that the formulation is relatively ad-hoc, especially the way it
considers the constraint Ploss. We have also developed an alter-
native method which is more precise in handling the performance
constraint Ploss, but is more complicated (it computes β using two
separate sub-factors – details are omitted due to space limit). We
see this alternative method as a complement to the above method.

4. Implementation and Deployment:
Methodology and Experience

We have implemented a prototype of the proposed run-time DVFS
optimizer (RDO), and integrated the RDO into a real dynamic com-
pilation system. To evaluate it, our results present live-system phys-
ical power measurements.
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Figure 5: The operation flow diagram for our prototype imple-
mentation of the RDO.

4.1 Implementation
We use the Intel PIN system [18] as the basic software platform

to implement our DVFS algorithm and develop the RDO. PIN is
a dynamic instrumentation and compilation system developed at
Intel and is publicly available. The PIN system which we use is
based on the regular PIN but has been modified to be more suited
and more convenient for dynamic optimizations. (For convenience,
we refer it as O-PIN, i.e., Optimization PIN.) Compared to the stan-
dard PIN package, O-PIN has added more features to support dy-
namic optimizations, such as adaptive code replacement (i.e., the
instrumented code can update and replace itself at run time) and
customized trace or code region selection. In addition, unlike the
PIN which is JIT-based and executes the generated code only [18],
O-PIN takes a partial-JIT approach and executes a mix of the orig-
inal code and the generated code. For example, O-PIN can be con-
figured to first patch, instrument, and profile the original code at a
coarse granularity (such as function calls only). Then, at run time,
it selectively generates (JIT) code and does more fine-grained pro-
filing and optimization of the dynamically compiled code (such as
all loops inside a function). Therefore, O-PIN has less operation
overhead, compared to regular PIN [1].

Figure 5 shows the operation flow graph for our prototype im-
plementation of the RDO system. At the start, RDO instruments all
function calls in the program, and all loops in the main() function,
in order to monitor and identify the frequently executed code re-
gions. (Strongly connected components in the call graph are treated
as single nodes.) If a candidate code region is found hot (i.e. the
execution count is greater than a hot threshold), DVFS testing and
decision code will be started to collect run-time information and
decide how memory bound the code region is. If the code region is
found to be memory bound, RDO will remove the instrumentation
code, insert DVFS mode set instructions, and resume the program
execution. On the other hand, if a code region is found CPU bound,
no DVFS instructions will be inserted. There is still a medium case
where the candidate code region may exhibit mixed memory behav-
ior (likely because it contains both memory-bound and CPU-bound
sub-regions). For this case, RDO will check if it is a long-running
function containing loops. If it is, a copy of this function will be
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Figure 7: A system diagram showing the CPU voltage and cur-
rent measurement points (marked by + and −) on the develop-
ment board.

dynamically generated and all loops inside this function will be
identified1 and instrumented. And the process continues.

The DVFS selection method in Section 3.2.2 is used to check the
memory boundedness of a code region and select a DVFS setting.
The required HPC events in equation (5), Number of memory bus
transactions and Number of µops retired, are among the ∼ 100
countable HPC events provided by a Pentium-M processor [17].
(This will be the core of our hardware platform, as to be discussed
in the next subsection.) However, the HPC event in equation (6) to
estimate the time ratio Nconcurrent/f

total time
is not available for Pentium-

M processors. Instead, we approximate the estimation in (6) by
a new ratio obtained from available but less-related HPC events.
There are several ways to choose the HPC events for this. For our
implementation, we used the ratio of Number of µops retired over
Number of instructions retired. Based on our empirical experience,
we found that the larger this ratio is, the more concurrent CPU
instructions there are for a code region. (Note, in Section 5, we
will actually show the inverse of this ratio, i.e., the average number
of instructions per 1M µops retired.)

Based on the scaling factor β obtained from the DVFS decision
algorithm, we choose the actual DVFS setting for a code region
(i.e., new f = β old f ). Since most existing processors have only
a limited number of DVFS setting points (e.g., six to eight), we
pick the setting point close to the desired DVFS setting. (If the
desired setting is between two available setting points, we pick the

1To identify loops, some linear-time loop analysis techniques such as that in [20] can
be used. For our implementation, to reduce the run-time analysis overhead, a simple
and fast loop-identification heuristic is used. A likely loop is identified if a conditional
branch is going from a higher address to a lower address. Our experience shows this
heuristic works quite well for most applications in practice.

more conservative or higher one. Of course, the more fine-grained
DVFS settings available, the better control effectiveness.)

4.2 Deployment in a real system
We have deployed our RDO system in a real running system.

The hardware platform we use is an Intel development board with
a Pentium-M processor (855GME, FW82801DB), which is shown
in Figure 6a. The Pentium-M processor we use has a maximum
clock frequency of 1.6GHz, two 32K L1 caches, and one unified
1M L2 cache. The board has a 400MHz FSB bus and 512M DDR
RAM.

There are 6 DVFS settings or so-called SpeedSteps for Pentium-
M (expressed in frequency/voltage pairs): 1.6GHz/1.48v, 1.4GHz/1.42v,
1.2GHz/1.27v, 1.0GHz/1.16v, 800MHz/1.04v, and 600MHz/ 0.96v.
The voltage transition rate for DVFS is about 1mv/1µs (based on
our own measurements).

The OS is Linux kernel 2.4.18 (with gcc updated to 3.3.2). We
have implemented two loadable kernel modules (LKM) to provide
user level support for DVFS control and HPC reading in the form
of system calls.

The above system allows accurate power measurements. The
overall procedure for power measurements is that, we first col-
lect sampling points of CPU voltage and current values, then we
compute the power trace and the total energy from these sampling
points. Figure 6 shows the processor power measurement setup,
which includes four components, as detailed below.

Running system voltage/current measurement unit: This unit
isolates and measures CPU voltage and current signals. The reason
for isolating and measuring the CPU power (instead of power for
the whole board) is that we want to have more deterministic and
accurate results, not affected by other random factors on the board.
Figure 7 is a system diagram showing the CPU voltage and current
measurement points (marked with + and −) on the 855GME de-
velopment board. As seen in the figure, we use the output sense
resistors of the main voltage regulator (precision resistors of 2mΩ
each) to measure the current going to the CPU (i.e. measure the
voltage drop, then use ICPU = Vdrop/Rsense), and use the bulk
capacitor to measure the CPU voltage. Note that, as shown in Fig-
ure 7, if we simply measure the power supply line going to the
voltage regulator, the obtained power reading will undesirably in-
clude power consumed by components other than the CPU (such as
the I/O Hub).

Signal conditioning unit: This unit reduces the measurement
noise to get more accurate readings. Measurement noise is in-
evitable because of the noise sources like the CPU board itself. In
particular, since the voltage drop across the sense resistor in Figure



Table 2: Statistical results obtained for some SPEC benchmarks.
Average number is for per 1M µops; 9L name() means 9th loop in name()

total total region total Average Average Average DVFS
Benchmark hot DVFS name µops L2 cache Memory Inst setting

regions regions misses trans (Hz)
4th loop in main() 23M 3.9K 14.4K 0.99M 1.0G

101.tomcatv 63 4 11th loop in main() 5M 9.1K 44.7K 0.99M 0.6G
14th loop in main() 3M 10.0K 49.4K 0.98M 0.6G
16th loop in main() 2M 12.7K 69.1K 0.97M 0.6G

tistep() 11M 4.5K 18.6K 0.91M 1.0G
104.hydro2d 184 3 advnce() 284M 4.9K 21.5K 0.87M 1.2G

check() 14M 5.3K 22.9K 0.85M 1.2G
jacld() 208M 12.4K 24.8K 0.99M 0.8G
blts() 286M 5.9K 11.5K 0.99M 1.2G

173.applu 72 5 jacu() 156M 12.7K 25.6K 0.99M 0.8G
buts() 254M 7.0K 12.9K 0.99M 1.2G
rhs() 188M 4.2K 8.2K 1.0M 1.4G

176.gcc 5673 0 Mem: 0.01K - 1.0K for candidate regions; No DVFS
181.mcf 34 2 primal net simplex() 3644M 21.0K 83.0K 0.85M 1.0G

flowcost() 20M 32.0K 112K 0.94M 0.6G
186.crafty 588 0 Mem: 0.00K - 0.01K for candidate regions; No DVFS
187.facerec 207 2 9L gaborroutines mp gabortrato() 22M 3.4K 11.0K 0.95M 1.2G

16L gaborroutines mp gabortrato() 11M 3.4K 10.5K 0.96M 1.2G
254.gap 823 1 collectGaib() 315M 6.6K 17.0K 0.86M 1.4G

7 is on the order of 1mv while the noise is on the order of 10mv in
practice, the noise for our system is 10 times larger than the mea-
sured signal. Because noise typically has much higher frequency
than the measured signals, we use a two-layer low-pass filter to re-
duce the measurement noise, which includes a National Instrument
(NI) signal conditioning module AI05 and a simple RC filter as
shown in Figure 6b. With these filters, we are able to reduce the
relative noise error to less than 1%.

Data acquisition (DAQ) unit: This unit samples and reads the
voltage and current signals. In order to capture the program be-
havior variations (especially with DVFS), a fast sampling rate is
required. We use the NI data acquisition system DAQPad-6070E
[21], which has a maximum sampling rate of 1.2M/s (aggregate), as
shown in Figure 6c. Since three measurement channels are needed
– two for the CPU current and one for the CPU voltage, we set a
sampling rate of 200K/s for each channel ( so a total of 600K/s is
used). This gives a 5µs sample length for each channel. Given that
the minimum voltage transition time is 20 − 100µs [11], the 5µs
sampling length is adequate.

Data logging and processing unit: This is the host logging ma-
chine which processes the sampling data. Every 0.1 seconds, the
DAQ unit sends collected data to the host logging machine via a
high-speed fire-wire cable. (For each channel, 20K samples are
first stored in an internal buffer in the DAQ unit before they are
sent out.) The logging machine then processes the received data.
We use a regular laptop running NI Labview DAQ software to pro-
cess the data. We have configured the Labview for various tasks:
monitoring, raw data recording, and power/energy computation.

5. Experimental Results

5.1 Experimental setup
For all experiments, we use the software and hardware platforms

described in previous sections. Our run-time DVFS optimization
system is set to have a performance loss constraint Ploss of 5%.
(If a larger Ploss were used, the resulting frequency settings would
be lower, allowing more aggressive energy savings. Conversely, a
smaller Ploss would lead to larger and more conservative DVFS
settings.) For a candidate code region, the hot threshold is chosen
to be 4 (i.e., a code region is hot if it has executed at least 4 times).
But we found our results are not sensitive to this value when it is

varied from 3 − 20. Since the voltage transition time between dif-
ferent SpeedSteps is about 100µs − 500µs for our machine [11],
we set the long-running threshold for a code region (as described
in our DVFS algorithm in Section 3) to be 1.5ms (or 2.4M cycles
for a 1.6GHz processor) to make it as least 3X bigger than the volt-
age transition time. For nested functions, we handle them using a
relation graph as described in Section 3

For evaluation, we use all SPEC2K FP and SPEC2K INT bench-
marks. Since previous static compiler DVFS work in [14] used
SPEC95 FP benchmarks, we also include them in our benchmark
suites. In addition, we include some Olden benchmarks [6] as they
are popular integer benchmarks to study program memory behav-
ior.2 For each benchmark, the Intel C++/Fortran compiler V8.1 is
used to get the application binary (compiled with -O2). We test
each benchmark with the largest ref input set (running to comple-
tion). The power and performance results reported here are average
results obtained from three separate runs.

To illustrate and give insight for RDO operation, Table 2 shows
some statistical results obtained from the RDO system for some
SPEC benchmarks. In the table, we give total number of hot code
regions in the program and total number of DVFS regions identi-
fied. For each DVFS code region, we show the total number of
µops retired for the code region (in a single invocation), average
L2 cache misses, average number of memory bus transactions, av-
erage number of instructions retired (per 1M µops), and the ob-
tained DVFS settings. The DVFS settings are based on the average
number of memory bus transactions and the average number of in-
structions retired. In general, the higher these two numbers are, the
lower the DVFS setting. Taking the benchmark 104.hydro2d as an
example, we see both numbers contributed to the final DVFS set-
tings. The quantitative relationship between those numbers and the
DVFS setting is based on the formulas in Section 3. Since there
are only 6 available frequency/voltage settings for our system, the
obtained β needs to be rounded up to an available frequency point.
Overall, we see the number of DVFS opportunities identified by
RDO ranges from large (e.g. as low as 0.6Ghz for 101.tomcatv) to
small (e.g. no DVFS for 176.gcc).

In order to look more closely at RDO operation, we next exam-

2 Olden manipulates 7 different kinds of data organizations and structures ranging
from linked list to heterogeneous OcTree. We choose the first 7 benchmarks which
cover all 7 kinds of data organizations being studied.
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Figure 8: A partial trace of the CPU voltage and power for
SPEC benchmark 173.applu running with the RDO

ine in detail one particular benchmark: 173.applu. Recall in Sec-
tion 2 we observed recurring memory phase behavior for 173.ap-
plu. Analysis by RDO further reveals that those phase changes are
mainly caused by invocations of the 5 different functions shown
in Table 2. The 5 functions have different memory behavior in
terms of average number of L2 cache misses and average number
of memory bus transactions. Note this observation is consistent
with the behavior shown in Figure 1. By inserting DVFS instruc-
tion directly in the code regions, RDO adjusts the CPU voltage
and frequency to adapt to the program phase changes (with fre-
quency settings of 0.8GHz for two regions, 1.2GHz for two other,
and 1.4GHz for the last region). Figure 8 shows a part of the CPU
voltage and power trace for 173.applu running with RDO. If we
compare this figure with the figures in Section 2, it is interesting
to see the CPU voltage/frequency are being adjusted to adapt to
the recurring phase changes shown in Figure 1 ( with lower clock
frequencies corresponding to higher L2 cache misses). The power
trace is also interesting. Initially it fluctuates around the value of
11W (due to different system switching activities). After the pro-
gram execution enters into the DVFS code regions, the power drops
dramatically to a level as low as 2.5W . As will be shown by the
experimental results in Section 5.2, the DVFS optimization applied
to the code regions in 173.applu has led to considerable energy sav-
ings (∼35%) with little performance loss (∼5%).

5.2 Energy and performance results
We view the run-time DVFS optimizer (RDO) as an addition to

the regular dynamic (performance) optimization system as shown
in Figure 3. So, to isolate the contribution of the DVFS optimiza-
tion, we will first report the energy and performance results rela-
tive to the O-PIN system without DVFS (i.e., we do not want to
mix the effect of our DVFS optimization and that of the underly-
ing dynamic compilation and optimization system, which is being
developed heavily by researchers at Intel and U. of Colorado [1]).
In addition, as a comparison, we will also report the energy results
from a static voltage scaling, which simply scales the supply volt-
age and frequency statically for all benchmarks to get roughly the

Table 3: Average results for each benchmark suite: RDO versus
StaticScale.

Benchmark Performance Energy Energy-Delay
Suite degradation savings product

improvement
RDO Static RDO Static RDO Static

SPEC95 FP 2.1% 7.9% 24.1% 13.0% 22.4% 5.6%
SPEC2K FP 3.3% 7.0% 24.0% 13.5% 21.5% 6.8%
SPEC2K INT 0.7% 11.6% 6.5% 11.5% 6.0% -0.3%
Olden 3.7% 7.8% 25.3% 13.7% 22.7% 6.3%

same amount of average performance loss as those in our results.
(We chose f = 1.4Ghz for static voltage scaling, which is the only
voltage setting point in our system to get an average performance
loss close to 5%.)

Figures 9 and 10 show the performance loss, energy savings, and
energy delay product (EDP) improvement results for all SPEC95
FP, SPEC2K FP/INT, and Olden benchmarks. Note that these re-
sults have taken into account all DVFS optimization overhead, such
as the time cost to check memory boundedness of a code region.
For convenience, we refer to the result from our runtime DVFS
optimizer as RDO, and refer to results by static voltage scaling as
StaticScale. There are several interesting observations.

First, in terms of EDP improvement, RDO outperforms Static-
Scale by a big margin for nearly all benchmarks. This shows the
efficiency of our design with fast and effective DVFS decisions.

Second, the energy and performance results for individual bench-
marks in each benchmark suite vary significantly. On the high
end, we have achieved up to 64% energy savings (4.9% perfor-
mance loss) for SPEC95 FP (101.tomcatv), up to 70% energy sav-
ings (0.5% performance loss) for SPEC2K FP (171.swim), up to
44% energy savings (with 5% performance loss) for SPEC2K INT
(181.mcf), and up to 61% energy savings (4.5% performance loss)
for Olden benchmarks (Health). On the low end, we see close-to-
zero (or even slightly negative) EDP improvement for some bench-
marks in each benchmark suite. To understand the reasons, we see
that the efficiency of a DVFS control is largely constrained by the
memory boundedness of an application. The more memory bound
an application is, the more opportunities and energy saving poten-
tials there are for DVFS. Relative to our experimental system in
Figure 6 (with a large 1M L2 cache), these benchmarks show a va-
riety of memory boundedness which leads to a variety of the EDP
results. Overall, we see the distribution of the SPEC2K-INT EDP
results is concentrated and close to the low end, while the overall
distribution of the Olden and SPEC-FP EDP results is very spread
out between the high end and the low end.

The average results for each benchmark suite are summarized in
Table 3. We show both the results from our techniques and the
StaticScale results. On average, we have achieved an EDP im-
provement of 22.4% for SPEC95 FP, 21.5% for SPEC2K FP, 6.0%
for SPEC2K INT, and 22.7% for Olden benchmarks. These repre-
sent 3 − 5 fold better results as compared to the StaticScale EDP
improvement: 5.6% for SPEC95 FP, 6.8% for SPEC2K FP, -0.3%
for SPEC2K INT, and 6.3% for Olden benchmarks. (The aver-
age SPEC2K INT EDP result is relatively lower compared to the
other three benchmark suites. This is because SPEC2K INT bench-
marks are dominantly CPU bound as shown by previous studies
[14]. There is nothing intrinsic about floating versus integer data.
It is just about the amount of memory traffic.)

We also want to have a rough comparison with the static com-
piler DVFS results in [14] based on the reported energy perfor-
mance numbers in that paper. (We were not able to re-implement
their optimizer and replicate the experiments in [14].) Compared
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Figure 9: Performance degradation, energy savings, and energy-delay product (EDP) improvement for SPEC95 FP benchmarks
(on the left) and SPEC2K FP benchmarks (on the right). We show results for both our runtime DVFS optimizer (RDO) and the
StaticScale voltage scaling.

to the reported results for SPEC95 FP benchmarks in [14] (on av-
erage: 2.1% performance loss, 11.0% energy savings, 9.0% EDP
improvement), we have achieved on average 2X as much energy
savings for the same amount of performance loss. Apart from the
dynamic versus static benefits described in Section 2, there are two
other key factors contributing to the different results. First, the
static compiler DVFS algorithm in [14] picks only a single DVFS
code region for a program (to avoid the excessive offline analysis
time), while our online DVFS design can identify multiple DVFS
code regions in a program as long as they are beneficial, as illus-
trated by examples in Table 2. Second, the decision algorithm in
[14] is based on (offline) timing profiling for each code region,
while our algorithm is more microarchitecture oriented and directly
uses information about run-time environment, such as hardware

performance counts.
Overall, the results in Figures 9 and 10 and Table 3 show the

proposed technique is promising in addressing the energy and per-
formance control problem in microprocessors. We attribute the
promising results to the efficiency of our design and to the advan-
tages of the dynamic compiler driven approach.

5.3 Basic O-PIN overhead
A dynamic optimization system has basic setup/operation over-

head (i.e., the time spent to do basic setup, to monitor/identify
frequently executed code regions, etc). This overhead must be
offset or amortized by the subsequent performance optimization
gain before we can see any net performance improvement. It has
been shown that a dynamic optimizer with aggressive performance
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Figure 10: Performance degradation, energy savings, and energy-delay product (EDP) improvement for SPEC2K INT benchmarks
(on the left) and Olden benchmarks (on the right). We show results for both our runtime DVFS optimizer (RDO) and the StaticScale
voltage scaling.

optimizations will have significant performance gains for various
benchmarks [2, 5].

The O-PIN system we use is a dynamic-optimization infrastruc-
ture and does not include implemented performance optimizations.
(Users can use this infrastructure to implement their own perfor-
mance optimizations like loop unrolling and data prefetching, but
this is beyond the scope of this paper.) So compared to the native
application, the basic O-PIN system has a negative performance
gain. In other words, there is a performance and energy overhead
associated with the basic O-PIN infrastructure. Next, to give a com-
plete picture of this work, we will also show results for O-PIN and
DVFS relative to the native.

Figure 11 shows the performance and energy overhead for the
basic O-PIN infrastructure (computed as relative to the native).

We see, for individual benchmarks, the performance overhead is
as low as 0.5% for benchmarks like 164.gzip or 171.swim, and
is as high as 15% for benchmarks like 176.gcc. On average, the
performance overhead for O-PIN is about 3.3% for SPEC95 FP,
1.8% for SPEC2K FP, 3.7% for SPEC2K INT, and 0.5% for Olden
benchmarks. The energy overhead values are similar. Note, these
values are significantly lower than the basic overhead for a regular
PIN system [18], because of the low-overhead implementation in
O-PIN as described in Section 4.

If we look at the DVFS results from our scheme when computed
with the inherited infrastructure overhead, the EDP numbers will be
lower than those in the last subsection, as we expected. On average,
the EDP improvement with the inherited overhead is about 16.7%
for SPEC95 FP, 17.9% for SPEC2K FP, -1.4% for SPEC2K INT,
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Figure 11: Performance and Energy overhead for the basic O-PIN infrastructure without applying optimizations.

and 20.9% for Olden benchmarks. In general, these are clearly still
promising results.

5.4 Discussion and micro-architectural suggestions
For experimental results in this section, it would be desirable to

have some potential or upper-bound DVFS numbers, and show how
far our results are from these upper-bound numbers. However, it is
still an open research question how to effectively and accurately
compute the upper-bound DVFS results. One possible way to esti-
mate the upper bound is to extend the mathematical formulation in
[24] from optimizing multiple sequential scaling points to optimiz-
ing multiple DVFS code regions. We leave it for possible future
exploration.

While the experimental results in this section are promising, they
could be further improved if more micro-architectural support were
available. One possible support could be some logic to identify and
predict CPU execution slack such as that proposed in [9]. This
would make the DVFS computation easier and more accurate. An-
other possible support could be some power-aware hardware mon-
itoring counters and events to monitor the power consumption in
a processor unit and the voltage variations. In addition, more fine-
grained DVFS settings could make the intra-task DVFS design more
effective. Our experience shows that, for many code regions in the
benchmarks, RDO was forced to select an unnecessarily high volt-
age/frequency setting due to a lack of some middle steps between
the current six SpeedSteps in Pentium-M processors.

6. Related Work
As we mentioned in the introduction, nearly all existing intra-

task DVFS schemes are based on hardware [19, 22], OS time-
interrupt [7, 23], or static compiler [14, 25] techniques. Very little
has been done in the direction of dynamic compiler driven DVFS.

One piece of related work along that direction is the Java virtual
machine DVFS presented in [12]. Their work is similar to ours in
the sense that both use run-time software to decide DVFS settings
for the application. However, their work differs from ours in the
following aspect. First, they use the Java virtual machine to target
Java applications at the granularity of Java method, while we use
a general dynamic optimization system to target general applica-
tions at a more fine-grained granularity including code regions like
loops. Second, their DVFS algorithm does not take into account
the memory boundedness of a code region (they assume the execu-
tion time of a code region always scales linearly with the frequency,
no matter how memory bound it is). Also, their DVFS algorithm
assumes some sort of time budget (so called projected time), and
compares the current execution time with the time-budget to decide
how much to scale. This treatment might be suitable for MultiMe-
dia applications which have a pre-determined time-budget for each
frame, but might not be as suitable to general applications. In con-
trast, our DVFS algorithm considers the memory boundedness of
a code region, and works well for general applications. Third, the
power evaluation in [12] is based on simulation, while our evalua-
tion is based on live-system physical power measurements.

7. Future Work
There are several possible avenues for future work. The focus of

this work is on the new concept of dynamic compiler driven DVFS
and the overall design framework. A direct follow-up work would
look at specific design issues and techniques in more depth, such as
code transformation and periodic re-optimization for DVFS. Also
deeper analysis could be done for the experimental results, such as
a breakdown of the results/benefits by regions or by different con-
tributing factors. However, since we use a real system as opposed to
simulation, it will be challenging to break down the results/benefits



in an effective way.
Another possible future work is to implement some conventional

performance optimizations (like loop unrolling and data prefetch-
ing), and study the interactions between energy optimizations and
performance optimizations in a run-time system. In addition, some
new processors allow DVFS for the memory bus as well. A pos-
sible future direction is to generalize the analytical decision model
and the DVFS algorithm in this paper for the case where both CPU
and memory can have DVFS.

8. Conclusions
The work presented in this paper represents some of our most

recent efforts in developing a dynamic compilation framework for
microprocessor energy and performance control. The focus is on
dynamic voltage and frequency scaling (DVFS).

Specifically, we have given reasoning and statistical results to
highlight the unique features and advantages of dynamic compiler
driven DVFS over existing techniques. We have presented a design
framework of the run-time DVFS optimizer in a general dynamic
compilation system. We have described the methodology and re-
ported our experiences in implementing and deploying a run-time
DVFS optimization system.

Experimental results based on physical measurements show that
SPEC benchmarks benefit up to 70% energy savings (with about
0.5% performance loss). On average, results with over 40 SPEC or
Olden benchmarks show that our technique leads to an energy delay
product (EDP) improvement which is 3X-5X better than that from
static voltage scaling, and is more than 2X better than that reported
by a static compiler DVFS scheme. We attribute these promising
results to the efficiency of our design, which makes fast/effective
decisions for multiple code regions, and to the advantages of the dy-
namic compiler-driven approach in terms of fine-grained and code-
aware phase adaptation, and the ability to utilize accurate run-time
information.

While the proposed technique is an effective method for micro-
processor voltage and frequency control, the design framework and
methodology described in this paper can be generalized for other
emerging microprocessor issues, such as di/dt and thermal control.
Pilot studies in [13] have already shown that a dynamic compiler,
with feedback information from a collaborating hardware control
system, can provide a novel approach to tackling to the di/dt prob-
lem. Overall, we feel the proposed dynamic compilation frame-
work has a great potential in addressing the energy, performance,
and power control problem in modern processors.
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