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Instruction Set Architecture (ISA) 

•  ISAs in General 
•  Using MIPS as primary example 

•  MIPS Assembly Programming 
•  Other ISAs 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 
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Readings 

•  Patterson and Hennessy 
•  Chapter 2 

•  Read this chapter as if you’d have to teach it 
•  Appendix A (reference for MIPS instructions and SPIM) 

•  Read as much of this chapter as you feel you need 
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What Is an ISA? 

•  ISA 
•  The “contract” between software and hardware 
•  If software does X, hardware promises to do Y 

•  Functional definition of operations, modes, and storage 
locations supported by hardware 

•  Precise description of how software can invoke and access 
them 

•  Strictly speaking, ISA is the architecture, i.e., the interface between 
the hardware and the software 

•  Less strictly speaking, when people talk about architecture, 
they’re also talking about how the the architecture is 
implemented 



© 2012 Daniel J. Sorin 
from Roth and Lebeck  5 

How Would You Design an ISA? 

•  What kind of interface should the hardware present to the 
software? 
•  Types of instructions? 
•  Instruction representation? 
•  How do we get from instruction 1 to 2 (or to 7 instead)? 
•  Software’s view of storage?  Where do variables live? 
•  Does the hardware help to support function/method calls?  If so, 

how? 
•  Should the hardware support other features that are specific to 

certain HLLs (e.g., garbage collection for Java)? 
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Microarchitecture 

•  ISA specifies what hardware does, not how it does it 
•  No guarantees regarding these issues: 

•  How operations are implemented 
•  Which operations are fast and which are slow 
•  Which operations take more power and which take less 

•  These issues are determined by the microarchitecture 
•  Microarchitecture = how hardware implements architecture 
•  Can be any number of microarchitectures that implement the 

same architecture (Pentium and Pentium 4 are almost the same 
architecture, but are very different microarchitectures) 

•  Class project is to build Duke152-S12 processor 
•  I specify the architecture 
•  You design the microarchitecture, with the goal of making it as fast 

as possible (while still correct in all cases!) 
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Aspects of ISAs 

•  We will discuss the following aspects of ISAs 
1.  The Von Neumann (pronounced NOY-muhn) model 

•  Implicit structure of all modern ISAs 
2.  Format 

•  Length and encoding 
3.  Operations 
4.  Operand model 

•  Where are operands stored and how do address them?  
5.  Datatypes and operations  
6.  Control 

•  Running example: MIPS  
•  MIPS ISA designed to match actual pattern of use in programs 
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(1) The Sequential (Von Neumann) Model 

•  Implicit model of all modern ISAs 
•  Often called Von Neumann, but in ENIAC before   

•  Basic feature: the program counter (PC) 
•  Defines total order of dynamic instructions 

•  Next PC is PC++ unless insn says otherwise  
•  Order and named storage define computation 

•  Value flows from insn X to Y via storage A iff… 
•  X names A as output, Y names A as input… 
•  And Y after X in total order 

•  Processor logically executes loop at left 
•  Instruction execution assumed atomic 
•  Instruction X finishes before insn X+1 starts 

Fetch PC 

Decode 

Read Inputs 

Execute 

Write Output 

Next PC 
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(2) Instruction Format 

•  Length 
1.  Fixed length 

•  32 or 64 bits (depends on architecture – Duke152/32 is 32 bit) 
+  Simple implementation: compute next PC using only this PC 
–  Code density: 32 or 64 bits for a NOP (no operation) insn? 

2.  Variable length 
–  Complex implementation 
+  Code density 

3.  Compromise: two lengths 
•  Example: MIPS16 

•  Encoding 
•  A few simple encodings simplify decoder implementation 
•  You’ll appreciate simple encodings when building Duke152/32 
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MIPS Format 

•  Length 
•  32-bits 
•  MIPS16: 16-bit variants of common instructions for density 

•  Encoding 
•  3 formats, simple encoding, 6-bit opcode (type of operation) 
•  ICQ: how many operation types can be encoded in 6-bit opcode? 

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type 

Op(6) Rs(5) Rt(5) Immed(16) I-type 

Op(6) Target(26) J-type 
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(3) Operations 

•  Operation type encoded in instruction opcode 
•  Many types of operations 

•  Integer arithmetic: add, sub, mul, div, mod/rem (signed/unsigned) 
•  FP arithmetic: add, sub, mul, div, sqrt 
•  Bit-wise/integer logical: and, or, xor, not, sll, srl, sra 
•  Packed integer: padd, pmul, pand, por… (saturating/wraparound) 

•  What other operations might be useful? 
•  More operation types == better ISA?? 
•  DEC VAX computer had LOTS of operation types 

•  E.g., instruction for polynomial evaluation (no joke!) 
•  But many of them were rarely/never used (ICQ: Why not?) 
•  We’ll talk more about this issue later … 
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(4) Operations Act on Operands 

•  If you’re going to add, you need at least 3 operands 
•  Two source operands, one destination operand 
•  Note: operands don’t have to be unique (e.g., A = B + A) 

•  Question #1: Where can operands come from? 
•  Question #2: And how are they specified? 
•  Running example: A = B + C 

•  Several options for answering both questions 

•  Criteria for evaluating operand models 
•  Metric I: static code size 
•  Metric II: data memory traffic 
•  Metric III: instruction execution latency 
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Operand Model I: Memory Only 

•  Memory only 
add A,B,C   // mem[A] = mem[B] + mem[C] 

MEM 

international symbol for Arithmetic Logic 
Unit (ALU) – a piece of logic that performs 

arithmetic, bitwise logic, shifts, etc. 
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Operand Model II: Stack 

•  Stack: top of stack (TOS) is implicit operand in all insns 
push B   //  stack[TOS++] = mem[B]  
push C   //  stack[TOS++] = mem[C]  
add  //  stack[TOS++] = stack[--TOS] + stack[--TOS]  
pop A    //  mem[A] = stack[--TOS] 
 
Note: ++x increments value of x, then returns x 
Note: x++ returns x, then increments value of x 

MEM 

TOS 
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Operand Model III: Accumulator 

•  Accumulator: implicit single-element stack 
load B        // ACC = mem[B] 
add C  // ACC = ACC + mem[C]  
store A     // mem[A] = ACC 

MEM 

ACC 

You may remember that the ECE52 
protocomputer has an accumulator ISA 
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Operand Model IV: Registers 

•  General-purpose registers: multiple explicit accumulators 
load R1,B           //            R1 = mem[B] 
add R1,C             //            R1 = R1 + mem[C] 
store A,R1         //            mem[A] = R1 

•  Load-store: GPR and only loads/stores access memory 
load R1,B           //           R1 = mem[B] 
load R2,C     //          R2 = mem[C] 
add R3,R2,R1    //            R3 = R1 + R2 
store A,R3         //           mem[A] = R3 

MEM 
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Operand Model Pros and Cons 

•  Metric I: static code size 
•  Number of instructions needed to represent program, size of each 
•  Want many implicit operands, high level instructions 
•  Good → bad: memory, stack, accumulator, load-store 

•  Metric II: data memory traffic 
•  Number of bytes moved to and from memory 
•  Want as many long-lived operands in on-chip storage 
•  Good → bad: load-store, accumulator, stack, memory 

•  Metric III: instruction latency 
•  Want low latency to execute instruction 
•  Good → bad: load-store, accumulator, stack, memory 

•  Upshot: many current ISAs are load-store  
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How Many Registers? 

•  Registers faster than memory à have as many as 
possible?  No! 
•  One reason registers are faster is that there are fewer of them 

•  Smaller storage structures are faster (hardware truism) 
•  Another is that they are directly addressed (no address calc) 

•  More registers à larger specifiers à fewer regs per instruction 
•  Not everything can be put in registers 

•  Structures, arrays, anything pointed-to 
•  Although compilers are getting better at putting more things in 

•  More registers means more saving/restoring them 
•  At procedure calls and context switches 

•  Upshot: trend to more registers: 8(IA-32)→32(MIPS) →128(IA-64) 
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MIPS Operand Model 

•  MIPS is load-store 
•  32 32-bit integer registers 

•  Actually 31:  r0 is hardwired to value 0 
•  Also, certain registers conventionally used for special purposes 

•  We’ll talk more about these conventions later 
•  32 32-bit FP registers 

•  Can also be treated as 16 64-bit FP registers 
•  HI,LO: destination registers for multiply/divide 

•  Integer register conventions 
•  Allows separate function-level compilation and fast function calls 

•  Note: “function”, “method”, and “procedure” are equivalent 
terms in this course 

•  We’ll discuss this more when we get to procedure calls 
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Memory Operand Addressing 

•  ISAs assume “virtual” address size 
•  Either 32-bit or 64-bit 
•  Program can name 232 bytes (4GB) or 264 bytes (16EB) 
•  ISA impact? no room for even one address in a 32-bit instruction 

•  Addressing mode: way of specifying address 
•  (Register) Indirect:  ld R1,(R2)          R1=mem[R2]  
•  Displacement:  ld R1,8(R2)              R1=mem[R2+8]  
•  Index-base:  ld R1,(R2,R3)               R1=mem[R2+R3]  
•  Memory-indirect: ld R1,@(R2)           R1=mem[mem[R2]]  
•  Auto-increment:  ld R1,(R2)+            R1=mem[R2++] 
•  Scaled:  ld R1,(R2,R3,32,8)             R1=mem[R2+R3*32+8] 

•  ICQ: What HLL program idioms are these used for? 
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MIPS Addressing Modes 

•  MIPS implements only displacement addressing mode 
•  Why? Experiment on VAX (ISA with every mode) found distribution 
•  Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other: 4%  
•  80% use displacement or register indirect (=displacement 0) 

•  I-type instructions: 16-bit displacement 
•  Is 16-bits enough?  
•  Yes! VAX experiment showed 1% accesses use displacement >16 

Op(6) Rs(5) Rt(5) Immed(16) I-type 
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msb lsb 
3          2          1           0 

little endian byte 0 

0          1          2           3 

big endian byte 0 

Addressing Issue: Endian-ness 

Byte Order 
•  Big Endian: byte 0 is 8 most significant bits IBM 360/370, 

Motorola 68k, MIPS, SPARC, HP PA-RISC 

•  Little Endian: byte 0 is 8 least significant bits Intel 80x86, DEC 
Vax, DEC/Compaq Alpha 
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•  Alignment: require that objects fall on address that 
is multiple of their size 

•  32-bit integer 
•  Aligned if address % 4 = 0  [% is symbol for “mod”] 
•  Aligned: lw @XXXX00 
•  Not: lw @XXXX10 

•  64-bit integer? 
•  Aligned if ? 

•  Question: what to do with unaligned accesses 
(uncommon case)? 
•  Support in hardware? Makes all accesses slow 
•  Trap to software routine? Possibility 
•  MIPS? ISA support: unaligned access using two 

instructions:  
lw @XXX010 = lwl @XXX010; lwr @XXX100 

0      1      2      3 
Aligned 

Not 
 

Another Addressing Issue: Alignment 

Byte # 
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(5) Datatypes 

•  Datatypes 
•  Software view: property of data 
•  Hardware view: data is just bits, property of operations 

•  Hardware datatypes 
•  Integer: 8 bits (byte), 16b (half), 32b (word), 64b (long) 
•  IEEE754 FP: 32b (single-precision), 64b (double-precision) 
•  Packed integer: treat 64b int as 8 8b int’s or 4 16b int’s 
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MIPS Datatypes (and Operations) 

•  Datatypes: all the basic ones (byte, half, word, FP) 
•  All integer operations read/write 32-bits 

•  No partial dependences on registers 
•  Only byte/half variants are load-store 

lb, lbu, lh, lhu, sb, sh 
•  Loads sign-extend (or not) byte/half into 32-bits 

•  Operations: all the basic ones 
•  Signed/unsigned variants for integer arithmetic 
•  Immediate variants for all instructions 
  add, addu, addi, addiu 
 
•  Regularity/orthogonality: all variants available for all operations 

•  Makes compiler’s “life” easier 
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(6) Control Instructions 

•  Three issues: 
1.  Testing for condition:  Does PC = PC++? 
2.  Computing target:  If PC != PC++, then what is it? 
3.  Dealing with procedure calls 
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(6) Control Instructions I: Condition Testing 

•  Three options for testing conditions 
•  Option I: compare and branch instructions (not used by MIPS) 

blti $1,10,target // if $1<10, goto target 
+ Simple, – two ALUs: one for condition, one for target address  

•  Option II: implicit condition codes (CCs) 
subi $2,$1,10   // sets “negative” CC 
bn target  // if negative CC set, goto target 

+ Condition codes set “for free”, – implicit dependence is tricky 
•  Option III: condition registers, separate branch insns 

slti $2,$1,10  // set $2 if $1<10 
bnez $2,target  // if $2 != 0, goto target 

–  Additional instructions, + one ALU per, + explicit dependence 
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MIPS Conditional Branches 

•  MIPS uses combination of options II and III 
•  Compare 2 registers and branch: beq, bne 

•  Equality and inequality only 
+ Don’t need adder for comparison 

•  Compare 1 register to zero and branch: bgtz, bgez, bltz, blez 
•  Greater/less than comparisons 
+ Don’t need adder for comparison 

•  Set explicit condition registers: slt, sltu, slti, sltiu, etc. 

•  Why?  
•  86% of branches in programs are (in)equalities or comparisons to 0 
•  OK to take two insns to do remaining 14% of branches 

•  Make the common case fast (MCCF)! 
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Control Instructions II: Computing Target 

•  Three options for computing targets 
•  Option I: PC-relative 

•  Position-independent within procedure 
•  Used for branches and jumps within a procedure 

•  Option II: Absolute 
•  Position independent outside procedure 
•  Used for procedure calls 

•  Option III: Indirect (target found in register) 
•  Needed for jumping to dynamic targets 
•  Used for returns, dynamic procedure calls, switches 

•  How far do you need to jump? 
•  Typically not so far within a procedure (they don’t get very big) 
•  Further from one procedure to another 
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MIPS Control Instructions 

•  MIPS uses all three 
•  PC-relative à conditional branches: bne, beq, blez, etc.  

•  16-bit relative offset, <0.1% branches need more 
•  PC = PC + 4 + immediate if condition is true (else PC=PC+4) 

•  Absolute à unconditional jumps: j target 
•  26-bit offset (can address 228 words < 232 à what gives?) 

•  Indirect à Indirect jumps: jr $rs 

Op(6) Rs(5) Rt(5) Immed(16) I-type 

Op(6) Target(26) J-type 

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type 
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Control Instructions III: Procedure Calls 

•  Another issue: support for procedure calls? 
•  We “link” (remember) address of the calling instruction + 4 (current 

PC + 4) so we can return to it after procedure 

•  MIPS 
•  Implicit return address register is $ra(=$31) 
•  Direct jump-and-link: jal address 

à $ra = PC+4; PC = address 
•  Can then return from call with: jr $ra 

•  Or can call with indirect jump-and-link-reg: jalr $rd, $rs 
à $rd = PC+4; PC = $rs   // explicit return address register 

•  Then return with: jr $rd 
•  We’ll see how procedure calls work in a few slides … 
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Control Idiom: If-Then-Else 

•  Understanding programs helps with architecture 
•  Know what common programming idioms look like in assembly 
•  Why? How can you MCCF if you don’t know what CC is? 

•  First control idiom: if-then-else 
if (A < B) A++;     // assume A in register $s1 
else B++;           // assume B in $s2 
 
   slt  $s3,$s1,$s2   // if $s1<$s2, then $s3=1 
   beqz $s3,else      // branch to else if !condition 
   addi $s1,$s1,1 
   j    join          // jump to join 
  else: addi $s2,$s2,1   
  join: ICQ: assembler converts “else” 

target of beqz into immediate à 
what is the immediate? 
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Control Idiom: Arithmetic For Loop 

•  Second idiom: “for loop” with arithmetic induction 
int A[100], sum, i, N; 
for (i=0; i<N; i++){    // assume: i in $s1, N in $s2 
 sum += A[i];         // &A[i] in $s3, sum in $s4 
} 
   sub  $s1,$s1,$s1  // initialize i to 0 
  loop: slt  $t1,$s1,$s2  // if i<N, then $t1=1 
   beqz $t1,exit     // test for exit at loop header 
   lw   $t1,0($s3)   // $t1 = A[i]  (not &A[i])  
   add  $s4,$s4,$t1  // sum = sum + A[i]   
   addi $s3,$s3,4    // increment &A[i] by sizeof(int) 
   addi $s1,$s1,1    // i++  
   j loop            // backward jump 
  exit: 
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Control Idiom: Pointer For Loop 

•  Third idiom: for loop with pointer induction 
struct node_t { int val; struct node_t *next; }; 
struct node_t *p, *head; 
int sum; 
for (p=head; p!=NULL; p=p->next)  // p in $s1, head in $s2 

sum += p->val                  // sum in $s3 
 
  add $s1,$s2,$0  // p = head  

loop:  beq $s1,$0,exit   // if p==0 (NULL), goto exit  
  lw $t1,0($s1)     // $t1 = *p = pàval 
  add $s3,$s3,$t1   // sum = sum + pàval 
  lw $s1,4($s1)     // p = *(p+1) = pànext  
  j loop 

exit: 
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Control Idiom: Procedure Call 

•  In general, procedure calls obey stack discipline 
•  Local procedure state contained in stack frame 
•  When a procedure is called, a new frame opens 
•  When a procedure returns, the frame collapses 

•  Procedure stack is in memory 
•  Distinct from operand stack which is not addressable 

•  Procedure linkage implemented by convention 
•  Called procedure (“callee”) expects frame to look a certain way 

•  Input arguments and return address are in certain places 
•  Caller “knows” this 

A A 
B 

A 
B 
C 

A 
B 

A A calls B 
B calls C 

C returns 
B returns 
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MIPS Procedure Calls 

•  Procedure stack implemented in software 
•  No ISA support for frames: set them up with conventional stores 
•  Stack is linear in memory and grows down (popular convention) 
•  One register reserved for stack management 

•  Stack pointer ($sp=$29): points to bottom of current frame 
•  Sometimes also use frame pointer ($fp=$30): top of frame 

•  Why? For dynamically variable sized frames 

•  Frame layout 
•  Contents accessed using $sp 

sw $ra,24($sp) 
•  Displacement addressing 

Saved arguments 
Saved $ra,$fp 

Saved registers 

Local variables 

Passed arguments 

$sp 

$fp 
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MIPS Procedure Call: Factorial (Naïve version) 
fact:  addi $sp,$sp,-128  // open frame (32 words of storage) 
  sw $ra,124($sp)  // save 31 registers 
  sw $1,120($sp) 
  sw $2,116($sp) 
  … 
  lw $s0,128($sp)  // read argument from caller’s frame 
  subi $s1,$s0,1 
  sw $s1,0($sp)  // store (argument-1) to frame 
  jal fact   // recursive call 
  lw $s1,-4($sp)  // read return value from frame 
  mul $s1,$s1,$s0  // multiply 
  …     
  lw $2,116($sp)  // restore all 32 registers 
  lw $1,120($sp) 
  lw $ra,124($sp) 
  sw $s1,124($sp)  // return value below caller’s frame 
  addi $sp,$sp,128    // collapse frame 
  jr $ra              // return 

Note: code 
ignores base 
case of 
recursion 
(should return 
1 if arg==1) 
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MIPS Calls and Register Convention 

•  Some inefficiencies with basic frame mechanism 
•  Registers: do all need to be saved/restored on every call/return? 
•  Arguments: must all be passed on stack? 
•  Returned values: are these also communicated via stack? 
•  No!  Fix with register convention 

$2,$3($v0,$v1): expression evaluation and return values 
$4-$7($a0-$a3): function arguments 
$8-$15,$24,$25($t0-$t9): caller saved temporaries 

•  A saves before calling B only if needed after B returns 
$16-$23($s0-$s7): callee saved 

•  A needs after B returns, B saves if it uses also 
•  We’ll discuss complete set of MIPS registers and conventions soon 
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MIPS Factorial: Take II (Using Conventions) 
fact: addi $sp,$sp,-8  // open frame (2 words) 
  sw $ra,4($sp)  // save return address 
  sw $s0,0($sp)  // save $s0 
  … 
  add $s0,$a0,$0  // copy $a0 to $s0 
  subi $a0,$a0,1  // pass arg via $a0 
  jal fact   // recursive call 
  mul $v0,$s0,$v0  // value returned via $v0 
  …     
  lw $s0,0($sp)  // restore $s0 
  lw $ra,4($sp)  // restore $ra 
  addi $sp,$sp,8    // collapse frame 
  jr $ra            // return, value in $v0 

 
+  Pass/return values via $a0-$a3 and $v0-$v1 rather than stack 
+  Save/restore 2 registers ($s0,$ra) rather than 31 (excl. $0) 
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Control Idiom: Call by Reference 

•  Passing arguments 
•  By value: pass contents [$sp+4] in $a0 
 int n;     // n in 4($sp) 
 foo(n); 
   lw $a0,4(sp) 
   jal foo 

•  By reference: pass address $sp+4 in $a0 
 int n;     // n in 4($sp) 
 bar(&n); 
   add $a0,$sp,4 
   jal bar 



© 2012 Daniel J. Sorin 
from Roth and Lebeck  41 

Instructions and Pseudo-Instructions 

•  Assembler helps give compiler illusion of regularity 
•  Processor does not implement all possible instructions 
•  Assembler accepts all insns, but some are pseudo-insns 

• Assembler translates these into native insn (insn sequences) 
•  MIPS example #1 

sgt $s3,$s1,$s2  // set $s3=1 if $s1>$s2 
 
slt $s3,$s2,$s1  // set $s3=1 if $s2<$s1 

•  MIPS example #2 
div $s1,$s2,$s3  // want div to put result in $s1 
 
div $s1,$s2,$s3   // div puts result in $lo 
mflo $s1    // move it from $lo to $s1 
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Outline 

•  ISAs in General 
•  MIPS Assembly Programming 
•  Other Instruction Sets 
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But first: SPIM 

•  SPIM is a program that simulates the behavior of MIPS32 
computers 
•  Can run MIPS32 assembly language programs 
•  You will use SPIM to run/test the assembly language programs you 

write for homeworks in this class 

•  Two flavors of same thing: 
•  spim: command line interface 
•  xspim: xwindows interface 
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MIPS Assembly Language 

•  One instruction per line 
•  Numbers are base-10 integers or Hex with leading 0x 
•  Identifiers: alphanumeric, _, . string starting in a letter or _ 
•  Labels: identifiers starting at the beginning of a line 

followed by “:” 
•  Comments: everything following # until end-of-line 
•  Instruction format: Space and “,” separated fields 

•  [Label:]  <op> reg1, [reg2], [reg3]     [# comment] 
•  [Label:]  <op>  reg1, offset(reg2)      [#  comment] 
•  .Directive  [arg1], [arg2],  . . . 



© 2012 Daniel J. Sorin 
from Roth and Lebeck  45 

MIPS Pseudo-Instructions 

•  Pseudo-instructions: extend the instruction set for convenience 
•  Examples 

•  move $2, $4   # $2 = $4, (copy $4 to $2) 
Translates to: 
add $2, $4, $0 
 

•  li $8, 40   # $8 = 40, (load 40 into $8) 
addi  $8, $0, 40 
 

•  sd $4, 0($29)    # mem[$29] = $4; Mem[$29+4] = $5 
sw $4, 0($29) 
sw $5, 4($29) 
 

•  la $4, 0x1000056c  # Load address $4 = <address> 
lui $4, 0x1000       # load upper immediate (lui) 
ori $4, $4, 0x056c   # or immediate (ori) 
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Assembly Language (cont.) 

•  Directives: tell the assembler what to do 
•  Format “.”<string>  [arg1], [arg2] . . . 

 
•  Examples 

.data [address]    # start a data segment 

.text  [address]    # start a code segment 

.align n     # align segment on 2n  byte boundary 

.ascii <string>    # store a string in memory 

.asciiz <string>    # store null-terminated string in memory 

.word w1, w2, . . . , wn    # store n words in memory 
 

 Let’s see how these get used in programs … 
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A Simple Program 

•  Add two numbers x and y: 
 .text   # declare text segment 
 .align 2   # align it on 4-byte (word) boundary 

main:    # label for main 
 la  $3, x   # load address of x into R3 (pseudo-inst) 
 lw  $4, 0($3)  # load value of x into R4 
 la  $3, y   # load address of y into R3 (pseudo-inst) 
 lw  $5, 0($3)  # load value of y into R5 
 add  $6, $4, $5  # compute x+y 
 jr  $31   # return to calling routine 

 
 .data   # declare data segment 
 .align 2   # align it on 4-byte boundary 

x: .word 10   # initialize x to 10 
y: .word 3   # initialize y to 3 Note: program 

doesn’t obey register 
conventions 
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Another example: The C / C++ code 

#include <iostream.h> 
 
int main ( ) 
{ 
 int i; 
 int sum = 0; 
 for(i=0; i <= 100; i++)  
  sum = sum + i*i ; 
 cout << “The answer is “ << sum << endl; 

} 
 

Let’s write the assembly … 
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 .text 
 .align  2 

main: 
 move $14, $0 # i = 0 
 move $15, $0 # tmp = 0 
 move $16, $0 # sum = 0 

loop:  
 mul $15, $14, $14 # tmp = i*i 
 add $16, $16, $15 # sum = sum + tmp 
 addi $14, $14, 1   # i++ 
 ble $14, 100, loop # if i < 100, goto loop 
  

# how are we going to print the answer here? 
# and how are we going to exit the program? 

Assembly Language Example 1 
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•  System call is used to communicate with the operating 
system and request services (memory allocation, I/O) 
•  syscall instruction in MIPS 

•  SPIM supports “system-call-like” 
1.  Load system call code into register $v0 

•  Example: if $v0==1, then syscall will print an integer 

2.  Load arguments (if any) into registers $a0, $a1, or $f12 
(for floating point) 

3.  syscall 
•  Results returned in registers $v0 or $f0 

System Call Instruction 
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SPIM System Call Support 

code  service  ArgType  Arg/Result 
1  print  int    $a0 
2  print  float  $f12 
3  print  double  $f12 
4  print  string  $a0 (string address) 
5  read   integer  integer in $v0 
6  read   float  float in $f0 
7  read   double  double in $f0 & $f1 
8  read   string  $a0=buffer, $a1=length 
9  sbrk   $a0=amount  address in $v0 
10  exit 
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Echo number and string 

.text 
main: 
 li  $v0, 5  # code to read an integer 
 syscall   # do the read (invokes the OS) 
 move  $a0, $v0  # copy result from $v0 to $a0 

 
 li  $v0, 1  # code to print an integer 
 syscall   # print the integer 

 
 li  $v0, 4  # code to print string 
 la  $a0, nln  # address of string (newline) 
 syscall 
  

# code continues on next slide … 
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Echo Continued 

 li  $v0, 8  # code to read a string 
 la  $a0, name  # address of buffer (name) 
 li  $a1, 8  # size of buffer (8 bytes) 
 syscall 

 
 la  $a0, name  # address of string to print 
 li  $v0, 4  # code to print a string 
 syscall 

 
 jr  $31   # return 

 
 .data 
 .align 2 

name:  .word 0,0 
nln:  .asciiz "\n" 
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Review: Procedure Call and Return 

int equal(int a1, int a2 
{ 
 int tsame; 
 tsame = 0; 
 if (a1 == a2) 
  tsame = 1; 
return(tsame); 

} 
main() 
{ 
 int x,y,same; 

  x = 43; 
 y = 2; 
 same = equal(x,y);  
 // other computation 

} 
 

     PC          $ra=$31 
0x10000   ?? 
0x10004   ?? 
0x10008   ?? 
0x30408 0x1000c 
0x3040c 0x1000c 
0x30410 0x1000c 
0x30414 0x1000c 
0x1000c 0x1000c 

addi $v0,$0,0 0x30408 
0x3040c bne $a0,$a1,4 

addi $v0,$0,1 0x30410 
jr $ra 

addi $a0,$0,43 
addi $a1,$0,2 
jal 0x30408 

0x10000 
0x10004 
0x10008 

0x30414 

0x1000c ?? 
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Procedure Call Gap 

ISA Level 
•  Call and return instructions 
C/C++ Level 
•  Local name scope 

•  Change tsame to same 

•  Recursion 
•  Arguments and return value (functions) 
Assembly Level 
•  Must bridge gap between HLL and ISA 
•  Supporting local names 
•  Passing arguments (arbitrary number?) 
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Review: Procedure Call (Stack) Frame 

•  Procedures use a frame in the stack to: 
•  Hold values passed to procedures as arguments 
•  Save registers that the callee procedure may modify, but which the 

procedure’s caller does not want changed 
•  To provide space for local variables 

     (variables with local scope)  
•  To evaluate complex expressions 
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FP 
Callee Save 
Registers 

Local Variables 

SP 

Arguments and 
local variables at 
fixed offset from FP 

Grows and shrinks during 
expression evaluation 

(old FP,  RA) 

High Mem 

Low Mem 

Dynamic area 

Argument 5 
Argument 6 

MIPS Call-Return Linkage: Stack Frames 
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0  zero constant 

1  at  reserved for assembler 

2  v0  expression evaluation & 

3  v1  function results 

4  a0  arguments 

5  a1 

6  a2 

7  a3   

8  t0  temporary: caller saves 

. . . 

15  t7 

16  s0  callee saves 

. . . 

23  s7 

24  t8  temporary (cont’d) 

25  t9 

26  k0  reserved for OS kernel 

27  k1 

28  gp  pointer to global area 

29  sp  Stack pointer 

30  fp  frame pointer 

31  ra  return address 

MIPS Register Naming Conventions 
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MIPS/GCC Procedure Calling Conventions 

Calling Procedure 
•  Step-1: Pass the arguments 

•  First four arguments (arg0-arg3) are passed in registers $a0-$a3  
•  Remaining arguments are pushed onto the stack  
    (in reverse order, arg5 is at the top of the stack) 

 

•  Step-2: Save caller-saved registers 
•  Save registers $t0-$t9 if they contain live values at the call site 

 

•  Step-3: Execute a jal instruction 
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MIPS/GCC Procedure Calling Conventions (cont.) 

Called Routine 
•  Step-1: Establish stack frame 

•  Subtract the frame size from the stack pointer 
        subiu $sp,  $sp,  <frame-size> 

•  Typically, minimum frame size is 32 bytes (8 words) 
•  Step-2: Save callee saved registers in the frame 

•  Register $fp is always saved (by convention) 
•  Register $ra is saved if routine makes a call 
•  Registers $s0-$s7 are saved if they are used 

•  Step-3: Establish frame pointer 
•  Add the stack <frame size> - 4 to the  address in $sp 

   addiu $fp, $sp, <frame-size> - 4 
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MIPS/GCC Procedure Calling Conventions (cont.) 

On return from a call 
•  Step-1: Put returned values in registers $v0 and $v1  

    (if values are returned) 
•  Step-2: Restore callee-saved registers 

•  Restore $fp and other saved registers: $ra, $s0 - $s7 

•  Step-3: Pop the stack 
•  Add the frame size to $sp 

     addiu $sp, $sp, <frame-size> 

•  Step-4: Return 
•   Jump to the address in $ra  

     jr  $ra 
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Example2  (will not cover in class) 
# Program to add together list of 9 numbers 
        .text                   # Code 
        .align  2 
        .globl  main 
main:                           # MAIN procedure Entrance 
        subu    $sp, 40         #\ Push the stack 
        sw      $ra, 36($sp)    # \ Save return address 
        sw      $s3, 32($sp)    #  \ 
        sw      $s2, 28($sp)    #   > Entry Housekeeping 
        sw      $s1, 24($sp)    #  /  save registers on 

stack 
        sw      $s0, 20($sp)    # / 
        move    $v0, $0         #/ initialize exit code to 0                         
        move    $s1, $0         #\ 
        la      $s0, list       # \ Initialization 
        la      $s2, msg        # / 
        la      $s3, list+36    #/ 
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Example2 (cont.) 
#    Main code segment 
 
again:                          #   Begin main loop 
        lw      $t6, 0($s0)     #\ 
        addu    $s1, $s1, $t6   #/  Actual "work" 
                                #    SPIM I/O 
        li      $v0, 4          #\ 
        move    $a0, $s2        # >  Print a string 
        syscall                 #/ 
        li      $v0, 1          #\ 
        move    $a0, $s1        # >  Print a number 
        syscall                 #/ 
        li      $v0, 4          #\ 
        la      $a0, nln        # > Print a string (eol) 
        syscall                 #/ 
                                 
        addu    $s0, $s0, 4       #\ index update and 
        bne     $s0, $s3, again   #/  end of loop 
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Example2 (cont.) 
#    Exit Code 
 
        move    $v0, $0         #\ 
        lw      $s0, 20($sp)    # \ 
        lw      $s1, 24($sp)    #  \ 
        lw      $s2, 28($sp)    #   \ Closing Housekeeping 
        lw      $s3, 32($sp)    #   /   restore registers 
        lw      $ra, 36($sp)    #  / load return address 
        addu    $sp, 40         # / Pop the stack 
        jr      $ra             #/    exit(0) ; 
        .end    main            #  end of program  
 
#   Data Segment 
 
        .data                   # Start of data segment 
list:   .word   35, 16, 42, 19, 55, 91, 24, 61, 53 
msg:    .asciiz "The sum is " 
nln:    .asciiz "\n" 
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Some Details/Quirks of the MIPS ISA 

•  Register zero always has the value zero  
•  Even if you try to write it! 

•  jal puts the return address PC+4 into the link register ($ra) 
•  All instructions change all 32 bits of the destination register 

(lui, lb, lh) and read all 32 bits of sources (add, sub, and, or, 
…) 

•  Immediate arithmetic and logical instructions are extended 
as follows: 

•  logical immediates are zero-extended to 32 bits 
•  arithmetic immediates are sign-extended to 32 bits 

•  lb and lh extend data as follows: 
•  lbu, lhu are zero extended 
•  lb, lh are sign extended 
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Outline 

•  Instruction Sets in General 
•  MIPS Assembly Programming 
•  Other Instruction Sets 

•  Goals of ISA Design 
•  RISC vs. CISC 
•  Intel x86 (IA-32) 
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What Makes a Good ISA? 

•  Programmability 
•  Easy to express programs efficiently? 

•  Implementability 
•  Easy to design high-performance implementations (i.e., 

microarchitectures)? 

•  Compatibility 
•  Easy to maintain programmability as languages and programs 

evolve? 
•  Easy to maintain implementability as technology evolves? 
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Programmability 

•  Easy to express programs efficiently? 
•  For whom? 

•  Human 
•  Want high-level coarse-grain instructions 

•  As similar to HLL as possible 
•  This is the way ISAs were pre-1985 

•  Compilers were terrible, most code was hand-assembled 

•  Compiler 
•  Want low-level fine-grain instructions 

•  Compiler can’t tell if two high-level idioms match exactly or not  
•  This is the way most post-1985 ISAs are 

•  Optimizing compilers generate much better code than humans 
•  ICQ: Why are compilers better than humans? 
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Implementability 

•  Every ISA can be implemented 
•  But not every ISA can be implemented well 
•  Bad ISA à bad microarchitecture (slow, power-hungry, etc.) 

•  We’d like to use some of these high-performance 
implementation techniques 
•  Pipelining, parallel execution, out-of-order execution 
•  We’ll discuss these later in the semester 

•  Certain ISA features make these difficult 
•  Variable length instructions 
•  Implicit state (e.g., condition codes) 
•  Wide variety of instruction formats 
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Compatibility 

•  Few people buy new hardware … if it means they have to 
buy new software, too 
•  Intel was the first company to realize this 
•  ISA must stay stable, no matter what (microarch. can change) 

•  x86 is one of the ugliest ISAs EVER, but survives 
•  Intel then forgot this lesson: IA-64 (Itanium) is new ISA 

•  Backward compatibility: very important 
•  New processors must support old programs (can’t drop features) 

•  Forward (upward) compatibility: less important 
•  Old processors must support new programs 

•  New processors only re-define opcodes that trapped in old ones 
•  Old processors emulate new instructions in low-level software 
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Compatibility in the Age of VMs 

•  Virtual machine (VM): piece of software that emulates 
behavior of hardware platform 
•  Examples: VMWare, Xen, Simics 

•  VM emulates target system while running on host system 
•  Key: host and target ISAs do not have to be the same! 
•  Example: On my x86 desktop, I can run VM that emulates MIPS 

processor 
•  ICQ: Is SPIM a VM? 

•  Upshot: you can run code of target ISA on host with different ISA  
à don’t need to buy x86 box to run legacy x86 code 

•  Very cool technology that’s commonly used 
•  ICQ: given a VM, does ISA compatibility really matter? 
•  More details on VMs in ECE 252 
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RISC vs. CISC 

•  RISC: reduced-instruction set computer 
•  Coined by P+H in early 80’s (ideas originated earlier) 

•  CISC: complex-instruction set computer 
•  Not coined by anyone, term didn’t exist before “RISC” 

•  Religious war (one of several) started in mid 1980’s 
•  RISC (MIPS, Alpha, Power) “won” the technology battles 
•  CISC (IA32 = x86) “won” the commercial war 

•  Compatibility a stronger force than anyone (but Intel) thought 
•  Intel beat RISC at its own game … more on this soon 
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The Setup 

•  Pre-1980 
•  Bad compilers 
•  Complex, high-level ISAs 
•  Slow, complicated, multi-chip microarchitectures 

•  Around 1982 
•  Advances in VLSI made single-chip microprocessor possible… 

•  Speed by integration, on-chip wires much faster than off-chip 
•  …but only for very small, very simple ISAs 
•  Compilers had to get involved in a big way 

•  RISC manifesto: create ISAs that… 
•  Simplify single-chip implementation 
•  Facilitate optimizing compilation 
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The RISC Tenets 

•  Single-cycle execution (simple operations) 
•  CISC: many multi-cycle operations  

•  Load/store architecture 
•  CISC: register-memory and memory-memory instructions 

•  Few memory addressing modes 
•  CISC: many modes 

•  Fixed instruction format 
•  CISC: many formats and lengths 

•  Reliance on compiler optimizations 
•  CISC: hand assemble to get good performance 

Summary 

(1)  Make it easy to implement in hardware 

(2)  Make it easy for compiler to generate code 
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PowerPC ISA à POWER ISA 

•  RISC-y, very similar to MIPS 
•  Some differences: 

•  Indexed addressing mode (register+register) 
• lw $t1,$a0,$s3  # $t1 = mem[$a0+$s3] 

•  Update addressing mode 
• lw $t1,4($a0)  # $t1 = mem[$a0+4]; $a0 += 4; 

•  Dedicated counter register 
• bc loop  # ctr--; branch to loop if ctr != 0 

•  In general, though, similar to MIPS 
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Intel 80x86 ISA (aka x86 or IA-32) 

•  Binary compatibility across generations 
•  1978: 8086, 16-bit, registers have dedicated uses 
•  1980: 8087, added floating point (stack) 
•  1982: 80286, 24-bit  
•  1985: 80386, 32-bit, new instrs à GPR almost 
•  1989-95: 80486, Pentium, Pentium II 
•  1997: Added MMX instructions (for graphics) 
•  1999: Pentium III 
•  2002: Pentium 4 
•  2004: “Nocona” 64-bit extension (to keep up with AMD) 
•  2006: Core2 
•  2007: Core2 Quad 
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Intel x86: The Penultimate CISC 

•  DEC VAX was ultimate CISC, but x86 (IA-32) is close 
•  Variable length instructions: 1-16 bytes 
•  Few registers: 8 and each one has a special purpose 
•  Multiple register sizes: 8,16,32 bit (for backward compatibility) 
•  Accumulators for integer instrs, and stack for FP instrs 
•  Multiple addressing modes: indirect, scaled, displacement 
•  Register-register, memory-register, and memory-register insns 
•  Condition codes 
•  Instructions for memory stack management (push, pop) 
•  Instructions for manipulating strings (entire loop in one instruction) 

•  Summary: yuck! 
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80x86 Registers and Addressing Modes 

•  Eight 32-bit registers (not truly general purpose) 
•  EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI 

•  Six 16-bit registers for code, stack, & data 
•  2-address ISA 

•  One operand is both source and destination 

•  NOT a Load/Store ISA 
•  One operand can be in memory 
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80x86 Addressing Modes 

•  Register Indirect 
•  mem[reg] 
•  not ESP or EBP register 

•  Base + displacement (8 or 32 bit)  
•  mem[reg + const] 
•  not ESP or EBP 

•  Base + scaled index 
•  mem[reg + (2scale x index)] 
•  scale = 0,1,2,3 
•  base any GPR, index not ESP 

•  Base + scaled index + displacement 
•  mem[reg + (2scale x index) + displacement] 
•  scale = 0,1,2,3 
•  base any GPR, index not ESP 
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Condition Codes 

•  Both Power ISA and x86 ISA have condition codes 
•  Special HW register that has values set as side effect of 

instruction execution 
•  Example conditions 

•  Zero 
•  Negative 

•  Example use 
subi $t0, $t0, 1 
bz  loop  // branch to loop if result of previous instruction is zero 
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80x86 Instruction Encoding 

•  Variable size 1-byte to 17-bytes 
•  Examples 

•  Jump (JE) 2-bytes 
•  Push 1-byte 
•  Add Immediate 5-bytes 

•  W bit says 32-bits or 8-bits 
•  D bit indicates direction 

•  memory à reg or reg à memory 
•  movw EBX, [EDI + 45] 
•  movw [EDI + 45], EBX 
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Decoding x86 Instructions 

•  Is a &$%!# nightmare! 
•  Instruction length is variable from 1 to 17 bytes 
•  Crazy “formats” à register specifiers move around 
•  But key instructions not terrible 
•  Yet, everything must work correctly 



© 2012 Daniel J. Sorin 
from Roth and Lebeck  83 

How Intel Won Anyway 

•  x86 won because it was the first 16-bit chip by 2 years 
•  IBM put it into its PCs because there was no competing choice 
•  Rest is historical inertia and “financial feedback” 

•  x86 is most difficult ISA to implement and do it fast but… 
•  Because Intel (and AMD) sells the most processors… 
•  It has the most money…  
•  Which it uses to hire more and better engineers… 
•  Which it uses to maintain competitive performance … 
•  And given equal performance compatibility wins… 
•  So Intel (and AMD) sells the most processors… 

•  Moore’s law has helped Intel in a big way 
•  Most engineering problems can be solved with more transistors 
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Current Approach: Pentium Pro and beyond 

•  Instruction decode logic translates into µops 
•  Fixed-size instructions moving down execution path 
•  Execution units see only µops 
+  Faster instruction processing with backward compatibility 
+  Execution unit as fast as RISC machines like MIPS 
–  Complex decoding 
–  We work with MIPS to keep decoding simple/clean 
–  Learn x86 on the job! 

 
 

Learn exactly how this all works in ECE 252 
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Aside: Complex Instructions 

•  More powerful instructions à not necessarily faster 
execution 

•  E.g., string copy or polynomial evaluation 

•  Option 1: use “repeat” prefix on memory-memory move 
inst 

•   Custom string copy 
•  Option 2: use a loop of loads and stores through registers 

•   General purpose move through simple instructions 

•  Option 2 is often faster on same machine 
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Concluding Remarks 

1.  Keep it simple and regular 
•  Uniform length instructions 
•  Fields always in same places 

2.  Keep it simple and fast 
•  Small number of registers 

3.  Make sure design can be pipelined (will learn soon) 
4.  Make the common case fast 

•  Compromises inevitable à there is no perfect ISA 
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Outline 

•  Instruction Sets in General 
•  MIPS Assembly Programming 
•  Other Instruction Sets 


