
© 2012 Daniel J. Sorin
from Roth and Lebeck

ECE 152 / 496
Introduction to Computer Architecture

Instruction Set Architecture (ISA)
Benjamin C. Lee
Duke University

Slides from Daniel Sorin (Duke)
and are derived from work by

Amir Roth (Penn) and Alvy Lebeck (Duke)

Spring 2013

© 2012 Daniel J. Sorin
from Roth and Lebeck 2

Instruction Set Architecture (ISA)

•  ISAs in General
•  Using MIPS as primary example

•  MIPS Assembly Programming
•  Other ISAs

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

© 2012 Daniel J. Sorin
from Roth and Lebeck 3

Readings

•  Patterson and Hennessy
•  Chapter 2

•  Read this chapter as if you’d have to teach it
•  Appendix A (reference for MIPS instructions and SPIM)

•  Read as much of this chapter as you feel you need

© 2012 Daniel J. Sorin
from Roth and Lebeck 4

What Is an ISA?

•  ISA
•  The “contract” between software and hardware
•  If software does X, hardware promises to do Y

•  Functional definition of operations, modes, and storage
locations supported by hardware

•  Precise description of how software can invoke and access
them

•  Strictly speaking, ISA is the architecture, i.e., the interface between
the hardware and the software

•  Less strictly speaking, when people talk about architecture,
they’re also talking about how the the architecture is
implemented

© 2012 Daniel J. Sorin
from Roth and Lebeck 5

How Would You Design an ISA?

•  What kind of interface should the hardware present to the
software?
•  Types of instructions?
•  Instruction representation?
•  How do we get from instruction 1 to 2 (or to 7 instead)?
•  Software’s view of storage? Where do variables live?
•  Does the hardware help to support function/method calls? If so,

how?
•  Should the hardware support other features that are specific to

certain HLLs (e.g., garbage collection for Java)?

© 2012 Daniel J. Sorin
from Roth and Lebeck 6

Microarchitecture

•  ISA specifies what hardware does, not how it does it
•  No guarantees regarding these issues:

•  How operations are implemented
•  Which operations are fast and which are slow
•  Which operations take more power and which take less

•  These issues are determined by the microarchitecture
•  Microarchitecture = how hardware implements architecture
•  Can be any number of microarchitectures that implement the

same architecture (Pentium and Pentium 4 are almost the same
architecture, but are very different microarchitectures)

•  Class project is to build Duke152-S12 processor
•  I specify the architecture
•  You design the microarchitecture, with the goal of making it as fast

as possible (while still correct in all cases!)

© 2012 Daniel J. Sorin
from Roth and Lebeck 7

Aspects of ISAs

•  We will discuss the following aspects of ISAs
1.  The Von Neumann (pronounced NOY-muhn) model

•  Implicit structure of all modern ISAs
2.  Format

•  Length and encoding
3.  Operations
4.  Operand model

•  Where are operands stored and how do address them?
5.  Datatypes and operations
6.  Control

•  Running example: MIPS
•  MIPS ISA designed to match actual pattern of use in programs

© 2012 Daniel J. Sorin
from Roth and Lebeck 8

(1) The Sequential (Von Neumann) Model

•  Implicit model of all modern ISAs
•  Often called Von Neumann, but in ENIAC before

•  Basic feature: the program counter (PC)
•  Defines total order of dynamic instructions

•  Next PC is PC++ unless insn says otherwise
•  Order and named storage define computation

•  Value flows from insn X to Y via storage A iff…
•  X names A as output, Y names A as input…
•  And Y after X in total order

•  Processor logically executes loop at left
•  Instruction execution assumed atomic
•  Instruction X finishes before insn X+1 starts

Fetch PC

Decode

Read Inputs

Execute

Write Output

Next PC

© 2012 Daniel J. Sorin
from Roth and Lebeck 9

(2) Instruction Format

•  Length
1.  Fixed length

•  32 or 64 bits (depends on architecture – Duke152/32 is 32 bit)
+  Simple implementation: compute next PC using only this PC
–  Code density: 32 or 64 bits for a NOP (no operation) insn?

2.  Variable length
–  Complex implementation
+  Code density

3.  Compromise: two lengths
•  Example: MIPS16

•  Encoding
•  A few simple encodings simplify decoder implementation
•  You’ll appreciate simple encodings when building Duke152/32

© 2012 Daniel J. Sorin
from Roth and Lebeck 10

MIPS Format

•  Length
•  32-bits
•  MIPS16: 16-bit variants of common instructions for density

•  Encoding
•  3 formats, simple encoding, 6-bit opcode (type of operation)
•  ICQ: how many operation types can be encoded in 6-bit opcode?

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type

Op(6) Rs(5) Rt(5) Immed(16) I-type

Op(6) Target(26) J-type

© 2012 Daniel J. Sorin
from Roth and Lebeck 11

(3) Operations

•  Operation type encoded in instruction opcode
•  Many types of operations

•  Integer arithmetic: add, sub, mul, div, mod/rem (signed/unsigned)
•  FP arithmetic: add, sub, mul, div, sqrt
•  Bit-wise/integer logical: and, or, xor, not, sll, srl, sra
•  Packed integer: padd, pmul, pand, por… (saturating/wraparound)

•  What other operations might be useful?
•  More operation types == better ISA??
•  DEC VAX computer had LOTS of operation types

•  E.g., instruction for polynomial evaluation (no joke!)
•  But many of them were rarely/never used (ICQ: Why not?)
•  We’ll talk more about this issue later …

© 2012 Daniel J. Sorin
from Roth and Lebeck 12

(4) Operations Act on Operands

•  If you’re going to add, you need at least 3 operands
•  Two source operands, one destination operand
•  Note: operands don’t have to be unique (e.g., A = B + A)

•  Question #1: Where can operands come from?
•  Question #2: And how are they specified?
•  Running example: A = B + C

•  Several options for answering both questions

•  Criteria for evaluating operand models
•  Metric I: static code size
•  Metric II: data memory traffic
•  Metric III: instruction execution latency

© 2012 Daniel J. Sorin
from Roth and Lebeck 13

Operand Model I: Memory Only

•  Memory only
add A,B,C // mem[A] = mem[B] + mem[C]

MEM

international symbol for Arithmetic Logic
Unit (ALU) – a piece of logic that performs

arithmetic, bitwise logic, shifts, etc.

© 2012 Daniel J. Sorin
from Roth and Lebeck 14

Operand Model II: Stack

•  Stack: top of stack (TOS) is implicit operand in all insns
push B // stack[TOS++] = mem[B]
push C // stack[TOS++] = mem[C]
add // stack[TOS++] = stack[--TOS] + stack[--TOS]
pop A // mem[A] = stack[--TOS]

Note: ++x increments value of x, then returns x
Note: x++ returns x, then increments value of x

MEM

TOS

© 2012 Daniel J. Sorin
from Roth and Lebeck 15

Operand Model III: Accumulator

•  Accumulator: implicit single-element stack
load B // ACC = mem[B]
add C // ACC = ACC + mem[C]
store A // mem[A] = ACC

MEM

ACC

You may remember that the ECE52
protocomputer has an accumulator ISA

© 2012 Daniel J. Sorin
from Roth and Lebeck 16

Operand Model IV: Registers

•  General-purpose registers: multiple explicit accumulators
load R1,B // R1 = mem[B]
add R1,C // R1 = R1 + mem[C]
store A,R1 // mem[A] = R1

•  Load-store: GPR and only loads/stores access memory
load R1,B // R1 = mem[B]
load R2,C // R2 = mem[C]
add R3,R2,R1 // R3 = R1 + R2
store A,R3 // mem[A] = R3

MEM

© 2012 Daniel J. Sorin
from Roth and Lebeck 17

Operand Model Pros and Cons

•  Metric I: static code size
•  Number of instructions needed to represent program, size of each
•  Want many implicit operands, high level instructions
•  Good → bad: memory, stack, accumulator, load-store

•  Metric II: data memory traffic
•  Number of bytes moved to and from memory
•  Want as many long-lived operands in on-chip storage
•  Good → bad: load-store, accumulator, stack, memory

•  Metric III: instruction latency
•  Want low latency to execute instruction
•  Good → bad: load-store, accumulator, stack, memory

•  Upshot: many current ISAs are load-store

© 2012 Daniel J. Sorin
from Roth and Lebeck 18

How Many Registers?

•  Registers faster than memory à have as many as
possible? No!
•  One reason registers are faster is that there are fewer of them

•  Smaller storage structures are faster (hardware truism)
•  Another is that they are directly addressed (no address calc)

•  More registers à larger specifiers à fewer regs per instruction
•  Not everything can be put in registers

•  Structures, arrays, anything pointed-to
•  Although compilers are getting better at putting more things in

•  More registers means more saving/restoring them
•  At procedure calls and context switches

•  Upshot: trend to more registers: 8(IA-32)→32(MIPS) →128(IA-64)

© 2012 Daniel J. Sorin
from Roth and Lebeck 19

MIPS Operand Model

•  MIPS is load-store
•  32 32-bit integer registers

•  Actually 31: r0 is hardwired to value 0
•  Also, certain registers conventionally used for special purposes

•  We’ll talk more about these conventions later
•  32 32-bit FP registers

•  Can also be treated as 16 64-bit FP registers
•  HI,LO: destination registers for multiply/divide

•  Integer register conventions
•  Allows separate function-level compilation and fast function calls

•  Note: “function”, “method”, and “procedure” are equivalent
terms in this course

•  We’ll discuss this more when we get to procedure calls

© 2012 Daniel J. Sorin
from Roth and Lebeck 20

Memory Operand Addressing

•  ISAs assume “virtual” address size
•  Either 32-bit or 64-bit
•  Program can name 232 bytes (4GB) or 264 bytes (16EB)
•  ISA impact? no room for even one address in a 32-bit instruction

•  Addressing mode: way of specifying address
•  (Register) Indirect: ld R1,(R2) R1=mem[R2]
•  Displacement: ld R1,8(R2) R1=mem[R2+8]
•  Index-base: ld R1,(R2,R3) R1=mem[R2+R3]
•  Memory-indirect: ld R1,@(R2) R1=mem[mem[R2]]
•  Auto-increment: ld R1,(R2)+ R1=mem[R2++]
•  Scaled: ld R1,(R2,R3,32,8) R1=mem[R2+R3*32+8]

•  ICQ: What HLL program idioms are these used for?

© 2012 Daniel J. Sorin
from Roth and Lebeck 21

MIPS Addressing Modes

•  MIPS implements only displacement addressing mode
•  Why? Experiment on VAX (ISA with every mode) found distribution
•  Disp: 61%, reg-ind: 19%, scaled: 11%, mem-ind: 5%, other: 4%
•  80% use displacement or register indirect (=displacement 0)

•  I-type instructions: 16-bit displacement
•  Is 16-bits enough?
•  Yes! VAX experiment showed 1% accesses use displacement >16

Op(6) Rs(5) Rt(5) Immed(16) I-type

© 2012 Daniel J. Sorin
from Roth and Lebeck 22

msb lsb
3 2 1 0

little endian byte 0

0 1 2 3

big endian byte 0

Addressing Issue: Endian-ness

Byte Order
•  Big Endian: byte 0 is 8 most significant bits IBM 360/370,

Motorola 68k, MIPS, SPARC, HP PA-RISC

•  Little Endian: byte 0 is 8 least significant bits Intel 80x86, DEC
Vax, DEC/Compaq Alpha

© 2012 Daniel J. Sorin
from Roth and Lebeck 23

•  Alignment: require that objects fall on address that
is multiple of their size

•  32-bit integer
•  Aligned if address % 4 = 0 [% is symbol for “mod”]
•  Aligned: lw @XXXX00
•  Not: lw @XXXX10

•  64-bit integer?
•  Aligned if ?

•  Question: what to do with unaligned accesses
(uncommon case)?
•  Support in hardware? Makes all accesses slow
•  Trap to software routine? Possibility
•  MIPS? ISA support: unaligned access using two

instructions:
lw @XXX010 = lwl @XXX010; lwr @XXX100

0 1 2 3
Aligned

Not

Another Addressing Issue: Alignment

Byte #

© 2012 Daniel J. Sorin
from Roth and Lebeck 24

(5) Datatypes

•  Datatypes
•  Software view: property of data
•  Hardware view: data is just bits, property of operations

•  Hardware datatypes
•  Integer: 8 bits (byte), 16b (half), 32b (word), 64b (long)
•  IEEE754 FP: 32b (single-precision), 64b (double-precision)
•  Packed integer: treat 64b int as 8 8b int’s or 4 16b int’s

© 2012 Daniel J. Sorin
from Roth and Lebeck 25

MIPS Datatypes (and Operations)

•  Datatypes: all the basic ones (byte, half, word, FP)
•  All integer operations read/write 32-bits

•  No partial dependences on registers
•  Only byte/half variants are load-store

lb, lbu, lh, lhu, sb, sh
•  Loads sign-extend (or not) byte/half into 32-bits

•  Operations: all the basic ones
•  Signed/unsigned variants for integer arithmetic
•  Immediate variants for all instructions
 add, addu, addi, addiu

•  Regularity/orthogonality: all variants available for all operations

•  Makes compiler’s “life” easier

© 2012 Daniel J. Sorin
from Roth and Lebeck 26

(6) Control Instructions

•  Three issues:
1.  Testing for condition: Does PC = PC++?
2.  Computing target: If PC != PC++, then what is it?
3.  Dealing with procedure calls

© 2012 Daniel J. Sorin
from Roth and Lebeck 27

(6) Control Instructions I: Condition Testing

•  Three options for testing conditions
•  Option I: compare and branch instructions (not used by MIPS)

blti $1,10,target // if $1<10, goto target
+ Simple, – two ALUs: one for condition, one for target address

•  Option II: implicit condition codes (CCs)
subi $2,$1,10 // sets “negative” CC
bn target // if negative CC set, goto target

+ Condition codes set “for free”, – implicit dependence is tricky
•  Option III: condition registers, separate branch insns

slti $2,$1,10 // set $2 if $1<10
bnez $2,target // if $2 != 0, goto target

–  Additional instructions, + one ALU per, + explicit dependence

© 2012 Daniel J. Sorin
from Roth and Lebeck 28

MIPS Conditional Branches

•  MIPS uses combination of options II and III
•  Compare 2 registers and branch: beq, bne

•  Equality and inequality only
+ Don’t need adder for comparison

•  Compare 1 register to zero and branch: bgtz, bgez, bltz, blez
•  Greater/less than comparisons
+ Don’t need adder for comparison

•  Set explicit condition registers: slt, sltu, slti, sltiu, etc.

•  Why?
•  86% of branches in programs are (in)equalities or comparisons to 0
•  OK to take two insns to do remaining 14% of branches

•  Make the common case fast (MCCF)!

© 2012 Daniel J. Sorin
from Roth and Lebeck 29

Control Instructions II: Computing Target

•  Three options for computing targets
•  Option I: PC-relative

•  Position-independent within procedure
•  Used for branches and jumps within a procedure

•  Option II: Absolute
•  Position independent outside procedure
•  Used for procedure calls

•  Option III: Indirect (target found in register)
•  Needed for jumping to dynamic targets
•  Used for returns, dynamic procedure calls, switches

•  How far do you need to jump?
•  Typically not so far within a procedure (they don’t get very big)
•  Further from one procedure to another

© 2012 Daniel J. Sorin
from Roth and Lebeck 30

MIPS Control Instructions

•  MIPS uses all three
•  PC-relative à conditional branches: bne, beq, blez, etc.

•  16-bit relative offset, <0.1% branches need more
•  PC = PC + 4 + immediate if condition is true (else PC=PC+4)

•  Absolute à unconditional jumps: j target
•  26-bit offset (can address 228 words < 232 à what gives?)

•  Indirect à Indirect jumps: jr $rs

Op(6) Rs(5) Rt(5) Immed(16) I-type

Op(6) Target(26) J-type

Op(6) Rs(5) Rt(5) Rd(5) Sh(5) Func(6) R-type

© 2012 Daniel J. Sorin
from Roth and Lebeck 31

Control Instructions III: Procedure Calls

•  Another issue: support for procedure calls?
•  We “link” (remember) address of the calling instruction + 4 (current

PC + 4) so we can return to it after procedure

•  MIPS
•  Implicit return address register is $ra(=$31)
•  Direct jump-and-link: jal address

à $ra = PC+4; PC = address
•  Can then return from call with: jr $ra

•  Or can call with indirect jump-and-link-reg: jalr $rd, $rs
à $rd = PC+4; PC = $rs // explicit return address register

•  Then return with: jr $rd
•  We’ll see how procedure calls work in a few slides …

© 2012 Daniel J. Sorin
from Roth and Lebeck 32

Control Idiom: If-Then-Else

•  Understanding programs helps with architecture
•  Know what common programming idioms look like in assembly
•  Why? How can you MCCF if you don’t know what CC is?

•  First control idiom: if-then-else
if (A < B) A++; // assume A in register $s1
else B++; // assume B in $s2

 slt $s3,$s1,$s2 // if $s1<$s2, then $s3=1
 beqz $s3,else // branch to else if !condition
 addi $s1,$s1,1
 j join // jump to join
 else: addi $s2,$s2,1
 join: ICQ: assembler converts “else”

target of beqz into immediate à
what is the immediate?

© 2012 Daniel J. Sorin
from Roth and Lebeck 33

Control Idiom: Arithmetic For Loop

•  Second idiom: “for loop” with arithmetic induction
int A[100], sum, i, N;
for (i=0; i<N; i++){ // assume: i in $s1, N in $s2
 sum += A[i]; // &A[i] in $s3, sum in $s4
}
 sub $s1,$s1,$s1 // initialize i to 0
 loop: slt $t1,$s1,$s2 // if i<N, then $t1=1
 beqz $t1,exit // test for exit at loop header
 lw $t1,0($s3) // $t1 = A[i] (not &A[i])
 add $s4,$s4,$t1 // sum = sum + A[i]
 addi $s3,$s3,4 // increment &A[i] by sizeof(int)
 addi $s1,$s1,1 // i++
 j loop // backward jump
 exit:

© 2012 Daniel J. Sorin
from Roth and Lebeck 34

Control Idiom: Pointer For Loop

•  Third idiom: for loop with pointer induction
struct node_t { int val; struct node_t *next; };
struct node_t *p, *head;
int sum;
for (p=head; p!=NULL; p=p->next) // p in $s1, head in $s2

sum += p->val // sum in $s3

 add $s1,$s2,$0 // p = head

loop: beq $s1,$0,exit // if p==0 (NULL), goto exit
 lw $t1,0($s1) // $t1 = *p = pàval
 add $s3,$s3,$t1 // sum = sum + pàval
 lw $s1,4($s1) // p = *(p+1) = pànext
 j loop

exit:

© 2012 Daniel J. Sorin
from Roth and Lebeck 35

Control Idiom: Procedure Call

•  In general, procedure calls obey stack discipline
•  Local procedure state contained in stack frame
•  When a procedure is called, a new frame opens
•  When a procedure returns, the frame collapses

•  Procedure stack is in memory
•  Distinct from operand stack which is not addressable

•  Procedure linkage implemented by convention
•  Called procedure (“callee”) expects frame to look a certain way

•  Input arguments and return address are in certain places
•  Caller “knows” this

A A
B

A
B
C

A
B

A A calls B
B calls C

C returns
B returns

© 2012 Daniel J. Sorin
from Roth and Lebeck 36

MIPS Procedure Calls

•  Procedure stack implemented in software
•  No ISA support for frames: set them up with conventional stores
•  Stack is linear in memory and grows down (popular convention)
•  One register reserved for stack management

•  Stack pointer ($sp=$29): points to bottom of current frame
•  Sometimes also use frame pointer ($fp=$30): top of frame

•  Why? For dynamically variable sized frames

•  Frame layout
•  Contents accessed using $sp

sw $ra,24($sp)
•  Displacement addressing

Saved arguments
Saved $ra,$fp

Saved registers

Local variables

Passed arguments

$sp

$fp

© 2012 Daniel J. Sorin
from Roth and Lebeck 37

MIPS Procedure Call: Factorial (Naïve version)
fact: addi $sp,$sp,-128 // open frame (32 words of storage)
 sw $ra,124($sp) // save 31 registers
 sw $1,120($sp)
 sw $2,116($sp)
 …
 lw $s0,128($sp) // read argument from caller’s frame
 subi $s1,$s0,1
 sw $s1,0($sp) // store (argument-1) to frame
 jal fact // recursive call
 lw $s1,-4($sp) // read return value from frame
 mul $s1,$s1,$s0 // multiply
 …
 lw $2,116($sp) // restore all 32 registers
 lw $1,120($sp)
 lw $ra,124($sp)
 sw $s1,124($sp) // return value below caller’s frame
 addi $sp,$sp,128 // collapse frame
 jr $ra // return

Note: code
ignores base
case of
recursion
(should return
1 if arg==1)

© 2012 Daniel J. Sorin
from Roth and Lebeck 38

MIPS Calls and Register Convention

•  Some inefficiencies with basic frame mechanism
•  Registers: do all need to be saved/restored on every call/return?
•  Arguments: must all be passed on stack?
•  Returned values: are these also communicated via stack?
•  No! Fix with register convention

$2,$3($v0,$v1): expression evaluation and return values
$4-$7($a0-$a3): function arguments
$8-$15,$24,$25($t0-$t9): caller saved temporaries

•  A saves before calling B only if needed after B returns
$16-$23($s0-$s7): callee saved

•  A needs after B returns, B saves if it uses also
•  We’ll discuss complete set of MIPS registers and conventions soon

© 2012 Daniel J. Sorin
from Roth and Lebeck 39

MIPS Factorial: Take II (Using Conventions)
fact: addi $sp,$sp,-8 // open frame (2 words)
 sw $ra,4($sp) // save return address
 sw $s0,0($sp) // save $s0
 …
 add $s0,$a0,$0 // copy $a0 to $s0
 subi $a0,$a0,1 // pass arg via $a0
 jal fact // recursive call
 mul $v0,$s0,$v0 // value returned via $v0
 …
 lw $s0,0($sp) // restore $s0
 lw $ra,4($sp) // restore $ra
 addi $sp,$sp,8 // collapse frame
 jr $ra // return, value in $v0

+  Pass/return values via $a0-$a3 and $v0-$v1 rather than stack
+  Save/restore 2 registers ($s0,$ra) rather than 31 (excl. $0)

© 2012 Daniel J. Sorin
from Roth and Lebeck 40

Control Idiom: Call by Reference

•  Passing arguments
•  By value: pass contents [$sp+4] in $a0
 int n; // n in 4($sp)
 foo(n);
 lw $a0,4(sp)
 jal foo

•  By reference: pass address $sp+4 in $a0
 int n; // n in 4($sp)
 bar(&n);
 add $a0,$sp,4
 jal bar

© 2012 Daniel J. Sorin
from Roth and Lebeck 41

Instructions and Pseudo-Instructions

•  Assembler helps give compiler illusion of regularity
•  Processor does not implement all possible instructions
•  Assembler accepts all insns, but some are pseudo-insns

• Assembler translates these into native insn (insn sequences)
•  MIPS example #1

sgt $s3,$s1,$s2 // set $s3=1 if $s1>$s2

slt $s3,$s2,$s1 // set $s3=1 if $s2<$s1

•  MIPS example #2
div $s1,$s2,$s3 // want div to put result in $s1

div $s1,$s2,$s3 // div puts result in $lo
mflo $s1 // move it from $lo to $s1

© 2012 Daniel J. Sorin
from Roth and Lebeck 42

Outline

•  ISAs in General
•  MIPS Assembly Programming
•  Other Instruction Sets

© 2012 Daniel J. Sorin
from Roth and Lebeck 43

But first: SPIM

•  SPIM is a program that simulates the behavior of MIPS32
computers
•  Can run MIPS32 assembly language programs
•  You will use SPIM to run/test the assembly language programs you

write for homeworks in this class

•  Two flavors of same thing:
•  spim: command line interface
•  xspim: xwindows interface

© 2012 Daniel J. Sorin
from Roth and Lebeck 44

MIPS Assembly Language

•  One instruction per line
•  Numbers are base-10 integers or Hex with leading 0x
•  Identifiers: alphanumeric, _, . string starting in a letter or _
•  Labels: identifiers starting at the beginning of a line

followed by “:”
•  Comments: everything following # until end-of-line
•  Instruction format: Space and “,” separated fields

•  [Label:] <op> reg1, [reg2], [reg3] [# comment]
•  [Label:] <op> reg1, offset(reg2) [# comment]
•  .Directive [arg1], [arg2], . . .

© 2012 Daniel J. Sorin
from Roth and Lebeck 45

MIPS Pseudo-Instructions

•  Pseudo-instructions: extend the instruction set for convenience
•  Examples

•  move $2, $4 # $2 = $4, (copy $4 to $2)
Translates to:
add $2, $4, $0

•  li $8, 40 # $8 = 40, (load 40 into $8)
addi $8, $0, 40

•  sd $4, 0($29) # mem[$29] = $4; Mem[$29+4] = $5
sw $4, 0($29)
sw $5, 4($29)

•  la $4, 0x1000056c # Load address $4 = <address>
lui $4, 0x1000 # load upper immediate (lui)
ori $4, $4, 0x056c # or immediate (ori)

© 2012 Daniel J. Sorin
from Roth and Lebeck 46

Assembly Language (cont.)

•  Directives: tell the assembler what to do
•  Format “.”<string> [arg1], [arg2] . . .

•  Examples

.data [address] # start a data segment

.text [address] # start a code segment

.align n # align segment on 2n byte boundary

.ascii <string> # store a string in memory

.asciiz <string> # store null-terminated string in memory

.word w1, w2, . . . , wn # store n words in memory

 Let’s see how these get used in programs …

© 2012 Daniel J. Sorin
from Roth and Lebeck 47

A Simple Program

•  Add two numbers x and y:
 .text # declare text segment
 .align 2 # align it on 4-byte (word) boundary

main: # label for main
 la $3, x # load address of x into R3 (pseudo-inst)
 lw $4, 0($3) # load value of x into R4
 la $3, y # load address of y into R3 (pseudo-inst)
 lw $5, 0($3) # load value of y into R5
 add $6, $4, $5 # compute x+y
 jr $31 # return to calling routine

 .data # declare data segment
 .align 2 # align it on 4-byte boundary

x: .word 10 # initialize x to 10
y: .word 3 # initialize y to 3 Note: program

doesn’t obey register
conventions

© 2012 Daniel J. Sorin
from Roth and Lebeck 48

Another example: The C / C++ code

#include <iostream.h>

int main ()
{
 int i;
 int sum = 0;
 for(i=0; i <= 100; i++)
 sum = sum + i*i ;
 cout << “The answer is “ << sum << endl;

}

Let’s write the assembly …

© 2012 Daniel J. Sorin
from Roth and Lebeck 49

 .text
 .align 2

main:
 move $14, $0 # i = 0
 move $15, $0 # tmp = 0
 move $16, $0 # sum = 0

loop:
 mul $15, $14, $14 # tmp = i*i
 add $16, $16, $15 # sum = sum + tmp
 addi $14, $14, 1 # i++
 ble $14, 100, loop # if i < 100, goto loop

how are we going to print the answer here?
and how are we going to exit the program?

Assembly Language Example 1

© 2012 Daniel J. Sorin
from Roth and Lebeck 50

•  System call is used to communicate with the operating
system and request services (memory allocation, I/O)
•  syscall instruction in MIPS

•  SPIM supports “system-call-like”
1.  Load system call code into register $v0

•  Example: if $v0==1, then syscall will print an integer

2.  Load arguments (if any) into registers $a0, $a1, or $f12
(for floating point)

3.  syscall
•  Results returned in registers $v0 or $f0

System Call Instruction

© 2012 Daniel J. Sorin
from Roth and Lebeck 51

SPIM System Call Support

code service ArgType Arg/Result
1 print int $a0
2 print float $f12
3 print double $f12
4 print string $a0 (string address)
5 read integer integer in $v0
6 read float float in $f0
7 read double double in $f0 & $f1
8 read string $a0=buffer, $a1=length
9 sbrk $a0=amount address in $v0
10 exit

© 2012 Daniel J. Sorin
from Roth and Lebeck 52

Echo number and string

.text
main:
 li $v0, 5 # code to read an integer
 syscall # do the read (invokes the OS)
 move $a0, $v0 # copy result from $v0 to $a0

 li $v0, 1 # code to print an integer
 syscall # print the integer

 li $v0, 4 # code to print string
 la $a0, nln # address of string (newline)
 syscall

code continues on next slide …

© 2012 Daniel J. Sorin
from Roth and Lebeck 53

Echo Continued

 li $v0, 8 # code to read a string
 la $a0, name # address of buffer (name)
 li $a1, 8 # size of buffer (8 bytes)
 syscall

 la $a0, name # address of string to print
 li $v0, 4 # code to print a string
 syscall

 jr $31 # return

 .data
 .align 2

name: .word 0,0
nln: .asciiz "\n"

© 2012 Daniel J. Sorin
from Roth and Lebeck 54

Review: Procedure Call and Return

int equal(int a1, int a2
{
 int tsame;
 tsame = 0;
 if (a1 == a2)
 tsame = 1;
return(tsame);

}
main()
{
 int x,y,same;

 x = 43;
 y = 2;
 same = equal(x,y);
 // other computation

}

 PC $ra=$31
0x10000 ??
0x10004 ??
0x10008 ??
0x30408 0x1000c
0x3040c 0x1000c
0x30410 0x1000c
0x30414 0x1000c
0x1000c 0x1000c

addi $v0,$0,0 0x30408
0x3040c bne $a0,$a1,4

addi $v0,$0,1 0x30410
jr $ra

addi $a0,$0,43
addi $a1,$0,2
jal 0x30408

0x10000
0x10004
0x10008

0x30414

0x1000c ??

© 2012 Daniel J. Sorin
from Roth and Lebeck 55

Procedure Call Gap

ISA Level
•  Call and return instructions
C/C++ Level
•  Local name scope

•  Change tsame to same

•  Recursion
•  Arguments and return value (functions)
Assembly Level
•  Must bridge gap between HLL and ISA
•  Supporting local names
•  Passing arguments (arbitrary number?)

© 2012 Daniel J. Sorin
from Roth and Lebeck 56

Review: Procedure Call (Stack) Frame

•  Procedures use a frame in the stack to:
•  Hold values passed to procedures as arguments
•  Save registers that the callee procedure may modify, but which the

procedure’s caller does not want changed
•  To provide space for local variables

 (variables with local scope)
•  To evaluate complex expressions

© 2012 Daniel J. Sorin
from Roth and Lebeck 57

FP
Callee Save
Registers

Local Variables

SP

Arguments and
local variables at
fixed offset from FP

Grows and shrinks during
expression evaluation

(old FP, RA)

High Mem

Low Mem

Dynamic area

Argument 5
Argument 6

MIPS Call-Return Linkage: Stack Frames

© 2012 Daniel J. Sorin
from Roth and Lebeck 58

0 zero constant

1 at reserved for assembler

2 v0 expression evaluation &

3 v1 function results

4 a0 arguments

5 a1

6 a2

7 a3

8 t0 temporary: caller saves

. . .

15 t7

16 s0 callee saves

. . .

23 s7

24 t8 temporary (cont’d)

25 t9

26 k0 reserved for OS kernel

27 k1

28 gp pointer to global area

29 sp Stack pointer

30 fp frame pointer

31 ra return address

MIPS Register Naming Conventions

© 2012 Daniel J. Sorin
from Roth and Lebeck 59

MIPS/GCC Procedure Calling Conventions

Calling Procedure
•  Step-1: Pass the arguments

•  First four arguments (arg0-arg3) are passed in registers $a0-$a3
•  Remaining arguments are pushed onto the stack
 (in reverse order, arg5 is at the top of the stack)

•  Step-2: Save caller-saved registers
•  Save registers $t0-$t9 if they contain live values at the call site

•  Step-3: Execute a jal instruction

© 2012 Daniel J. Sorin
from Roth and Lebeck 60

MIPS/GCC Procedure Calling Conventions (cont.)

Called Routine
•  Step-1: Establish stack frame

•  Subtract the frame size from the stack pointer
 subiu $sp, $sp, <frame-size>

•  Typically, minimum frame size is 32 bytes (8 words)
•  Step-2: Save callee saved registers in the frame

•  Register $fp is always saved (by convention)
•  Register $ra is saved if routine makes a call
•  Registers $s0-$s7 are saved if they are used

•  Step-3: Establish frame pointer
•  Add the stack <frame size> - 4 to the address in $sp

 addiu $fp, $sp, <frame-size> - 4

© 2012 Daniel J. Sorin
from Roth and Lebeck 61

MIPS/GCC Procedure Calling Conventions (cont.)

On return from a call
•  Step-1: Put returned values in registers $v0 and $v1

 (if values are returned)
•  Step-2: Restore callee-saved registers

•  Restore $fp and other saved registers: $ra, $s0 - $s7

•  Step-3: Pop the stack
•  Add the frame size to $sp

 addiu $sp, $sp, <frame-size>

•  Step-4: Return
•  Jump to the address in $ra

 jr $ra

© 2012 Daniel J. Sorin
from Roth and Lebeck 62

Example2 (will not cover in class)
Program to add together list of 9 numbers
 .text # Code
 .align 2
 .globl main
main: # MAIN procedure Entrance
 subu $sp, 40 #\ Push the stack
 sw $ra, 36($sp) # \ Save return address
 sw $s3, 32($sp) # \
 sw $s2, 28($sp) # > Entry Housekeeping
 sw $s1, 24($sp) # / save registers on

stack
 sw $s0, 20($sp) # /
 move $v0, $0 #/ initialize exit code to 0
 move $s1, $0 #\
 la $s0, list # \ Initialization
 la $s2, msg # /
 la $s3, list+36 #/

© 2012 Daniel J. Sorin
from Roth and Lebeck 63

Example2 (cont.)
Main code segment

again: # Begin main loop
 lw $t6, 0($s0) #\
 addu $s1, $s1, $t6 #/ Actual "work"
 # SPIM I/O
 li $v0, 4 #\
 move $a0, $s2 # > Print a string
 syscall #/
 li $v0, 1 #\
 move $a0, $s1 # > Print a number
 syscall #/
 li $v0, 4 #\
 la $a0, nln # > Print a string (eol)
 syscall #/

 addu $s0, $s0, 4 #\ index update and
 bne $s0, $s3, again #/ end of loop

© 2012 Daniel J. Sorin
from Roth and Lebeck 64

Example2 (cont.)
Exit Code

 move $v0, $0 #\
 lw $s0, 20($sp) # \
 lw $s1, 24($sp) # \
 lw $s2, 28($sp) # \ Closing Housekeeping
 lw $s3, 32($sp) # / restore registers
 lw $ra, 36($sp) # / load return address
 addu $sp, 40 # / Pop the stack
 jr $ra #/ exit(0) ;
 .end main # end of program

Data Segment

 .data # Start of data segment
list: .word 35, 16, 42, 19, 55, 91, 24, 61, 53
msg: .asciiz "The sum is "
nln: .asciiz "\n"

© 2012 Daniel J. Sorin
from Roth and Lebeck 65

Some Details/Quirks of the MIPS ISA

•  Register zero always has the value zero
•  Even if you try to write it!

•  jal puts the return address PC+4 into the link register ($ra)
•  All instructions change all 32 bits of the destination register

(lui, lb, lh) and read all 32 bits of sources (add, sub, and, or,
…)

•  Immediate arithmetic and logical instructions are extended
as follows:

•  logical immediates are zero-extended to 32 bits
•  arithmetic immediates are sign-extended to 32 bits

•  lb and lh extend data as follows:
•  lbu, lhu are zero extended
•  lb, lh are sign extended

© 2012 Daniel J. Sorin
from Roth and Lebeck 66

Outline

•  Instruction Sets in General
•  MIPS Assembly Programming
•  Other Instruction Sets

•  Goals of ISA Design
•  RISC vs. CISC
•  Intel x86 (IA-32)

© 2012 Daniel J. Sorin
from Roth and Lebeck 67

What Makes a Good ISA?

•  Programmability
•  Easy to express programs efficiently?

•  Implementability
•  Easy to design high-performance implementations (i.e.,

microarchitectures)?

•  Compatibility
•  Easy to maintain programmability as languages and programs

evolve?
•  Easy to maintain implementability as technology evolves?

© 2012 Daniel J. Sorin
from Roth and Lebeck 68

Programmability

•  Easy to express programs efficiently?
•  For whom?

•  Human
•  Want high-level coarse-grain instructions

•  As similar to HLL as possible
•  This is the way ISAs were pre-1985

•  Compilers were terrible, most code was hand-assembled

•  Compiler
•  Want low-level fine-grain instructions

•  Compiler can’t tell if two high-level idioms match exactly or not
•  This is the way most post-1985 ISAs are

•  Optimizing compilers generate much better code than humans
•  ICQ: Why are compilers better than humans?

© 2012 Daniel J. Sorin
from Roth and Lebeck 69

Implementability

•  Every ISA can be implemented
•  But not every ISA can be implemented well
•  Bad ISA à bad microarchitecture (slow, power-hungry, etc.)

•  We’d like to use some of these high-performance
implementation techniques
•  Pipelining, parallel execution, out-of-order execution
•  We’ll discuss these later in the semester

•  Certain ISA features make these difficult
•  Variable length instructions
•  Implicit state (e.g., condition codes)
•  Wide variety of instruction formats

© 2012 Daniel J. Sorin
from Roth and Lebeck 70

Compatibility

•  Few people buy new hardware … if it means they have to
buy new software, too
•  Intel was the first company to realize this
•  ISA must stay stable, no matter what (microarch. can change)

•  x86 is one of the ugliest ISAs EVER, but survives
•  Intel then forgot this lesson: IA-64 (Itanium) is new ISA

•  Backward compatibility: very important
•  New processors must support old programs (can’t drop features)

•  Forward (upward) compatibility: less important
•  Old processors must support new programs

•  New processors only re-define opcodes that trapped in old ones
•  Old processors emulate new instructions in low-level software

© 2012 Daniel J. Sorin
from Roth and Lebeck 71

Compatibility in the Age of VMs

•  Virtual machine (VM): piece of software that emulates
behavior of hardware platform
•  Examples: VMWare, Xen, Simics

•  VM emulates target system while running on host system
•  Key: host and target ISAs do not have to be the same!
•  Example: On my x86 desktop, I can run VM that emulates MIPS

processor
•  ICQ: Is SPIM a VM?

•  Upshot: you can run code of target ISA on host with different ISA
à don’t need to buy x86 box to run legacy x86 code

•  Very cool technology that’s commonly used
•  ICQ: given a VM, does ISA compatibility really matter?
•  More details on VMs in ECE 252

© 2012 Daniel J. Sorin
from Roth and Lebeck 72

RISC vs. CISC

•  RISC: reduced-instruction set computer
•  Coined by P+H in early 80’s (ideas originated earlier)

•  CISC: complex-instruction set computer
•  Not coined by anyone, term didn’t exist before “RISC”

•  Religious war (one of several) started in mid 1980’s
•  RISC (MIPS, Alpha, Power) “won” the technology battles
•  CISC (IA32 = x86) “won” the commercial war

•  Compatibility a stronger force than anyone (but Intel) thought
•  Intel beat RISC at its own game … more on this soon

© 2012 Daniel J. Sorin
from Roth and Lebeck 73

The Setup

•  Pre-1980
•  Bad compilers
•  Complex, high-level ISAs
•  Slow, complicated, multi-chip microarchitectures

•  Around 1982
•  Advances in VLSI made single-chip microprocessor possible…

•  Speed by integration, on-chip wires much faster than off-chip
•  …but only for very small, very simple ISAs
•  Compilers had to get involved in a big way

•  RISC manifesto: create ISAs that…
•  Simplify single-chip implementation
•  Facilitate optimizing compilation

© 2012 Daniel J. Sorin
from Roth and Lebeck 74

The RISC Tenets

•  Single-cycle execution (simple operations)
•  CISC: many multi-cycle operations

•  Load/store architecture
•  CISC: register-memory and memory-memory instructions

•  Few memory addressing modes
•  CISC: many modes

•  Fixed instruction format
•  CISC: many formats and lengths

•  Reliance on compiler optimizations
•  CISC: hand assemble to get good performance

Summary

(1)  Make it easy to implement in hardware

(2)  Make it easy for compiler to generate code

© 2012 Daniel J. Sorin
from Roth and Lebeck 75

PowerPC ISA à POWER ISA

•  RISC-y, very similar to MIPS
•  Some differences:

•  Indexed addressing mode (register+register)
• lw $t1,$a0,$s3 # $t1 = mem[$a0+$s3]

•  Update addressing mode
• lw $t1,4($a0) # $t1 = mem[$a0+4]; $a0 += 4;

•  Dedicated counter register
• bc loop # ctr--; branch to loop if ctr != 0

•  In general, though, similar to MIPS

© 2012 Daniel J. Sorin
from Roth and Lebeck 76

Intel 80x86 ISA (aka x86 or IA-32)

•  Binary compatibility across generations
•  1978: 8086, 16-bit, registers have dedicated uses
•  1980: 8087, added floating point (stack)
•  1982: 80286, 24-bit
•  1985: 80386, 32-bit, new instrs à GPR almost
•  1989-95: 80486, Pentium, Pentium II
•  1997: Added MMX instructions (for graphics)
•  1999: Pentium III
•  2002: Pentium 4
•  2004: “Nocona” 64-bit extension (to keep up with AMD)
•  2006: Core2
•  2007: Core2 Quad

© 2012 Daniel J. Sorin
from Roth and Lebeck 77

Intel x86: The Penultimate CISC

•  DEC VAX was ultimate CISC, but x86 (IA-32) is close
•  Variable length instructions: 1-16 bytes
•  Few registers: 8 and each one has a special purpose
•  Multiple register sizes: 8,16,32 bit (for backward compatibility)
•  Accumulators for integer instrs, and stack for FP instrs
•  Multiple addressing modes: indirect, scaled, displacement
•  Register-register, memory-register, and memory-register insns
•  Condition codes
•  Instructions for memory stack management (push, pop)
•  Instructions for manipulating strings (entire loop in one instruction)

•  Summary: yuck!

© 2012 Daniel J. Sorin
from Roth and Lebeck 78

80x86 Registers and Addressing Modes

•  Eight 32-bit registers (not truly general purpose)
•  EAX, ECX, EDX, EBX, ESP, EBP, ESI, EDI

•  Six 16-bit registers for code, stack, & data
•  2-address ISA

•  One operand is both source and destination

•  NOT a Load/Store ISA
•  One operand can be in memory

© 2012 Daniel J. Sorin
from Roth and Lebeck 79

80x86 Addressing Modes

•  Register Indirect
•  mem[reg]
•  not ESP or EBP register

•  Base + displacement (8 or 32 bit)
•  mem[reg + const]
•  not ESP or EBP

•  Base + scaled index
•  mem[reg + (2scale x index)]
•  scale = 0,1,2,3
•  base any GPR, index not ESP

•  Base + scaled index + displacement
•  mem[reg + (2scale x index) + displacement]
•  scale = 0,1,2,3
•  base any GPR, index not ESP

© 2012 Daniel J. Sorin
from Roth and Lebeck 80

Condition Codes

•  Both Power ISA and x86 ISA have condition codes
•  Special HW register that has values set as side effect of

instruction execution
•  Example conditions

•  Zero
•  Negative

•  Example use
subi $t0, $t0, 1
bz loop // branch to loop if result of previous instruction is zero

© 2012 Daniel J. Sorin
from Roth and Lebeck 81

80x86 Instruction Encoding

•  Variable size 1-byte to 17-bytes
•  Examples

•  Jump (JE) 2-bytes
•  Push 1-byte
•  Add Immediate 5-bytes

•  W bit says 32-bits or 8-bits
•  D bit indicates direction

•  memory à reg or reg à memory
•  movw EBX, [EDI + 45]
•  movw [EDI + 45], EBX

© 2012 Daniel J. Sorin
from Roth and Lebeck 82

Decoding x86 Instructions

•  Is a &$%!# nightmare!
•  Instruction length is variable from 1 to 17 bytes
•  Crazy “formats” à register specifiers move around
•  But key instructions not terrible
•  Yet, everything must work correctly

© 2012 Daniel J. Sorin
from Roth and Lebeck 83

How Intel Won Anyway

•  x86 won because it was the first 16-bit chip by 2 years
•  IBM put it into its PCs because there was no competing choice
•  Rest is historical inertia and “financial feedback”

•  x86 is most difficult ISA to implement and do it fast but…
•  Because Intel (and AMD) sells the most processors…
•  It has the most money…
•  Which it uses to hire more and better engineers…
•  Which it uses to maintain competitive performance …
•  And given equal performance compatibility wins…
•  So Intel (and AMD) sells the most processors…

•  Moore’s law has helped Intel in a big way
•  Most engineering problems can be solved with more transistors

© 2012 Daniel J. Sorin
from Roth and Lebeck 84

Current Approach: Pentium Pro and beyond

•  Instruction decode logic translates into µops
•  Fixed-size instructions moving down execution path
•  Execution units see only µops
+  Faster instruction processing with backward compatibility
+  Execution unit as fast as RISC machines like MIPS
–  Complex decoding
–  We work with MIPS to keep decoding simple/clean
–  Learn x86 on the job!

Learn exactly how this all works in ECE 252

© 2012 Daniel J. Sorin
from Roth and Lebeck 85

Aside: Complex Instructions

•  More powerful instructions à not necessarily faster
execution

•  E.g., string copy or polynomial evaluation

•  Option 1: use “repeat” prefix on memory-memory move
inst

•  Custom string copy
•  Option 2: use a loop of loads and stores through registers

•  General purpose move through simple instructions

•  Option 2 is often faster on same machine

© 2012 Daniel J. Sorin
from Roth and Lebeck 86

Concluding Remarks

1.  Keep it simple and regular
•  Uniform length instructions
•  Fields always in same places

2.  Keep it simple and fast
•  Small number of registers

3.  Make sure design can be pipelined (will learn soon)
4.  Make the common case fast

•  Compromises inevitable à there is no perfect ISA

© 2012 Daniel J. Sorin
from Roth and Lebeck 87

Outline

•  Instruction Sets in General
•  MIPS Assembly Programming
•  Other Instruction Sets

