ECE 152 / 496 Introduction to Computer Architecture Arithmetic and ALU Design Benjamin C. Lee Duke University

> Slides from Daniel Sorin (Duke) and are derived from work by Amir Roth (Penn) and Alvy Lebeck (Duke)

## Where We Are in This Course Right Now

- So far:
  - We know what a computer architecture is
  - We know what kinds of instructions it might execute
- Now:
  - We learn how to perform many of the most important instructions
    - Computers spend lots of time doing arithmetic and logical ops
  - Examples: add, subtract, multiply, divide, shift, rotate, load, store
  - We develop hardware for arithmetic logic unit (ALU)
- Next:
  - We learn how the computer uses and controls the ALU
  - Lots of stuff in computer besides the ALU
    - E.g., Logic to fetch and decode instructions, memory, etc.

# This Unit: Arithmetic and ALU Design



You are here!

- Integer Arithmetic and ALU
  - Binary number representations
  - Addition and subtraction
  - Integer ALU
  - Shifting and rotating
  - Multiplication
  - Division
- Floating Point Arithmetic
  - Binary number representations
  - FP arithmetic
  - Accuracy

# Readings

- Patterson and Hennessy textbook
  - Chapter 3

### **Review: Fixed Width**

- You' ve seen much of the upcoming material in ECE 52 if none of this looks familiar, please talk with me ...
- In hardware, integers have **fixed width** 
  - N bits: 16, 32, or 64
  - LSB is 2<sup>0</sup>, MSB is 2<sup>N-1</sup>
  - **Unsigned number range**: 0 to 2<sup>N</sup>-1
  - Numbers  $>2^{N}$  represented using multiple fixed-width integers
    - In software
    - ICQ: What happens when your C++ code specifies an integer greater than this max? What does compiler do?

## Review: Two's Complement

- What about negative numbers?
  - Option I: **sign/magnitude** 
    - Unsigned binary plus one bit for sign

 $10_{10} = 000001010, -10_{10} = 100001010$ 

- Two representations for zero (0 and –0 are different)
- Addition in hardware is difficult
- Number range: -(2<sup>N-1</sup>-1) to 2<sup>N-1</sup>-1
- + Matches our intuition from "by hand" decimal arithmetic
- Option II: two's complement (TC)
  - leading 0s mean positive number, leading 1s negative

 $10_{10} = 00001010, -10_{10} = 11110110$ 

+ One representation for 0

+ Easy addition in hardware

• **Number range**:  $-(2^{N-1})$  to  $2^{N-1}-1 \rightarrow$  not symmetric

#### Review: Still More On TC

- What is the interpretation of TC?
  - Same as binary, except **MSB represents** –2<sup>N-1</sup>, not 2<sup>N-1</sup>
    - $-10 = 11110110 = -2^7 + 2^6 + 2^5 + 2^4 + 2^2 + 2^1$
  - + Works with any width
    - $-10 = 110110 = -2^5 + 2^4 + 2^2 + 2^1$
    - Why?  $2^{N} = 2 * 2^{N-1}$
    - $-2^5+2^4+2^2+2^1 = (-2^6+2^*2^5)-2^5+2^4+2^2+2^1 = -2^6+2^5+2^4+2^2+2^1$
- Trick to negating a number quickly: -B = B' + 1
  - -(1) = (0001)' + 1 = 1110 + 1 = 1111 = -1
  - -(-1) = (1111)' + 1 = 0000 + 1 = 0001 = 1
  - -(0) = (0000)' + 1 = 1111 + 1 = 0000 = 0
  - Think about why this works (on your own time)

# Review (way back!): Decimal Addition

• Remember decimal addition from 1st grade?

1

43

- +29
- 72
- Repeat N times
  - Add least significant digits and any overflow from previous add
  - Carry the overflow to next addition
    - Overflow: any digit other than least significant of sum
  - Shift two addends and sum one digit to the right
- Sum of two N-digit numbers can yield an N+1 digit number

#### **Review: Binary Addition**

- Binary addition works the same way
  - 1 111111
  - 43 = 00101011
  - +29 = 00011101
    - 72 = 01001000
  - Repeat N times
    - Add least significant bits and any overflow from previous add
    - Carry the overflow to next addition
    - Shift two addends and sum one bit to the right
  - Sum of two N-bit numbers can yield an N+1 bit number
  - More steps (smaller base)
  - + Each one is simpler (adding just 1 and 0)
    - So simple we can do it in hardware

### **Review: The Half Adder**

- How to add two binary integers in hardware?
- Start with adding two bits
  - When all else fails ... look at truth table

| <u>A</u> | В | = | <u>C</u> 0 | S |
|----------|---|---|------------|---|
| 0        | 0 | = | 0          | 0 |
| 0        | 1 | = | 0          | 1 |
| 1        | 0 | = | 0          | 1 |
| 1        | 1 | = | 1          | 0 |

- $S = A \oplus B$  (A XOR B)
- C<sub>o</sub> (carry out) = AB
- This is called a **half adder**



#### Review: The Full Adder

- We could chain half adders together, but to do that...
  - Need to incorporate a carry out from previous adder
  - Let's look at the truth table



- $C_0 = C_T AB + C_T AB + C_T AB + C_T AB + C_T AB = C_T A + C_T B + AB$
- This is a full adder 
   → ICQ: what is its delay (in #gates)?

## A 16-bit Adder

- Simple 16-bit adder
  - 16 1-bit full adders "chained" together
    - $CO_0 = CI_1, CO_1 = CI_2, etc.$
    - $CI_0 = 0$ ,  $CO_{15}$  is carry-out of entire adder
      - $CO_{15} = 1 \rightarrow$  "overflow"
- Design called **ripple-carry**: how fast is it?
  - In terms of **gate delays** (longest gate path)
    - Longest path is to CO<sub>15</sub> (or S<sub>15</sub>)
  - $d(CO_{15}) = 2 + MAX\{d(A_{15}), d(B_{15}), d(CI_{15})\}$ 
    - $d(A_{15}) = d(B_{15}) = 0$ ,  $d(CI_{15}) = d(CO_{14})$
  - $d(CO_{15}) = 2 + d(CO_{14}) = 2 + 2 + d(CO_{13}) \dots$
  - d(CO<sub>15</sub>) = 32
  - 2N = slow!



## A Faster (16-bit) Adder

- One option: carry-select adder
  - Do  $A_{15-8}+B_{15-8}$  twice, once assuming  $CI_8$  (CO<sub>7</sub>) = 0, then once = 1
  - Choose the right one when CO<sub>7</sub> finally becomes available
  - + Effectively cuts carry chain in half
  - But adds 8b adder and mux







#### How Fast Is the Faster Adder?

- $d(CO_{15}) = max\{d(CO_{15-8}), d(CO_{7-0})\} + 2$  (+2 is for mux)
- $d(CO_{15}) = max\{2*8, 2*8\} + 2 = 18$  (2N delay for 8bit add)
- For dividing N-bit adder into 2 parts: 2\*(N/2) + 2 = N+2
- What if we broke up 16b adder into 4 parts?
  - Would delay be 2\*(N/4) + 2 = 10? Not quite!
  - $d(CO_{15}) = max\{d(CO_{15-12}), d(CO_{11-0})\} + 2$
  - $d(CO_{15}) = max\{2*4, max\{d(CO_{11-8}), d(CO_{7-0})\} + 2\} + 2$
  - $d(CO_{15}) = max\{2*4, max\{2*4, max\{d(CO_{7-4}), d(CO_{3-0})\}+2\}+2\}+2\}+2$
  - $d(CO_{15}) = max\{2*4, max\{2*4, max\{2*4, 2*4\} + 2\} + 2\} + 2\}$
  - $d(CO_{15}) = 2*4 + 3*2 = 14$
- In general, N-bit adder in M pieces: 2\*(N/M) + (M-1)\*2
  - 16-bit adder in 8 parts: 2\*(16/8) + 7\*2 = 18 > 14 ???!

### **Another Option**

- Is the piece-wise faster adder as fast as we can go?
  - No!
- Another approach to using additional resources
  - Instead of redundantly computing sums assuming different carries, use redundancy to compute carries more quickly
    - This approach is called carry lookahead addition (CLA)

## Review: Carry Lookahead Addition (CLA)

- Let's look at the carry function
  - $C_{16} = CO_{15} = A_{15}B_{15} + A_{15}C_{15} + B_{15}C_{15} = (A_{15}B_{15}) + (A_{15} + B_{15})C_{15}$
- Very important insights into CLA:
  - $(A_{15}B_{15})$  generates a carry regardless of  $C_{15} \rightarrow$  rename to  $g_{15}$
  - $(A_{15}+B_{15})$  propagates  $C_{15} \rightarrow$  rename to  $p_{15}$
  - $C_{16} = g_{15} + p_{15}C_{15}$
  - $C_{16} = g_{15} + p_{15}(g_{14} + p_{14}C_{14})$
  - $C_{16} = g_{15} + p_{15}g_{14} + p_{15}p_{14}(g_{13} + p_{13}C_{13})$
  - $C_{16} = g_{15} + p_{15}g_{14} + ... + p_{15}p_{14}...p_2p_1g_0 + p_{15}p_{14}...p_2p_1p_0p_0$ 
    - Important note: can compute C<sub>16</sub> in 2 levels of logic!
  - Similar functions for C<sub>15</sub> (=CO<sub>14</sub>), etc.
    - In general:  $C_i = g_{i-1} + p_{i-1}C_{i-1}$

#### **Infinite Carry Lookahead**

- Previous slide's CLA functions assume "infinite" hardware
  - Performance? Critical path is d(S<sub>15</sub>) = ?
    - $d(p_{14}, g_{14}) + d(c_{15} \text{ given } p_{14}, g_{14}) + d(S_{15} \text{ given } c_{15}) = 1 + 2 + 2 = 5 !!$
    - Constant delay, i.e., not a function of N
  - But not very practical in terms of hardware
  - Assume 2N gates to compute p<sub>i</sub> and g<sub>i</sub> initially (ICQ: why 2N?)
  - Computation of a single  $C_N$  needs the following hardware:
    - N AND gates + 1 OR gate, and largest gates have N+1 inputs
  - Computation of all C<sub>N</sub>...C<sub>1</sub> needs:
    - N\*(N+1)/2 AND gates + N OR gates, max N+1 inputs
  - Not too bad if N=16: 152 gates, max input 17
  - Pretty bad if N=64: 2144 gates, max input 65
  - Big circuits are slow and high input gates are slow

## Motivation for Multi-Level Carry Lookahead

- Let's look at what we have so far (the two extremes)
  - Ripple carry
    - + Few small gates: no additional gates used to speed up addition
    - Logic in series: 2N latency
  - Infinite CLA
    - Many big gates: N\*(N+3)/2 additional gates, max N+1 inputs
      + Logic in parallel: constant latency of 5 gate delays
  - We'd like something in between
    - Reasonable number of small gates
    - Sub-linear (doesn't have to be constant) latency
  - Multi-level CLA
    - Exploits hierarchy to achieve good compromise between the two extremes

#### **Two-Level CLA for 4-bit Adder**

- Individual carry equations
  - $C_1 = g_0 + p_0 C_0$ ,  $C_2 = g_1 + p_1 C_1$ ,  $C_3 = g_2 + p_2 C_2$ ,  $C_4 = g_3 + p_3 C_3$
- Fully expanded (infinite hardware) CLA equations
  - $C_1 = g_0 + p_0 C_0$
  - $C_2 = g_1 + p_1 g_0 + p_1 p_0 C_0$
  - $C_3 = g_2 + p_2 g_1 + p_2 p_1 g_0 + p_2 p_1 p_0 C_0$
  - $C_4 = g_3 + p_3 g_2 + p_3 p_2 g_1 + p_3 p_2 p_1 g_0 + p_3 p_2 p_1 p_0 C_0$
- Hierarchical CLA equations
  - **First level**: expand C<sub>2</sub> using C<sub>1</sub> and C<sub>4</sub> using C<sub>3</sub>
    - $C_2 = g_1 + p_1(g_0 + p_0C_0) = (g_1 + p_1g_0) + (p_1p_0)C_0 = G_{1-0} + P_{1-0}C_0$
    - $C_4 = g_3 + p_3(g_2 + p_2C_2) = (g_3 + p_3g_2) + (p_3p_2)C_2 = G_{3-2} + P_{3-2}C_2$
  - Second level: expand C<sub>4</sub> using expanded C<sub>2</sub>
    - $C_4 = G_{3-2} + P_{3-2}(G_{1-0} + P_{1-0}C_0) = (G_{3-2} + P_{3-2}G_{1-0}) + (P_{3-2}P_{1-0})C_0$
    - $C_4 = G_{3-0} + P_{3-0}C_0$

© 2012 Daniel J. Sorin from Roth and Lebeck

ECE 152

## Two-Level (2L) CLA for 4-bit Adder

- Hardware?
  - First level: block is infinite CLA for N=2
    - 5 gates per block, max # gate inputs (MNGI)=3
    - 2 of these "blocks"
  - Second level: 1 of these "blocks"
  - Total: 15 gates & 3 MNGI
    - Infinite CLA: 14 & 5 (?!)
- Latency?
  - Total: 9 (ICQ: why?)
    - Infinite CLA: 5
- 2 level: bigger and slower??!
  - ICQ: what happened?

 $\mathbf{C}_{0}$  $S_0$  $A_0$  $G_0$ B C<sub>1</sub> G<sub>1-0</sub> P<sub>1-0</sub>  $S_1$ A<sub>1</sub> B<sub>1</sub> G<sub>3-0</sub>  $C_{2}$ P<sub>3-0</sub>  $S_2$  $A_2$ B G<sub>3-2</sub>  $C_3$ P<sub>3-2</sub>  $S_3$  $G_3$  $A_3$  $B_3$  $C_{4}$ ECE 152 20

# Two-Level CLA for 16-bit Adder

- 4 G/P inputs per level
- Hardware?
  - First level: 14&5 \* 4 blocks
  - Second level: 14&5 \* 1 block
  - Total: 70&5
    - Infinite: 152&17
- Latency?
  - Total: 9 (1 + 2 + 2 + 2 + 2)
  - Infinite: 5
- That's more like it!
  - CLA for a 64-bit adder?



# A Closer Look at CLA Delay

- CLA block has "individual" G/P inputs
  - Uses them to perform **two** calculations
  - Group G/P on way up tree
  - Group interior carries on way down tree
    - Given group carry-in from level above
  - Group carry-in for outer level (C<sub>0</sub>) ready at 0
  - Outer level G/P, interior carries in parallel



- Signals ready after 1 gate delay
  - C<sub>0</sub>
  - Individual G/P



- What is ready after 3 gate delays?
  - First level group G/P



- And after 5 gate delays?
  - Outer level "interior" carries
    - C<sub>4</sub>, C<sub>8</sub>, C<sub>12</sub>, C<sub>16</sub>



- And after 7 gate delays?
  - First level "interior" carries
    - C<sub>1</sub>, C<sub>2</sub>, C<sub>3</sub>
    - C<sub>5</sub>, C<sub>6</sub>, C<sub>7</sub>
    - C<sub>9</sub>, C<sub>10</sub>, C<sub>11</sub>
    - C<sub>13</sub>, C<sub>14</sub>, C<sub>15</sub>
    - Essentially, all remaining carries
- S<sub>i</sub> ready 2 gate delays after C<sub>i</sub>
  - All sum bits ready after 9 delays!



## Subtraction: Addition's Tricky Pal

- Sign/magnitude subtraction is mental reverse addition
  - Two's complement subtraction is addition
- How to subtract using an adder?
  - sub A, B = add A, -B
  - Negate B before adding (fast negation trick: -B = B' + 1)
- Isn't a subtraction then a negation and two additions?
  - + No, an adder can implement A+B+1 by setting the carry-in to 1
  - + Clever, huh?



# A 16-bit ALU

- Build an ALU with functions: add/sub, and, or, not, xor
  - All of these already in CLA adder/subtracter
  - add A B, sub A B (done already)
  - **not B** is needed for subtraction
  - and A, B are first level Gs
  - or A, B are first level Ps
  - xor A,B?

• 
$$S_i = A_i^A B_i^A C$$



# This Unit: Arithmetic and ALU Design



- Integer Arithmetic and ALU
  - Binary number representations
  - Addition and subtraction
  - The integer ALU
  - Shifting and rotating
  - Multiplication
  - Division
- Floating Point Arithmetic
  - Binary number representations
  - FP arithmetic
  - Accuracy

#### Shifts

- Shift: move all bits in a direction (left or right)
  - Denoted by << (left shift) and >> (right shift) in C/C++/Java
- ICQ: Left shift example: 001010 << 2 = ?
- ICQ: Right shift example: 001010 >> 2 = ?
- Shifts are useful for
  - Bit manipulation: extracting and setting individual bits in words
  - Multiplication and division by powers of 2
    - A \* 4 = A << 2
    - A / 8 = A >> 3
    - A \* 5 = (A << 2) + A
  - Compilers use this optimization, called **strength reduction** 
    - Easier to shift than it is to multiply (in general)

#### **Rotations**

- Rotations are slightly different than shifts
  - 1101 rotated 2 to the right = ?
- Rotations are generally less useful than shifts
  - But their implementation is natural if a shifter is there
  - MIPS has only shifts

#### **Barrel Shifter**

- What about shifting left by any amount from 0 to 15?
  - Cycle input through "left-shift-by-1" up to 15 times?
    - Complicated, variable latency
  - 16 consecutive "left-shift-by-1-or-0" circuits?
    - Fixed latency, but would take too long
  - **Barrel shifter**: four "shift-left-by-X-or-0" circuits (X = 1, 2, 4, 8)



from Roth and Lebeck

ECE 152

## **Right Shifts and Rotations**

- Right shifts and rotations also have barrel implementations
  - But are a little different
- Right shifts
  - Can be **logical** (shift in 0s) or **arithmetic** (shift in copies of MSB)

srl 110011,2  $\rightarrow$  result is 001100

sra 110011,2  $\rightarrow$  result is 111100

- Caveat: **sra** is not equal to division by 2 of negative numbers
- Why might we want both types of right shifts?
- Rotations
  - Mux in wires of upper/lower bits

#### Shift Registers

- **Shift register**: shift in place by constant quantity
  - Sometimes that's a useful thing



### **Base10** Multiplication

• Remember base 10 multiplication from 3rd grade?

| 43 // multiplica |
|------------------|
|------------------|

<u>\* 12</u> // multiplier

- 86 <u>+ 430</u> 516 // product
- Start with running total 0, repeat steps until no multiplier digits
  - Multiply multiplicand by least significant multiplier digit
  - Add to total
  - Shift multiplicand one digit to the left (multiply by 10)
  - Shift multiplier one digit to the right (divide by 10)
- Product of N-digit and M-digit numbers potentially has N+M digits

## **Binary Multiplication**

- 43 = 00000101011 // multiplicand
- $\star$  12 = 0000001100
  - 0 = 0000000000
  - 0 = 0000000000
  - 172 = 00010101100
- + 344 = 00101011000

516 = 0100000100 // product

- Same thing except ...
  - There are more individual steps (smaller base)
  - + But each step is simpler
  - Multiply multiplicand by least significant multiplier bit
    - 0 or  $1 \rightarrow$  no actual multiplication, just add multiplicand or not

// multiplier

- Add to total: we know how to do that
- Shift multiplicand left, multiplier right by one bit: **shift registers**
## Simple 16x16=32bit Multiplier Circuit



- **Control algorithm**: repeat 16 times
  - If LSB(multiplier) == 1, then add multiplicand to product
  - Shift multiplicand left by 1
  - Shift multiplier right by 1

## **Inefficiencies with Simple Circuit**



- Notice
  - 32-bit addition, but 16 multiplicand bits are always 0
    - And 0-bits are always moving
  - Solution? Instead of shifting multiplicand left, shift product right

### Better 16-bit Multiplier



- **Control algorithm**: repeat 16 times
  - LSB(multiplier) == 1 ? Add multiplicand to upper half of product
  - Shift multiplier right by 1
  - Shift product right by 1

## **Another Inefficiency**



- Notice one more inefficiency
  - What is initially the lower half of product gets thrown out
  - As useless lower half of product is shifted right, so is multiplier
  - Solution: use lower half of product as multiplier

#### Even Better 16-bit Multiplier



- **Control algorithm**: repeat 16 times
  - LSB(multiplier) == 1 ? Add multiplicand to upper half of product
  - Shift product right by 1

## **Multiplying Negative Numbers**

- If multiplicand is negative, our algorithm still works
  - As long as right shifts are arithmetic and not logical
  - Try 1111\*0101
- If multiplier is negative, the algorithm breaks
- Two solutions
  - 1) Negate multiplier, then negate product
  - 2) Booth's algorithm

## Booth's Algorithm

- Notice the following equality (Booth did)
  - $2^{J} + 2^{J-1} + 2^{J-2} + \dots + 2^{K} = 2^{J+1} 2^{K}$
  - Example: 0111 = 1000 0001
  - We can exploit this to create a faster multiplier
- How?
  - Sequence of N 1s in the multiplier yields sequence of N additions
  - Replace with one addition and one subtraction

## **Booth In Action**

- For each multiplier bit, also examine bit to its right
  - **00**: middle of a run of 0s, do nothing
  - **10**: beginning of a run of 1s, subtract multiplicand
  - **11**: middle of a run of 1s, do nothing
  - **01**: end of a run of 1s, add multiplicand

#### 43 = 00000101011

- - 0 = 0000000000
- $+ \quad 0 = 0000000000$
- -172 = 11101010100
- $+ \quad 0 = 0000000000$
- + 688 = 01010110000

516 = 0100000100

- // multiplier bits 0\_ (implicit 0)
- // multiplier bits 00
- // multiplier bits 10
- // multiplier bits 11
- // multiplier bits 01

#### ICQ: so why is Booth better?

### **Booth Hardware**



- **Control algorithm**: repeat 16 times
  - Multiplier LSBs == 10? Subtract multiplicand from product
  - Multiplier LSBs == 01? Add multiplicand to product
  - Shift product/multiplier right by 1 (not by 2!)

## **Booth in Summary**

- Performance/efficiency
  - + Good for sequences of 3 or more 1s
    - Replaces 3 (or more) adds with 1 add and 1 subtract
  - Doesn't matter for sequences of 2 1s
    - Replaces 2 adds with 1 add and 1 subtract (add = subtract)
  - Actually bad for singleton 1s
    - Replaces 1 add with 1 add and 1 subtract
- Bottom line
  - Worst case multiplier (101010) requires N/2 adds + N/2 subs
    - What is the worst case multiplier for straight multiplication?
  - How is this better than normal multiplication?

## Modified Booth's Algorithm

- What if we detect singleton 1s and do the right thing?
- Examine multiplier bits in groups of 2s plus a helper bit on the right (as opposed to 1 bit plus helper bit on right)
  - Means we'll need to shift product/multiplier by 2 (not 1)
  - **000**: middle of run of 0s, do nothing
  - **100**: beginning of run of 1s, subtract multiplicand<<1 (M\*2)
    - Why M\*2 instead of M?
  - **010**: singleton 1, add multiplicand
  - **110**: beginning of run of 1s, subtract multiplicand
  - **001**: end of run of 1s, add multiplicand
  - **101**: end of run of 1s, beginning of another, subtract multiplicand
    - Why is this?  $-2^{J+1} + 2^{J} = -2^{J}$
  - **011**: end of a run of 1s, add multiplicand<<1 (M\*2)
  - **111**: middle of run of 1s, do nothing

#### **Modified Booth In Action**

- 43 = 00000101011
- $\star 12 = 0000001100$ 
  - 0 = 0000000000
- -172 = 11101010100
- + 688 = 01010110000
  - 516 = 0100000100

- // multiplier bits 000
- // multiplier bits 110
- // multiplier bits 001

### **Modified Booth Hardware**



- **Control algorithm**: repeat 8 times (not 16!)
  - Based on 3b groups, add/subtract shifted/unshifted multiplicand
  - Shift product/multiplier right by 2

## Another Multiplier: Multiple Adders



- Can multiply by N bits at a time by using N adders
  - Doesn't help: 4X fewer iterations, each one 4X longer (4\*9=36)

## Carry Save Addition (CSA)

- **Carry save addition (CSA):** d(N adds) < N\*d(1 add)
  - Enabling observation: unconventional view of full adder
    - 3 inputs  $(A,B,C_{in}) \rightarrow 2$  outputs  $(S,C_{out})$
  - If adding two numbers, only thing to do is chain  $C_{out}$  to  $C_{in+1}$ 
    - But what if we are adding three numbers (A+B+D)?
  - One option: back-to-back conventional adders
    - Add A + B = temp
    - Add temp + D = Sum
  - Better option: instead of rippling carries in first addition (A+B), feed the D bits in as the carry bits (treat D bits as C bits)
    - Assume A+B+D = temp2
    - Then do traditional addition (not CSA) of temp2 and C bits generated during addition of A+B+D

## Carry Save Addition (CSA)





- 2 conventional adders
  - [2 \* d(add)] gate levels
  - d(add16)=9
  - $\rightarrow$  d = 18
- k conventional adders

- CSA+conventional adder
  - d = [d(CSA) + d(add16)]
  - d(CSA) = d(1 FA) = 2
  - $\rightarrow$  d = 11
- k CSAs+conventional add
  - d = [k\*d(CSA) + d(add)]

## **Carry Save Multiplier**



- 4-bit at a time multiplier using 3 CSA + 1 normal adder
  - Actually helps: 4X fewer iterations, each only (2+2+2+9=15)

© 2012 Daniel J. Sorin from Roth and Lebeck

ECE 152

## Wallace Tree Multiplier (based on CSA)



ECE 152

## **Decimal Division**

• Remember 4th grade long division?

|    | 43          | // quotient            |
|----|-------------|------------------------|
| 12 | <b>√521</b> | // divisor $$ dividend |
|    | <u>-480</u> |                        |
|    | 41          |                        |
|    | <u>- 36</u> |                        |
|    | 5           | // remainder           |

- Shift divisor left (multiply by 10) until MSB lines up with dividend's
- Repeat until remaining dividend (remainder) < divisor
  - Find largest single digit q such that (q\*divisor) < dividend
  - Set LSB of quotient to q
  - Subtract (q\*divisor) from dividend
  - Shift quotient left by one digit (multiply by 10)
  - Shift divisor right by one digit (divide by 10)

### **Binary Division**

|    |             |   |       |   |     | 10     | )1011 | =     | <u>43</u> |
|----|-------------|---|-------|---|-----|--------|-------|-------|-----------|
| 12 | <b>√521</b> | = | 01100 |   | 03  | 100000 | )1001 |       |           |
|    | <u>-384</u> | = |       | _ | - ( | 011000 | 0000  | <br>- |           |
|    | 137         | = |       |   |     | 01000  | )1001 |       |           |
|    | <u> </u>    | = |       | _ | -   |        | 0     | <br>- |           |
|    | 137         | = |       |   |     | 01000  | )1001 |       |           |
|    | <u>- 96</u> | = |       | _ | -   | 0110   | 0000  | <br>- |           |
|    | 41          | = |       |   |     | 010    | )1001 |       |           |
|    | <u> </u>    | = |       | _ | -   |        | 0     | -     |           |
|    | 41          | = |       |   |     | 010    | )1001 |       |           |
|    | - 24        | = |       | _ | -   | 01     | L1000 | <br>- |           |
|    | 17          | = |       |   |     | 01     | L0001 |       |           |
|    | - 12        | = |       | _ | -   | C      | )1100 | -     |           |
|    | 5           | = |       |   |     |        | 101   |       |           |

## Hardware for Binary Division

- Same as decimal division, except (again)
  - More individual steps (base is smaller)
  - + Each step is simpler
  - Find largest bit q such that (q\*divisor) < dividend
    - q = 0 or 1
  - Subtract (q\*divisor) from dividend
    - q = 0 or  $1 \rightarrow$  no actual multiplication, subtract divisor or not
  - One complication: **largest** q such that (q\*divisor) < dividend
    - How to know if (1\*divisor) < dividend?
    - Human (e.g., ECE 152 student) can eyeball this
    - Computer cannot
      - Subtract and see if result is negative

## Simple 16-bit Divider Circuit



- First: Shift Divisor left to align it with Dividend
- Then repeat this loop until Divisor<Remainder
  - Subtract Divisor from Remainder (Remainder initially = Dividend)
    - Result >= 0? Remainder ← Result, write 1 into Quotient LSB
    - Result < 0? Just write 0 into quotient LSB
  - Shift divisor right 1 bit, shift quotient left 1 bit

#### Even Better Divider Circuit



- Multiplier circuit optimizations also work for divider
  - Shift Remainder left and do 16-bit subtractions
  - Combine Quotient with right (unused) half of Remainder
  - Booth and modified Booth analogs (but really nasty)
- Multiplication and division in one circuit (how?)

# Summary of Integer Arithmetic and ALU

- Addition
  - Half adder full adder, ripple carry
  - Fast addition: carry select and carry lookahead
- Subtraction as addition
- Barrel shifter and shift registers
- Multiplication
  - N-step multiplication (3 refined implementations)
  - Booth's algorithm and N/2-step multiplication
- Division

# This Unit: Arithmetic and ALU Design



- Integer Arithmetic and ALU
  - Binary number representations
  - Addition and subtraction
  - The integer ALU
  - Shifting and rotating
  - Multiplication
  - Division
- Floating Point Arithmetic
  - Binary number representations
  - FP arithmetic
  - Accuracy

## **Floating Point Arithmetic**



- Formats
  - Precision and range
  - IEEE 754 standard
- Operations
  - Addition and subtraction
  - Multiplication and division
- Error analysis
  - Error and bias
  - Rounding and truncation
- Only scientists care?

## Floating Point (FP) Numbers

- Floating point numbers: numbers in scientific notation
  - Two uses
- Use #1: real numbers (numbers with non-zero fractions)
  - 3.1415926...
  - 2.1878...
  - 9.8
  - 6.62 \* 10<sup>-34</sup>
  - 5.875
- Use #2: really big numbers
  - $3.0 * 10^8$
  - 6.02 \* 10<sup>23</sup>

## The World Before Floating Point

- Early computers were built for scientific calculations
  - ENIAC: ballistic firing tables
- But didn't have primitive floating point data types
  - Circuits were big
  - Many accuracy problems
- Programmers built **scale factors** into programs
  - Large constant multiplier turns all FP numbers to integers
  - Before program starts, inputs multiplied by scale factor **manually**
  - After program finishes, outputs divided by scale factor **manually**
  - Yuck!

## The Fixed Width Dilemma

- "Natural" arithmetic has infinite width
  - Infinite number of integers
  - Infinite number of reals
  - Infinitely more reals than integers (head... spinning...)
- Hardware arithmetic has finite width N (e.g., 16, 32, 64)
  - Can represent 2<sup>N</sup> numbers
- If you could represent 2<sup>N</sup> integers, which would they be?
  - Easy! The  $2^{N-1}$  on either size of 0
- If you could represent 2<sup>N</sup> reals, which would they be?
  - $2^{N}$  reals from 0 to 1, not too useful
  - 2<sup>N</sup> powers of two (1, 2, 4, 8, ...), also not too useful
  - Something in between: yes, but what?

### **Range and Precision**

- Range
  - Distance between largest and smallest representable numbers
  - Want big range
- Precision
  - Distance between two consecutive representable numbers
  - Want small precision
- In fixed bit width, can't have unlimited both

## **Scientific Notation**

- Scientific notation: good compromise
  - Number [S,F,E] = S \* F \* 2<sup>E</sup>
  - S: **sign**
  - F: **significand** (fraction)
  - E: exponent
  - **"Floating point"**: binary (decimal) point has different magnitude
  - + "Sliding window" of precision using notion of **significant digits** 
    - Small numbers very precise, many places after decimal point
    - Big numbers are much less so, not all integers representable
    - But for those instances you don't really care anyway
  - Caveat: most representations are just approximations
    - Sometimes weirdos like 0.9999999 or 1.0000001 come up
    - + But good enough for most purposes

### IEEE 754 Standard Precision/Range

- **Single precision**: float in C
  - 32-bit: 1-bit sign + 8-bit exponent + 23-bit significand
  - Range:  $2.0 * 10^{-38} < N < 2.0 * 10^{38}$
  - Precision: ~7 significant (decimal) digits

#### • **Double precision**: double in C

- 64-bit: 1-bit sign + 11-bit exponent + 52-bit significand
- Range: 2.0 \* 10<sup>-308</sup> < N < 2.0 \* 10<sup>308</sup>
- Precision: ~15 significant (decimal) digits
- Numbers  $>10^{308}$  don't come up in many calculations
  - $10^{80} \sim$  number of atoms in universe

#### How Do Bits Represent Fractions?

- **Sign**: 0 or  $1 \rightarrow easy$
- **Exponent**: signed integer  $\rightarrow$  also easy
- **Significand**: unsigned fraction  $\rightarrow$  not obvious!
- How do we represent integers?
  - Sums of positive powers of two
  - S-bit unsigned integer A:  $A_{S-1}2^{S-1} + A_{S-2}2^{S-2} + ... + A_12^1 + A_02^0$
- So how can we represent fractions?
  - Sums of **negative powers of two**
  - S-bit unsigned fraction A:  $A_{S-1}2^0 + A_{S-2}2^{-1} + ... + A_12^{-S+2} + A_02^{-S+1}$
  - More significant bits correspond to larger multipliers

## Some Examples

- What is 5 in floating point?
  - Sign: 0
  - $5 = 1.25 * 2^2$
  - Significand:  $1.25 = 1 \times 2^{0} + 1 \times 2^{-2} = 101\ 0000\ 0000\ 0000\ 0000\ 0000$
  - Exponent: 2 = 0000 0010
- What is -0.5 in floating point?
  - Sign: 1
  - $0.5 = 0.5 * 2^{\circ}$
  - Significand:  $0.5 = 1 \times 2^{-1} = 010\ 0000\ 0000\ 0000\ 0000\ 0000$
  - Exponent: 0 = 0000 0000

## **Normalized Numbers**

- Notice
  - 5 is 1.25 \* 2<sup>2</sup>
  - But isn't it also 0.625 \* 2<sup>3</sup> and 0.3125 \* 2<sup>4</sup> and ...?
  - With 8-bit exponent, we can have 8 representations of 5
- Multiple representations for one number is bad idea
  - Would lead to computational errors
  - Would waste bits
- Solution: choose **normal (canonical) form** 
  - Disallow de-normalized numbers (some exceptions later)
  - IEEE 754 normal form: coefficient of 2<sup>0</sup> is always 1
    - Similar to scientific notation: one non-zero digit left of decimal
  - Normalized representation of 5 is 1.25 \* 2<sup>2</sup> (1.25 = 1\*2<sup>0</sup>+1\*2<sup>-2</sup>)
  - $0.625 * 2^3$  is de-normalized ( $0.625 = 0*2^0 + 1*2^{-1} + 1*2^{-3}$ )

#### More About Normalization

- What is –0.5 in **normalized** floating point?
  - Sign: 1
  - $0.5 = 1 * 2^{-1}$
  - Significand:  $1 = 1^{*}2^{0} = 100\ 0000\ 0000\ 0000\ 0000\ 0000$
  - Exponent: -1 = 1111 1111 (assuming 2's complement for now)
- IEEE 754: no need to represent coefficient of 2<sup>0</sup> explicitly
  - It's always 1
  - + Buy yourself an extra bit of precision
    - Pretty cute trick
- Problem: what about 0?
  - How can we represent 0 if 2<sup>0</sup> is always implicitly 1?

© 2012 Daniel J. Sorin from Roth and Lebeck

ECE 152
#### **IEEE 754: The Whole Story**

- **Exponent**: signed integer  $\rightarrow$  not so fast
- Exponent represented in excess or bias notation
  - N-bits typically can represent signed numbers from  $-2^{N-1}$  to  $2^{N-1}-1$
  - But in IEEE 754, they represent exponents from  $-2^{N-1}+2$  to  $2^{N-1}-1$
  - And they represent those as unsigned with an implicit  $2^{N-1}-1$  added
    - Implicit added quantity is called the **bias**
    - Actual exponent is  $E-(2^{N-1}-1)$
- Example: single precision (8-bit exponent)
  - Bias is 127, exponent range is -126 to 127
  - -126 is represented as 1 = 0000 0001
  - 127 is represented as 254 = 1111 1110
  - 0 is represented as 127 = 0111 1111
  - 1 is represented as 128 = 1000 0000

### **IEEE 754: Continued**

- Notice: two exponent bit patterns are "unused"
- **0000 0000**: represents de-normalized numbers
  - Numbers that have implicit 0 (rather than 1) in 2<sup>0</sup>
  - Zero is a special kind of de-normalized number

+ Exponent is all 0s, significand is all 0s

- There are both +0 and -0, but they are considered the same
- Also represent numbers smaller than smallest normalized numbers
- **1111 1111**: represents infinity and NaN
  - ± infinities have 0s in the significand
  - ± NaNs do not

## IEEE 754: To Infinity and Beyond

- What are infinity and NaN used for?
  - To allow operations to proceed past overflow/underflow situations
  - **Overflow**: operation yields exponent greater than 2<sup>N-1</sup>–1
  - **Underflow**: operation yields exponent less than  $-2^{N-1}+2$
- IEEE 754 defines operations on infinity and NaN
  - N / 0 = infinity
  - N / infinity = 0
  - 0 / 0 = NaN
  - Infinity / infinity = NaN
  - Infinity infinity = NaN
  - Anything and NaN = NaN
  - Will not test you on these rules

## **IEEE 754: Final Format**



- Biased exponent
- Normalized significand
- Exponent uses more significant bits than significand
  - Helps when comparing FP numbers
  - Exponent bias notation helps there too why?
- Every computer since about 1980 supports this standard
  - Makes code portable (at the source level at least)
  - Makes hardware faster (stand on each other's shoulders)

## **Floating Point Arithmetic**

- We will look at
  - Addition/subtraction
  - Multiplication/division
- Implementation
  - Basically, integer arithmetic on significand and exponent
    - Using integer ALUs
  - Plus extra hardware for normalization
- To help us here, look at toy "quarter" precision format
  - 8 bits: 1-bit sign + 3-bit exponent + 4-bit significand
  - Bias is 3 (= 2<sup>N−1</sup> − 1)

#### **FP** Addition

- Assume
  - A represented as bit pattern  $[S_A, E_A, F_A]$
  - B represented as bit pattern  $[S_B, E_B, F_B]$
- What is the bit pattern for A+B  $[S_{A+B}, E_{A+B}, F_{A+B}]$ ?
  - $[S_A+S_B, E_A+E_B, F_A+F_B]$ ? Nope!
  - So what is it then?

#### **FP Addition Decimal Example**

- Let's look at a decimal example first: 99.5 + 0.8
  - $9.95*10^1 + 8.0*10^{-1}$
- Step I: align exponents (if necessary)
  - **Temporarily** de-normalize operand with smaller exponent
  - Add 2 to its exponent  $\rightarrow$  must shift significand right by 2
  - 8.0\* 10<sup>-1</sup> → 0.08\*10<sup>1</sup>
- Step II: add significands
  - $9.95*10^1 + 0.08*10^1 \rightarrow 10.03*10^1$
- Step III: normalize result
  - Shift significand right by 1 and then add 1 to exponent
  - $10.03*10^1 \rightarrow 1.003*10^2$

## FP Addition (Quarter Precision) Example

- Now a binary "quarter" example: 7.5 + 0.5
  - $7.5 = 1.875 \times 2^2 = 0\ 101\ 11110$  (the 1 is the implicit leading 1)
    - $1.875 = 1 \times 2^{0} + 1 \times 2^{-1} + 1 \times 2^{-2} + 1 \times 2^{-3}$
  - $0.5 = 1 \times 2^{-1} = 0\ 010\ \mathbf{1}\ 0000$
- Step I: align exponents (if necessary)
  - 0 010  $10000 \rightarrow 0 101 00010$
  - Add 3 to exponent  $\rightarrow$  shift significand right by 3
- Step II: add significands
  - 0 101 **1**1110 + 0 101 **0**0010 = 0 101 **10**0000
- Step III: normalize result
  - 0 101 **10**0000 → 0 110 **1**0000
  - Shift significand right by  $1 \rightarrow add 1$  to exponent

#### **FP Addition Hardware**



ECE 152

#### What About FP Subtraction?

- Or addition of negative quantities for that matter
  - How to subtract significands that are not in TC form?
  - Can we still use an adder?
- Trick: internally and temporarily convert to TC
  - Add "phantom" –2 in front (–1\*2<sup>1</sup>)
  - Use standard negation trick
  - Add as usual
  - If phantom –2 bit is 1, result is negative
    - Negate it using standard trick again, flip result sign bit
    - Then ignore "phantom" bit (which is now 0 anyway)
  - You'll want to try this at home!

## **FP** Multiplication

- Assume
  - A represented as bit pattern  $[S_A, E_A, F_A]$
  - B represented as bit pattern  $[S_B, E_B, F_B]$
- What is the bit pattern for  $A^*B [S_{A^*B}, E_{A^*B}, F_{A^*B}]$ ?
  - This one is actually a little easier (conceptually) than addition
    - Scientific notation is logarithmic
    - In logarithmic form: multiplication is addition
- $[S_A XOR S_B, E_A + E_B, F_A * F_B]$ ? Pretty much, except for...
  - Normalization
  - Addition of exponents in biased notation (must subtract bias)
  - Tricky: when multiplying two normalized F-bit significands...
    - Where is the binary point?

#### **FP** Division

- Assume
  - A represented as bit pattern  $[S_A, E_A, F_A]$
  - B represented as bit pattern  $[S_B, E_B, F_B]$
- What is the bit pattern for A/B  $[S_{A/B}, E_{A/B}, F_{A/B}]$ ?
- $[S_A XOR S_B, E_A E_B, F_A / F_B]$ ? Pretty much, again except for...
  - Normalization
  - Subtraction of exponents in biased notation (must add bias)
  - Binary point placement
  - No need to worry about remainders, either
- A little bit of irony
  - Multiplication/division roughly same complexity for FP and integer
  - Addition/subtraction much more complicated for FP than integer

© 2012 Daniel J. Sorin from Roth and Lebeck

## Accuracy

- Remember our decimal addition example?
  - $9.95*10^{1} + 8.00*10^{-1} \rightarrow 1.003*10^{2}$
  - Extra decimal place caused by de-normalization...
  - But what if our representation only has two digits of precision?
    - What happens to the **3**?
  - Corresponding binary question: what happens to extra 1s?
- Solution: round
  - Option I: round down (truncate), no hardware necessary
  - Option II: round up (round), need an incrementer
    - Why rounding up called round?
    - Because an extra 1 is half-way, which is rounded up

#### More About Accuracy

- Problem with both truncation and rounding
  - They cause errors to accumulate
    - E.g., if always round up, result will gradually "crawl" upwards
- One solution: round to nearest even
  - If un-rounded LSB is  $1 \rightarrow \text{round up} (011 \rightarrow 10)$
  - If un-rounded LSB is  $0 \rightarrow$  round down ( $001 \rightarrow 00$ )
  - Round up half the time, down other half  $\rightarrow$  overall error is stable
- Another solution: multiple intermediate precision bits
  - IEEE 754 defines 3: guard + round + sticky
    - Guard and round are shifted by de-normalization as usual
    - Sticky is 1 if any shifted out bits are 1
  - Round up if 101 or higher, round down if 011 or lower
  - Round to nearest even if 100

## **Numerical Analysis**

- Accuracy problems sometimes get bad
  - Addition of big and small numbers
  - Subtraction of big numbers
  - Example, what's  $1*10^{30} + 1*10^{0} 1*10^{30}$ ?
    - Intuitively:  $1*10^0 = 1$
    - But:  $(1*10^{30} + 1*10^{0}) 1*10^{30} = (1*10^{30} 1*10^{30}) = 0$

#### • Numerical analysis: field formed around this problem

- Bounding error of numerical algorithms
- Re-formulating algorithms in a way that bounds numerical error

## **One Last Thing About Accuracy**

- Suppose you added two numbers and came up with
  - 0 101 **1**1111 **101**
  - What happens when you round?
  - Number becomes denormalized... arrrrgggghhh
- FP adder actually has six steps, not three
  - Align exponents
  - Add/subtract significands
  - Re-normalize
  - Round
  - Potentially re-normalize again
  - Potentially round again

## Accuracy, Shmaccuracy?

- Only scientists care? Au contraire
- Intel 486 used equivalent of Modified Booth's for division
  - Generate multiple quotient bits per step
  - Requires you to guess quotient bits and adjust later
  - Guess taken from a lookup table implemented as PLA
- Along came Pentium
  - PLA was optimized to return 0 for "impossible" table indices
  - Which turned out not to be "impossible" after all
  - Result: precision errors in 4<sup>th</sup>-15<sup>th</sup> decimal places for some divisors

#### • "Pentium fdiv bug" is born

## Pentium FDIV Bug

- Pentium shipped in August 1994
- Intel actually knew about the bug in July
  - But calculated that delaying the project a month would cost  $\sim$ \$1M
  - And that in reality only a dozen or so people would encounter it
  - They were right... but one of them took the story to EE Times
- By November 1994, firestorm was full on
  - IBM said that typical Excel user would encounter bug every month
    - Assumed 5K divisions per second around the clock
  - People believed the story
  - IBM stopped shipping Pentium PCs
- By December 1994, Intel promises full recall
  - Total cost: ~\$550M
  - All for a bug which in reality maybe affected a dozen people

# **Summary of Floating Point**

- FP representation
  - S\*F\*2<sup>E</sup>
  - IEEE754 standard
  - Representing fractions
  - Normalized numbers
- FP operations
  - Addition/subtraction: hard
  - Multiplication/division: logarithmic no harder than integer
- Accuracy problems
  - Rounding and truncation
- Upshot: FP hardware is tough
  - Thank lucky stars that ECE 152 project has no FP

© 2012 Daniel J. Sorin from Roth and Lebeck

# Unit Recap: Arithmetic and ALU Design



- Integer Arithmetic and ALU
  - Binary number representations
  - Addition and subtraction
  - The integer ALU
  - Shifting and rotating
  - Multiplication
  - Division
- Floating Point Arithmetic
  - Binary number representations
  - FP arithmetic
  - Accuracy