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Where We Are in This Course Right Now 

•  So far: 
•  We know what a computer architecture is 
•  We know what kinds of instructions it might execute 

•  Now: 
•  We learn how to perform many of the most important instructions 

•  Computers spend lots of time doing arithmetic and logical ops 
•  Examples: add, subtract, multiply, divide, shift, rotate, load, store 
•  We develop hardware for arithmetic logic unit (ALU) 

•  Next: 
•  We learn how the computer uses and controls the ALU 
•  Lots of stuff in computer besides the ALU 

•  E.g., Logic to fetch and decode instructions, memory, etc.  
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This Unit: Arithmetic and ALU Design 

•  Integer Arithmetic and ALU 
•  Binary number representations 
•  Addition and subtraction 
•  Integer ALU 
•  Shifting and rotating 
•  Multiplication 
•  Division 

•  Floating Point Arithmetic 
•  Binary number representations 
•  FP arithmetic 
•  Accuracy 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 

You are here! 
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Readings 

•  Patterson and Hennessy textbook 
•  Chapter 3 
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Review: Fixed Width 

•  You’ve seen much of the upcoming material in ECE 52 – if 
none of this looks familiar, please talk with me … 

•  In hardware, integers have fixed width 
•  N bits: 16, 32, or 64 
•  LSB is 20, MSB is 2N-1 

•  Unsigned number range: 0 to 2N–1 

•  Numbers >2N represented using multiple fixed-width integers 
•  In software 
•  ICQ: What happens when your C++ code specifies an integer 

greater than this max?  What does compiler do? 
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Review: Two’s Complement 

•  What about negative numbers? 
•  Option I: sign/magnitude 

•  Unsigned binary plus one bit for sign 
1010 = 000001010, -1010 = 100001010 

–  Two representations for zero (0 and –0 are different) 
–  Addition in hardware is difficult 
•  Number range: –(2N-1–1) to 2N-1–1 
+ Matches our intuition from “by hand” decimal arithmetic 

•  Option II: two’s complement (TC) 
•  leading 0s mean positive number, leading 1s negative 

1010 = 00001010, -1010 = 11110110 
+ One representation for 0 
+ Easy addition in hardware 
•  Number range: –(2N-1) to 2N-1–1  à not symmetric 
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Review: Still More On TC 

•  What is the interpretation of TC? 
•  Same as binary, except MSB represents –2N–1, not 2N–1  

•  –10 = 11110110 = –27+26+25+24+22+21 

+  Works with any width 

•  –10 = 110110 = –25+24+22+21 

•  Why? 2N = 2*2N–1 
•  –25+24+22+21 = (–26+2*25)–25+24+22+21 = –26+25+24+22+21 

•  Trick to negating a number quickly: –B = B’ + 1 
•  –(1) = (0001)’+1  = 1110+1 = 1111 = –1 
•  –(–1) = (1111)’+1  = 0000+1 = 0001 = 1 
•  –(0) = (0000)’+1  = 1111+1 = 0000 = 0 
•  Think about why this works (on your own time) 
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Review (way back!): Decimal Addition 

•  Remember decimal addition from 1st grade? 
 1 
 43 
+29 
 72 

•  Repeat N times 
•  Add least significant digits and any overflow from previous add 
•  Carry the overflow to next addition 

•  Overflow: any digit other than least significant of sum 
•  Shift two addends and sum one digit to the right 

•  Sum of two N-digit numbers can yield an N+1 digit number 
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Review: Binary Addition 

•  Binary addition works the same way 
 1     111111 
 43 = 00101011 
+29 = 00011101 
 72 = 01001000 

•  Repeat N times 
•  Add least significant bits and any overflow from previous add 
•  Carry the overflow to next addition 
•  Shift two addends and sum one bit to the right 

•  Sum of two N-bit numbers can yield an N+1 bit number 

–  More steps (smaller base) 
+  Each one is simpler (adding just 1 and 0) 

•  So simple we can do it in hardware 
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Review: The Half Adder 

•  How to add two binary integers in hardware? 
•  Start with adding two bits 

•  When all else fails ... look at truth table 

A B = CO S 
0 0 =  0 0 
0 1 =  0 1 
1 0 =  0 1 
1 1 =  1 0 

•  S = A⊕B   (A XOR B) 
•  CO (carry out) = AB 
•  This is called a half adder HA 

B 

B 

A 

CO 

S 

S 

CO 

A 
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Review: The Full Adder 

•  We could chain half adders together, but to do that… 
•  Need to incorporate a carry out from previous adder 
•  Let’s look at the truth table 

CI A B = CO S 
 0 0 0 =  0 0 
 0 0 1 =  0 1 
 0 1 0 =  0 1 
 0 1 1 =  1 0 
 1 0 0 =  0 1 
 1 0 1 =  1 0 
 1 1 0 =  1 0 
 1 1 1 =  1 1 

•  S = CI’A’B + CI’AB’ + CIA’B’ + CIAB = CI ⊕  A ⊕  B 
•  CO = CI’AB + CIA’B + CIAB’ + CIAB = CIA + CIB + AB 
•  This is a full adder à ICQ: what is its delay (in #gates)? 

FA 
B 

S 

CO 

A 
CI 
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A 16-bit Adder 

•  Simple 16-bit adder 
•  16 1-bit full adders “chained” together 

•  CO0 = CI1, CO1 = CI2, etc. 
•  CI0 = 0, CO15 is carry-out of entire adder 

•  CO15 = 1 → “overflow” 

•  Design called ripple-carry: how fast is it? 
•  In terms of gate delays (longest gate path) 

•  Longest path is to CO15 (or S15) 
•  d(CO15) = 2 + MAX{d(A15),d(B15),d(CI15)} 

•  d(A15) = d(B15) = 0, d(CI15) = d(CO14) 
•  d(CO15) = 2 + d(CO14) = 2 + 2 + d(CO13) … 
•  d(CO15) = 32 
–  2N = slow! 

FA 
B1 

S1 A1 

FA 
B2 

S2 A2 

FA 
B3 

S3 A3 

FA 
B0 

S0 A0 

FA 
B15 

S15 A15 

CO 

0 

… 
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A Faster (16-bit) Adder 

•  One option: carry-select adder 
•  Do A15-8+B15-8 twice, once assuming CI8 (CO7) = 0, then once = 1 
•  Choose the right one when CO7 finally becomes available 
+  Effectively cuts carry chain in half 
–  But adds 8b adder and mux 

CO 

8b 
B7-0 

S7-0 
A7-0 

0 

8b 
B15-8 

S15-8 

A15-8 

0 

8b B15-8 
S15-8 

A15-8 

1 

16b 
add 

A15-0 

0 

B15-0 
S15-0 

S15-8 

CO 

m
ux 
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How Fast Is the Faster Adder? 

•  d(CO15) = max{d(CO15-8), d(CO7-0)} + 2   (+2 is for mux) 
•  d(CO15) = max{2*8, 2*8} + 2 = 18     (2N delay for 8bit add) 
•  For dividing N-bit adder into 2 parts: 2*(N/2) + 2 = N+2 

•  What if we broke up 16b adder into 4 parts?   
•  Would delay be 2*(N/4) + 2 = 10? Not quite! 
•  d(CO15) = max{d(CO15-12),d(CO11-0)} + 2 
•  d(CO15) = max{2*4, max{d(CO11-8),d(CO7-0)} + 2} + 2 
•  d(CO15) = max{2*4,max{2*4,max{d(CO7-4),d(CO3-0)}+ 2} + 2}+ 2 
•  d(CO15) = max{2*4,max{2*4,max{2*4,2*4} + 2} + 2} + 2 
•  d(CO15) = 2*4 + 3*2 = 14 

•  In general, N-bit adder in M pieces: 2*(N/M) + (M-1)*2 
•  16-bit adder in 8 parts: 2*(16/8) + 7*2 = 18 > 14 ???! 
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Another Option 

•  Is the piece-wise faster adder as fast as we can go? 
•  No! 

•  Another approach to using additional resources 
•  Instead of redundantly computing sums assuming different carries, 

use redundancy to compute carries more quickly 
•  This approach is called carry lookahead addition (CLA)  
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Review: Carry Lookahead Addition (CLA) 

•  Let’s look at the carry function 
•  C16 = CO15 = A15B15+A15C15+B15C15 =(A15B15)+(A15+B15)C15 

•  Very important insights into CLA: 
•  (A15B15) generates a carry regardless of C15 àrename to g15 

•  (A15+B15) propagates C15 à rename to p15 

•  C16 = g15+p15C15 

•  C16 = g15+p15(g14+p14C14) 

•  C16 = g15+p15g14+p15p14(g13+p13C13) 
•  C16 = g15+p15g14+ … + p15p14…p2p1g0 + p15p14…p2p1p0p0 

•  Important note: can compute C16 in 2 levels of logic! 
•  Similar functions for C15 (=CO14), etc. 

•  In general: Ci = gi-1+pi-1Ci-1 
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Infinite Carry Lookahead 

•  Previous slide’s CLA functions assume “infinite” hardware 
•  Performance?  Critical path is d(S15) = ? 

•  d(p14,g14)+d(c15 given p14,g14)+d(S15 given c15)=1+2+2 = 5 !! 
•  Constant delay, i.e., not a function of N 

•  But not very practical in terms of hardware 
•  Assume 2N gates to compute pi and gi initially (ICQ: why 2N?) 
•  Computation of a single CN needs the following hardware: 

•  N AND gates + 1 OR gate, and largest gates have N+1 inputs 
•  Computation of all CN…C1 needs: 

•  N*(N+1)/2 AND gates + N OR gates, max N+1 inputs 
•  Not too bad if N=16: 152 gates, max input 17 
•  Pretty bad if N=64: 2144 gates, max input 65 
–  Big circuits are slow and high input gates are slow 
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Motivation for Multi-Level Carry Lookahead 

•  Let’s look at what we have so far (the two extremes) 
•  Ripple carry 

+ Few small gates: no additional gates used to speed up addition 
–  Logic in series: 2N latency 

•  Infinite CLA 
– Many big gates: N*(N+3)/2 additional gates, max N+1 inputs 
+ Logic in parallel: constant latency of 5 gate delays 

•  We’d like something in between 
•  Reasonable number of small gates 
•  Sub-linear (doesn’t have to be constant) latency  

•  Multi-level CLA 
•  Exploits hierarchy to achieve good compromise between the 

two extremes 
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Two-Level CLA for 4-bit Adder 

•  Individual carry equations 
•  C1 = g0+p0C0,  C2 = g1+p1C1,  C3 = g2+p2C2,   C4 = g3+p3C3 

•  Fully expanded (infinite hardware) CLA equations 
•  C1 = g0+p0C0 

•  C2 = g1+p1g0+p1p0C0 

•  C3 = g2+p2g1+p2p1g0+p2p1p0C0 

•  C4 = g3+p3g2+p3p2g1+p3p2p1g0+p3p2p1p0C0 

•  Hierarchical CLA equations 
•  First level: expand C2 using C1 and C4 using C3 

•  C2 = g1+p1(g0+p0C0) = (g1+p1g0)+(p1p0)C0 = G1-0+P1-0C0 

•  C4 = g3+p3(g2+p2C2) = (g3+p3g2)+(p3p2)C2 = G3-2+P3-2C2 

•  Second level: expand C4 using expanded C2 
•  C4 = G3-2+P3-2(G1-0+P1-0C0) = (G3-2+P3-2G1-0)+(P3-2P1-0)C0   
•  C4 = G3-0+P3-0C0 
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Two-Level (2L) CLA for 4-bit Adder 

•  Hardware? 
•  First level: block is infinite CLA for N=2 

•  5 gates per block, max # gate inputs (MNGI)=3 
•  2 of these “blocks” 

•  Second level: 1 of these “blocks” 
•  Total: 15 gates & 3 MNGI 

•  Infinite CLA: 14 & 5  (?!) 

•  Latency? 
•  Total: 9 (ICQ: why?) 

•  Infinite CLA: 5 

•  2 level: bigger and slower??! 
•  ICQ: what happened? 

G0 
P0 G1-0 

P1-0 

G3-2 
P3-2 

 

G3-0 
P3-0 
 

G1 
P1 

G2 
P2 

G3 
P3 

A0 
B0 

A1 
B1 

A2 
B2 

A3 
B3 

S0 

S1 

S2 

S3 

C4 

C2 

C0 

C3 

C1 
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Two-Level CLA for 16-bit Adder 

•  4 G/P inputs per level 

•  Hardware? 
•  First level: 14&5 * 4 blocks 
•  Second level: 14&5 * 1 block 
•  Total: 70&5 

•  Infinite: 152&17 

•  Latency? 
•  Total: 9 (1 + 2 + 2 + 2 + 2) 
•  Infinite: 5 

•  That’s more like it! 
•  CLA for a 64-bit adder? 

G3-0 
P3-0 

G7-4 
P7-4 

G11-8 
P11-8 

G15-12 
P15-12 

G15-0 
P15-0 

C8 

C4 

C12 

C16 
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A Closer Look at CLA Delay 

•  CLA block has “individual” G/P inputs 
•  Uses them to perform two calculations 
•  Group G/P on way up tree 
•  Group interior carries on way down tree 

•  Given group carry-in from level above 

•  Group carry-in for outer level (C0) ready at 0 
•  Outer level G/P, interior carries in parallel 

CLA4 

G0/P0 

G1/P1 

G2/P2 

G3/P3 

G3-0/P3-0 

C0 

C1 

C2 

C3 
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CLA Tree Signal Timing: d1 

•  Signals ready after 1 gate delay 
•  C0 
•  Individual G/P 

G3-0 
P3-0 

G15-0 
P15-0 

C4 

C16 

G7-4 
P7-4 

G11-8 
P11-8 

C8 

G15-12 
P15-12 

C12 

C0 
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CLA Tree Signal Timing: d3 

•  What is ready after 3 gate delays? 
•  First level group G/P G3-0 

P3-0 

G15-0 
P15-0 

C4 

C16 

G7-4 
P7-4 

G11-8 
P11-8 

C8 

G15-12 
P15-12 

C12 

C0 
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CLA Tree Signal Timing: d5 

•  And after 5 gate delays? 
•  Outer level “interior” carries 

•  C4, C8, C12 , C16 

G3-0 
P3-0 

G15-0 
P15-0 

C4 

C16 

G7-4 
P7-4 

G11-8 
P11-8 

C8 

G15-12 
P15-12 

C12 

C0 
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CLA Tree Signal Timing: d7 

•  And after 7 gate delays? 
•  First level “interior” carries 

•  C1, C2, C3  

•  C5, C6, C7 

•  C9, C10, C11  

•   C13, C14, C15 

•  Essentially, all remaining carries 

•  Si ready 2 gate delays after Ci 
•  All sum bits ready after 9 delays! 

G3-0 
P3-0 

G15-0 
P15-0 

C4 

C16 

G7-4 
P7-4 

G11-8 
P11-8 

C8 

G15-12 
P15-12 

C12 

C0 
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Subtraction: Addition’s Tricky Pal 

•  Sign/magnitude subtraction is mental reverse addition 
•  Two’s complement subtraction is addition 

•  How to subtract using an adder? 
•   sub A, B = add A, -B 
•  Negate B before adding (fast negation trick: –B = B’ + 1) 

•  Isn’t a subtraction then a negation and two additions? 
+  No, an adder can implement A+B+1 by setting the carry-in to 1 
+  Clever, huh? 

~ 

B 
A 

1 
0 
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A 16-bit ALU 

•  Build an ALU with functions: add/sub, and, or, not,xor 
•  All of these already in CLA adder/subtracter 
•   add A B, sub A B (done already) 
•   not B is needed for subtraction 
•   and A,B are first level Gs 
•   or A,B are first level Ps 
•   xor A,B? 

•  Si = Ai^Bi^Ci & 
G 

~ 
| 
P 

CLA 
-sum 

B 

A 

1 
0 

^ 

^ 
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This Unit: Arithmetic and ALU Design 

•  Integer Arithmetic and ALU 
•  Binary number representations 
•  Addition and subtraction 
•  The integer ALU 
•  Shifting and rotating 
•  Multiplication 
•  Division 

•  Floating Point Arithmetic 
•  Binary number representations 
•  FP arithmetic 
•  Accuracy 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 
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Shifts 

•  Shift: move all bits in a direction (left or right) 
•  Denoted by << (left shift) and  >> (right shift) in C/C++/Java 

•  ICQ: Left shift example: 001010 << 2 = ? 
•  ICQ: Right shift example: 001010 >> 2 = ? 
•  Shifts are useful for 

•  Bit manipulation: extracting and setting individual bits in words 
•  Multiplication and division by powers of 2  

•  A * 4 = A << 2 
•  A / 8 = A >> 3 
•  A * 5 = (A << 2) + A 

•  Compilers use this optimization, called strength reduction 
•  Easier to shift than it is to multiply (in general) 
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Rotations 

•  Rotations are slightly different than shifts 
•  1101 rotated 2 to the right = ? 

•  Rotations are generally less useful than shifts 
•  But their implementation is natural if a shifter is there 
•  MIPS has only shifts 
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Barrel Shifter 

•  What about shifting left by any amount from 0 to 15? 
•  Cycle input through “left-shift-by-1” up to 15 times? 

–  Complicated, variable latency 
•  16 consecutive “left-shift-by-1-or-0” circuits? 

–  Fixed latency, but would take too long 
•  Barrel shifter: four “shift-left-by-X-or-0” circuits (X = 1,2,4,8) 

<<4 <<8 <<2 <<1 
A O 

SHAMT 
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Right Shifts and Rotations 

•  Right shifts and rotations also have barrel implementations 
•  But are a little different 

•  Right shifts 
•  Can be logical (shift in 0s) or arithmetic (shift in copies of MSB) 

 srl 110011,2 à result is 001100  
 sra 110011,2 à result is 111100   

•  Caveat: sra is not equal to division by 2 of negative numbers 
•  Why might we want both types of right shifts?  

 

•  Rotations 
•  Mux in wires of upper/lower bits 
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Shift Registers 

•  Shift register: shift in place by constant quantity 
•  Sometimes that’s a useful thing 

DFF DFF DFF DFF 

I 

O 

0 
WE 

SEL 
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Base10 Multiplication 

•  Remember base 10 multiplication from 3rd grade? 

   43   // multiplicand 
*  12   // multiplier 
   86 
+ 430   
  516   // product  

•  Start with running total 0, repeat steps until no multiplier digits 
•  Multiply multiplicand by least significant multiplier digit 
•  Add to total 
•  Shift multiplicand one digit to the left (multiply by 10) 
•  Shift multiplier one digit to the right (divide by 10) 

•  Product of N-digit and M-digit numbers potentially has N+M digits 
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Binary Multiplication 
   43 = 00000101011   // multiplicand 
*  12 = 00000001100   // multiplier 
    0 = 00000000000 
    0 = 00000000000 
  172 = 00010101100  
+ 344 = 00101011000  
  516 = 01000000100  // product  

•  Same thing except … 
–  There are more individual steps (smaller base) 
+  But each step is simpler 
•  Multiply multiplicand by least significant multiplier bit 

•  0 or 1 → no actual multiplication, just add multiplicand or not 
•  Add to total: we know how to do that  
•  Shift multiplicand left, multiplier right by one bit: shift registers 
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Simple 16x16=32bit Multiplier Circuit 

•  Control algorithm: repeat 16 times 
•  If LSB(multiplier) == 1, then add multiplicand to product 
•  Shift multiplicand left by 1 
•  Shift multiplier right by 1 

Multiplicand  
32<<1 

Multiplier  
16>>1 

Product 
32 

control 32+ 
32 

32 

32 

4b example: 

0101 x 0110 
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Inefficiencies with Simple Circuit 

•  Notice 
–  32-bit addition, but 16 multiplicand bits are always 0 

•  And 0-bits are always moving 
•  Solution? Instead of shifting multiplicand left, shift product right 

Multiplicand  
32<<1 

Multiplier  
16>>1 

Product 
32 

control 32+ 
32 

32 

32 
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Better 16-bit Multiplier 

•  Control algorithm: repeat 16 times 
•  LSB(multiplier) == 1 ? Add multiplicand to upper half of product 
•  Shift multiplier right by 1 
•  Shift product right by 1 

Multiplicand 
16 

Multiplier  
16>>1 

Product 
32>>1 

control 16+ 
16 

16 

16 

4b example: 

0101 x 0110 
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Another Inefficiency 

•  Notice one more inefficiency 
•  What is initially the lower half of product gets thrown out 
–  As useless lower half of product is shifted right, so is multiplier 
•  Solution: use lower half of product as multiplier 

Multiplicand 
16 

Multiplier  
16>>1 

Product 
32>>1 

control 16+ 
16 

16 

16 
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Even Better 16-bit Multiplier 

•  Control algorithm: repeat 16 times 
•  LSB(multiplier) == 1 ? Add multiplicand to upper half of product 
•  Shift product right by 1 

Multiplicand 
16 

Multiplier 

Product 
32>>1 

control 16+ 
16 

16 

16 16 

4b example: 

0101 x 0110 
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Multiplying Negative Numbers 

•  If multiplicand is negative, our algorithm still works 
•  As long as right shifts are arithmetic and not logical 
•  Try 1111*0101 

•  If multiplier is negative, the algorithm breaks 

•  Two solutions 
1)  Negate multiplier, then negate product 
2)  Booth’s algorithm 
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Booth’s Algorithm 

•  Notice the following equality (Booth did) 
•  2J + 2J–1 + 2J–2 + … + 2K  = 2J+1 – 2K 

•  Example: 0111 = 1000 - 0001 

•  We can exploit this to create a faster multiplier 

•  How? 
•  Sequence of N 1s in the multiplier yields sequence of N additions 
•  Replace with one addition and one subtraction 
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Booth In Action 

•  For each multiplier bit, also examine bit to its right 
•  00: middle of a run of 0s, do nothing 
•  10: beginning of a run of 1s, subtract multiplicand 
•  11: middle of a run of 1s, do nothing 
•  01: end of a run of 1s, add multiplicand 

 
 
   43 = 00000101011 
*  12 = 00000001100 
    0 = 00000000000   // multiplier bits 0_ (implicit 0) 
+   0 = 00000000000   // multiplier bits 00  
- 172 = 11101010100   // multiplier bits 10 
+   0 = 00000000000   // multiplier bits 11 
+ 688 = 01010110000   // multiplier bits 01 
  516 = 01000000100 

ICQ: so why is Booth better? 
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Booth Hardware 

•  Control algorithm: repeat 16 times 
•  Multiplier LSBs == 10? Subtract multiplicand from product  
•  Multiplier LSBs == 01? Add multiplicand to product 
•  Shift product/multiplier right by 1 (not by 2!) 

Multiplicand 
16 

Multiplier 

Product 
32>>1 

control 16± 
16 

16 

16 16 
2 

+ or – 
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Booth in Summary 

•  Performance/efficiency 
+  Good for sequences of 3 or more 1s 

•  Replaces 3 (or more) adds with 1 add and 1 subtract 
•  Doesn’t matter for sequences of 2 1s 

•  Replaces 2 adds with 1 add and 1 subtract (add = subtract) 
–  Actually bad for singleton 1s 

•  Replaces 1 add with 1 add and 1 subtract 

•  Bottom line 
•  Worst case multiplier (101010) requires N/2 adds + N/2 subs 

•  What is the worst case multiplier for straight multiplication? 
•  How is this better than normal multiplication? 
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Modified Booth’s Algorithm 

•  What if we detect singleton 1s and do the right thing? 

•  Examine multiplier bits in groups of 2s plus a helper bit on 
the right (as opposed to 1 bit plus helper bit on right) 

•  Means we’ll need to shift product/multiplier by 2 (not 1) 

•  000: middle of run of 0s, do nothing 
•  100: beginning of run of 1s, subtract multiplicand<<1 (M*2) 

•  Why M*2 instead of M? 
•  010: singleton 1, add multiplicand 
•  110: beginning of run of 1s, subtract multiplicand 
•  001: end of run of 1s, add multiplicand 
•  101: end of run of 1s, beginning of another, subtract multiplicand 

•  Why is this? –2J+1 + 2J = –2J 
•  011: end of a run of 1s, add multiplicand<<1 (M*2) 
•  111: middle of run of 1s, do nothing 
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Modified Booth In Action 
   43 = 00000101011 
*  12 = 00000001100 
    0 = 00000000000   // multiplier bits 000 
- 172 = 11101010100   // multiplier bits 110 
+ 688 = 01010110000   // multiplier bits 001 
  516 = 01000000100 
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Modified Booth Hardware 

•  Control algorithm: repeat 8 times (not 16!) 
•  Based on 3b groups, add/subtract shifted/unshifted multiplicand 
•  Shift product/multiplier right by 2 

Multiplicand 
16 

Multiplier 

Product 
32>>2 

control 16± 
16 

16 

16 16 
3 

+ or – 

<<1 or no shift 
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Another Multiplier: Multiple Adders 

•  Can multiply by N bits at a time by using N adders 
–  Doesn’t help: 4X fewer iterations, each one 4X longer (4*9=36) 

Multiplicand 
16 

Product 
32>>4 

16+ 16 
16 

16 16 

<<3 

16 

16 

16+ 

16+ 

16+ 

<<1 

<<2 

control 

4 
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Carry Save Addition (CSA) 

•  Carry save addition (CSA): d(N adds) < N*d(1 add) 
•  Enabling observation: unconventional view of full adder 

•  3 inputs (A,B,Cin) → 2 outputs (S,Cout) 
•  If adding two numbers, only thing to do is chain Cout to Cin+1 

•  But what if we are adding three numbers (A+B+D)? 

•  One option: back-to-back conventional adders 
•  Add A + B = temp 
•  Add temp + D = Sum 

•  Better option: instead of rippling carries in first addition (A+B), 
feed the D bits in as the carry bits (treat D bits as C bits) 

•  Assume A+B+D = temp2 
•  Then do traditional addition (not CSA) of temp2 and C bits 

generated during addition of A+B+D 
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Carry Save Addition (CSA) 

•  2 conventional adders 
•  [2 * d(add)] gate levels 
•  d(add16)=9 
•  à d = 18 

•  k conventional adders 
•  d = [k * d(add16)] 
•  d = 9k 

•  CSA+conventional adder 
•  d = [d(CSA) + d(add16)] 
•  d(CSA) = d(1 FA) = 2 
•  à d = 11 

•  k CSAs+conventional add 
•  d = [k*d(CSA) + d(add)] 
•  d = 2k + 9 

FA FA FA FA 

FA FA FA FA FA 

A0 A1 A2 A3 

S0 S1 S2 S3 

D0 D1 D2 D3 

B0 B1 B2 B3 

CO 

0 

0 

FA FA FA FA 

FA FA FA FA 

A0 A1 A2 A3 

S0 S1 S2 S3 

D0 D1 D2 D3 B0 B1 B2 B3 

CO 
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Carry Save Multiplier 

•  4-bit at a time multiplier using 3 CSA + 1 normal adder 
•  Actually helps: 4X fewer iterations, each only (2+2+2+9=15) 

Multiplicand 
16 

Product 
32>>4 

16+ 16 

16 

16 16 

<<3 

<<1 

<<2 
CSA16 

CSA16 

CSA16 

control 

4 

<<0 
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Wallace Tree Multiplier (based on CSA) 
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Decimal Division 

•  Remember 4th grade long division? 
     43        // quotient 
12 √521        // divisor √ dividend  
   -480  
     41 
   - 36 
      5        // remainder 

•  Shift divisor left (multiply by 10) until MSB lines up with dividend’s 
•  Repeat until remaining dividend (remainder) < divisor 

•  Find largest single digit q such that (q*divisor) < dividend 
•  Set LSB of quotient to q 
•  Subtract (q*divisor) from dividend 
•  Shift quotient left by one digit  (multiply by 10) 
•  Shift divisor right by one digit (divide by 10) 
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Binary Division 
                       101011  = 43 
12 √521 = 01100 √ 01000001001 
   -384 =        - 0110000000 
    137 =           010001001 
   -  0 =        -          0 
    137 =           010001001 
   - 96 =        -   01100000 
     41 =             0101001 
   -  0 =        -          0 
     41 =             0101001 
   - 24 =        -     011000 
     17 =              010001 
   - 12 =        -      01100 
      5 =                 101 
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Hardware for Binary Division 

•  Same as decimal division, except (again) 
–  More individual steps (base is smaller) 
+  Each step is simpler 
•  Find largest bit q such that (q*divisor) < dividend 

•  q = 0 or 1 
•  Subtract (q*divisor) from dividend 

•  q = 0 or 1 → no actual multiplication, subtract divisor or not 

•  One complication: largest q such that (q*divisor) < dividend 
•  How to know if (1*divisor) < dividend? 
•  Human (e.g., ECE 152 student) can eyeball this 
•  Computer cannot 

•  Subtract and see if result is negative 
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Simple 16-bit Divider Circuit 

•  First: Shift Divisor left to align it with Dividend 

•  Then repeat this loop until Divisor<Remainder 
•  Subtract Divisor from Remainder (Remainder initially = Dividend) 

•  Result >= 0? RemainderßResult, write 1 into Quotient LSB 
•  Result < 0? Just write 0 into quotient LSB 

•  Shift divisor right 1 bit, shift quotient left 1 bit 

Divisor  
32>>1 

Quotient  
16<<1 

Remainder 
32 

control 32– 
32 

32 

32 < 0 

write 

dividend 
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Even Better Divider Circuit 

•  Multiplier circuit optimizations also work for divider 
•  Shift Remainder left and do 16-bit subtractions 
•  Combine Quotient with right (unused) half of Remainder 
•  Booth and modified Booth analogs (but really nasty) 

•  Multiplication and division in one circuit (how?)  

Divisor 
16 

Dividend 

Remainder/Quotient 
32<<1 

control 16– 
16 

16 

16 16 



ECE 152 © 2012 Daniel J. Sorin 
from Roth and Lebeck 60 

Summary of Integer Arithmetic and ALU 

•  Addition 
•  Half adder  full adder, ripple carry 
•  Fast addition: carry select and carry lookahead 

•  Subtraction as addition 
•  Barrel shifter and shift registers 
•  Multiplication 

•  N-step multiplication (3 refined implementations) 
•  Booth’s algorithm and N/2-step multiplication 

•  Division 
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This Unit: Arithmetic and ALU Design 

•  Integer Arithmetic and ALU 
•  Binary number representations 
•  Addition and subtraction 
•  The integer ALU 
•  Shifting and rotating 
•  Multiplication 
•  Division 

•  Floating Point Arithmetic 
•  Binary number representations 
•  FP arithmetic 
•  Accuracy 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 
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Floating Point Arithmetic 

•  Formats 
•  Precision and range 
•  IEEE 754 standard 

•  Operations 
•  Addition and subtraction 
•  Multiplication and division 

•  Error analysis 
•  Error and bias 
•  Rounding and truncation 

•  Only scientists care? 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 
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Floating Point (FP) Numbers 

•  Floating point numbers: numbers in scientific notation 
•  Two uses 

•  Use #1: real numbers (numbers with non-zero fractions) 
•  3.1415926… 
•  2.1878… 
•  9.8 
•  6.62 * 10–34 
•  5.875 

•  Use #2: really big numbers 
•  3.0 * 108 

•  6.02 * 1023 
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The World Before Floating Point 

•  Early computers were built for scientific calculations 
•  ENIAC: ballistic firing tables 

•  But didn’t have primitive floating point data types 
•  Circuits were big 
•  Many accuracy problems 

•  Programmers built scale factors into programs 
•  Large constant multiplier turns all FP numbers to integers 
•  Before program starts, inputs multiplied by scale factor manually 
•  After program finishes, outputs divided by scale factor manually 
•  Yuck! 
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The Fixed Width Dilemma 

•  “Natural” arithmetic has infinite width 
•  Infinite number of integers 
•  Infinite number of reals 
•  Infinitely more reals than integers (head… spinning…) 

•  Hardware arithmetic has finite width N (e.g., 16, 32, 64) 
•  Can represent 2N numbers 

•  If you could represent 2N integers, which would they be? 
•  Easy!  The 2N–1 on either size of 0 

•  If you could represent 2N reals, which would they be? 
•  2N reals from 0 to 1, not too useful 
•  2N powers of two (1, 2, 4, 8, …), also not too useful 
•  Something in between: yes, but what? 
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Range and Precision 

•  Range 
•  Distance between largest and smallest representable numbers 
•  Want big range 

•  Precision 
•  Distance between two consecutive representable numbers 
•  Want small precision 

•  In fixed bit width, can’t have unlimited both 
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Scientific Notation 

•  Scientific notation: good compromise 
•  Number [S,F,E] = S * F * 2E 
•  S: sign 
•  F: significand (fraction) 
•  E: exponent 
•  “Floating point”: binary (decimal) point has different magnitude 
 
+  “Sliding window” of precision using notion of significant digits 

•  Small numbers very precise, many places after decimal point 
•  Big numbers are much less so, not all integers representable 
•  But for those instances you don’t really care anyway 

–  Caveat: most representations are just approximations 
•  Sometimes weirdos like 0.9999999 or 1.0000001 come up 
+ But good enough for most purposes 
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IEEE 754 Standard Precision/Range 

•  Single precision: float in C 
•  32-bit: 1-bit sign + 8-bit exponent + 23-bit significand 
•  Range: 2.0 * 10–38 < N < 2.0 * 1038 

•  Precision: ~7 significant (decimal) digits 

•  Double precision: double in C 
•  64-bit: 1-bit sign + 11-bit exponent + 52-bit significand 
•  Range: 2.0 * 10–308 < N < 2.0 * 10308 

•  Precision: ~15 significant (decimal) digits 

•  Numbers >10308 don’t come up in many calculations 
•  1080 ~ number of atoms in universe 
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How Do Bits Represent Fractions? 

•  Sign: 0 or 1  → easy 
•  Exponent: signed integer → also easy 
•  Significand: unsigned fraction → not obvious! 

•  How do we represent integers?  
•  Sums of positive powers of two 
•  S-bit unsigned integer A: AS–12S–1 + AS–22S–2 + … + A121 + A020 

•  So how can we represent fractions?  
•  Sums of negative powers of two 
•  S-bit unsigned fraction A: AS–120 + AS–22–1 + … + A12–S+2 + A02–S+1 
•  More significant bits correspond to larger multipliers 
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Some Examples 

•  What is 5 in floating point? 
•  Sign: 0 
•  5 = 1.25 * 22 
•  Significand: 1.25 = 1*20 + 1*2–2 = 101 0000 0000 0000 0000 0000 
•  Exponent: 2 = 0000 0010 

•  What is –0.5 in floating point? 
•  Sign: 1 
•  0.5 = 0.5 * 20 
•  Significand: 0.5 = 1*2–1  = 010 0000 0000 0000 0000 0000 
•  Exponent: 0 = 0000 0000 
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Normalized Numbers 

•  Notice 
•  5 is 1.25 * 22 
•  But isn’t it also 0.625 * 23 and 0.3125 * 24 and …? 
•  With 8-bit exponent, we can have 8 representations of 5 

•  Multiple representations for one number is bad idea 
–  Would lead to computational errors 
–  Would waste bits 

•  Solution: choose normal (canonical) form 
•  Disallow de-normalized numbers (some exceptions later) 
•  IEEE 754 normal form: coefficient of 20 is always 1 

•  Similar to scientific notation: one non-zero digit left of decimal 
•  Normalized representation of 5 is 1.25 * 22 (1.25 = 1*20+1*2-2) 
•  0.625 * 23 is de-normalized (0.625 = 0*20+1*2-1+ 1*2-3) 
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More About Normalization 

•  What is –0.5 in normalized floating point? 
•  Sign: 1 
•  0.5 = 1 * 2–1 
•  Significand: 1 = 1*20  = 100 0000 0000 0000 0000 0000 
•  Exponent: -1 = 1111 1111  (assuming 2’s complement for now) 

•  IEEE 754: no need to represent coefficient of 20 explicitly 
•  It’s always 1 
+  Buy yourself an extra bit of precision 

•  Pretty cute trick 

•  Problem: what about 0? 
•  How can we represent 0 if 20 is always implicitly 1? 
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IEEE 754: The Whole Story 

•  Exponent: signed integer → not so fast 
•  Exponent represented in excess or bias notation 

•  N-bits typically can represent signed numbers from –2N–1 to 2N–1–1 
•  But in IEEE 754, they represent exponents from –2N–1+2 to 2N–1–1 
•  And they represent those as unsigned with an implicit 2N–1–1 added 

•  Implicit added quantity is called the bias 
•  Actual exponent is E–(2N–1–1)  

•  Example: single precision (8-bit exponent) 
•  Bias is 127, exponent range is –126 to 127 
•  –126 is represented as 1 = 0000 0001 
•  127 is represented as 254 = 1111 1110 
•  0 is represented as 127 = 0111 1111 
•  1 is represented as 128 = 1000 0000 
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IEEE 754: Continued 

•  Notice: two exponent bit patterns are “unused” 

•  0000 0000: represents de-normalized numbers 
•  Numbers that have implicit 0 (rather than 1) in 20 

•  Zero is a special kind of de-normalized number 
+ Exponent is all 0s, significand is all 0s 
–  There are both +0 and –0, but they are considered the same 

•  Also represent numbers smaller than smallest normalized numbers 

•  1111 1111: represents infinity and NaN 
•  ± infinities have 0s in the significand 
•  ± NaNs do not 
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IEEE 754: To Infinity and Beyond 

•  What are infinity and NaN used for? 
•  To allow operations to proceed past overflow/underflow situations 
•  Overflow: operation yields exponent greater than 2N–1–1 
•  Underflow: operation yields exponent less than –2N–1+2 

•  IEEE 754 defines operations on infinity and NaN 
•  N / 0 = infinity 
•  N / infinity = 0 
•  0 / 0 = NaN 
•  Infinity / infinity = NaN 
•  Infinity – infinity = NaN 
•  Anything and NaN = NaN 
•  Will not test you on these rules 
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IEEE 754: Final Format 

•  Biased exponent 
•  Normalized significand 
•  Exponent uses more significant bits than significand 

•  Helps when comparing FP numbers 
•  Exponent bias notation helps there too – why? 

•  Every computer since about 1980 supports this standard 
•  Makes code portable (at the source level at least) 
•  Makes hardware faster (stand on each other’s shoulders) 

exp significand 
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Floating Point Arithmetic 

•  We will look at 
•  Addition/subtraction 
•  Multiplication/division 

•  Implementation 
•  Basically, integer arithmetic on significand and exponent 

•  Using integer ALUs 
•  Plus extra hardware for normalization 

•  To help us here, look at toy “quarter” precision format 
•  8 bits: 1-bit sign + 3-bit exponent + 4-bit significand 
•  Bias is 3  (= 2N-1 – 1) 
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FP Addition 

•  Assume 
•  A represented as bit pattern [SA, EA, FA] 
•  B represented as bit pattern [SB, EB, FB] 

•  What is the bit pattern for A+B [SA+B, EA+B, FA+B]? 
•  [SA+SB, EA+EB, FA+FB]?  Nope! 
•  So what is it then? 
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FP Addition Decimal Example 

•  Let’s look at a decimal example first: 99.5 + 0.8 
•  9.95*101 + 8.0*10-1 

•  Step I: align exponents (if necessary) 
•  Temporarily de-normalize operand with smaller exponent 
•  Add 2 to its exponent → must shift significand right by 2 
•  8.0* 10-1 → 0.08*101 

•  Step II: add significands 
•  9.95*101 + 0.08*101  → 10.03*101 

•  Step III: normalize result 
•  Shift significand right by 1 and then add 1 to exponent 
•  10.03*101 → 1.003*102 
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FP Addition (Quarter Precision) Example 

•  Now a binary “quarter” example: 7.5 + 0.5 
•  7.5 = 1.875*22 = 0 101 11110  (the 1 is the implicit leading 1) 

•  1.875 = 1*20+1*2-1+1*2-2+1*2-3 
•  0.5 = 1*2-1 = 0 010 10000 

•  Step I: align exponents (if necessary) 
•  0 010 10000 → 0 101 00010 
•  Add 3 to exponent → shift significand right by 3 

•  Step II: add significands 
•  0 101 11110 + 0 101 00010 = 0 101 100000 

•  Step III: normalize result 
•  0 101 100000 → 0 110 10000 
•  Shift significand right by 1 → add 1 to exponent 
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FP Addition Hardware 

E1 F1 E2 F2 

– 

>> 

+ 

>> + 

ctrl 

E F 

v 
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What About FP Subtraction? 

•  Or addition of negative quantities for that matter 
•  How to subtract significands that are not in TC form?  
•  Can we still use an adder? 

•  Trick: internally and temporarily convert to TC 
•  Add “phantom” –2 in front (–1*21) 
•  Use standard negation trick 
•  Add as usual 
•  If phantom –2 bit is 1, result is negative 

•  Negate it using standard trick again, flip result sign bit 
•  Then ignore “phantom” bit (which is now 0 anyway) 

•  You’ll want to try this at home! 
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FP Multiplication 

•  Assume 
•  A represented as bit pattern [SA, EA, FA] 
•  B represented as bit pattern [SB, EB, FB] 

•  What is the bit pattern for A*B [SA*B, EA*B, FA*B]? 
•  This one is actually a little easier (conceptually) than addition 

•  Scientific notation is logarithmic 
•  In logarithmic form: multiplication is addition 

•  [SAXOR SB, EA+EB, FA*FB]? Pretty much, except for… 
•  Normalization 
•  Addition of exponents in biased notation (must subtract bias) 
•  Tricky: when multiplying two normalized F-bit significands… 

•  Where is the binary point? 
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FP Division 

•  Assume 
•  A represented as bit pattern [SA, EA, FA] 
•  B represented as bit pattern [SB, EB, FB] 

•  What is the bit pattern for A/B [SA/B, EA/B, FA/B]? 
•  [SAXOR SB, EA–EB, FA/FB]? Pretty much, again except for… 

•  Normalization 
•  Subtraction of exponents in biased notation (must add bias) 
•  Binary point placement 
•  No need to worry about remainders, either 

•  A little bit of irony 
•  Multiplication/division roughly same complexity for FP and integer 
•  Addition/subtraction much more complicated for FP than integer 



ECE 152 © 2012 Daniel J. Sorin 
from Roth and Lebeck 85 

Accuracy 

•  Remember our decimal addition example? 
•  9.95*101 + 8.00*10-1 → 1.003*102 

•  Extra decimal place caused by de-normalization… 
•  But what if our representation only has two digits of precision? 

•  What happens to the 3? 
•  Corresponding binary question: what happens to extra 1s? 

•  Solution: round 
•  Option I: round down (truncate), no hardware necessary 
•  Option II: round up (round), need an incrementer 

•  Why rounding up called round?  
•  Because an extra 1 is half-way, which is rounded up 



ECE 152 © 2012 Daniel J. Sorin 
from Roth and Lebeck 86 

More About Accuracy  

•  Problem with both truncation and rounding 
–  They cause errors to accumulate 

•  E.g., if always round up, result will gradually “crawl” upwards 

•  One solution: round to nearest even 
•  If un-rounded LSB is 1 → round up (011 → 10) 
•  If un-rounded LSB is 0 → round down (001 → 00) 
•  Round up half the time, down other half → overall error is stable 

•  Another solution: multiple intermediate precision bits 
•  IEEE 754 defines 3: guard + round + sticky 

•  Guard and round are shifted by de-normalization as usual 
•  Sticky is 1 if any shifted out bits are 1 

•  Round up if 101 or higher, round down if 011 or lower 
•  Round to nearest even if 100 



ECE 152 © 2012 Daniel J. Sorin 
from Roth and Lebeck 87 

Numerical Analysis 

•  Accuracy problems sometimes get bad 
•  Addition of big and small numbers 
•  Subtraction of big numbers 
•  Example, what’s 1*1030 + 1*100 – 1*1030? 

•  Intuitively: 1*100 = 1 
•  But: (1*1030 + 1*100) – 1*1030 = (1*1030 – 1*1030) = 0 

•  Numerical analysis: field formed around this problem 
•  Bounding error of numerical algorithms 
•  Re-formulating algorithms in a way that bounds numerical error 
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One Last Thing About Accuracy 

•  Suppose you added two numbers and came up with 
•  0 101 11111 101 
•  What happens when you round? 
•  Number becomes denormalized… arrrrgggghhh 

•  FP adder actually has six steps, not three 
•  Align exponents 
•  Add/subtract significands 
•  Re-normalize 
•  Round 
•  Potentially re-normalize again 
•  Potentially round again 
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Accuracy, Shmaccuracy? 

•  Only scientists care? Au contraire 

•  Intel 486 used equivalent of Modified Booth’s for division 
•  Generate multiple quotient bits per step 
•  Requires you to guess quotient bits and adjust later 
•  Guess taken from a lookup table implemented as PLA 

•  Along came Pentium 
•  PLA was optimized to return 0 for “impossible” table indices 
•  Which turned out not to be “impossible” after all 
•  Result: precision errors in 4th–15th decimal places for some divisors 

•  “Pentium fdiv bug” is born 
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Pentium FDIV Bug 

•  Pentium shipped in August 1994 
•  Intel actually knew about the bug in July 

•  But calculated that delaying the project a month would cost ~$1M 
•  And that in reality only a dozen or so people would encounter it 
•  They were right… but one of them took the story to EE Times 

•  By November 1994, firestorm was full on 
•  IBM said that typical Excel user would encounter bug every month 

•  Assumed 5K divisions per second around the clock 
•  People believed the story 
•  IBM stopped shipping Pentium PCs 

•  By December 1994, Intel promises full recall 
•  Total cost: ~$550M 
•  All for a bug which in reality maybe affected a dozen people 
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Summary of Floating Point 

•  FP representation 
•  S*F*2E 
•  IEEE754 standard 
•  Representing fractions 
•  Normalized numbers 

•  FP operations 
•  Addition/subtraction: hard 
•  Multiplication/division: logarithmic no harder than integer 

•  Accuracy problems 
•  Rounding and truncation 

•  Upshot: FP hardware is tough 
•  Thank lucky stars that ECE 152 project has no FP 
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Unit Recap: Arithmetic and ALU Design 

•  Integer Arithmetic and ALU 
•  Binary number representations 
•  Addition and subtraction 
•  The integer ALU 
•  Shifting and rotating 
•  Multiplication 
•  Division 

•  Floating Point Arithmetic 
•  Binary number representations 
•  FP arithmetic 
•  Accuracy 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 


