
ECE 152 / 496
Introduction to Computer Architecture

Processor Design: Datapath and Control
Benjamin C. Lee
Duke University

Slides from Daniel Sorin (Duke)
and are derived from work by

Amir Roth (Penn) and Alvy Lebeck (Duke)

© 2012 Daniel J. Sorin
from Roth ECE152 2

Where We Are in This Course Right Now

•  So far:
•  We know what a computer architecture is
•  We know what kinds of instructions it might execute
•  We know how to perform arithmetic and logic in an ALU

•  Now:
•  We learn how to design a processor in which the ALU is just one

component
•  Processor must be able to fetch instructions, decode them, and

execute them
•  There are many ways to do this, even for a given ISA

•  Next:
•  We learn how to use pipelining to get better performance out of

this processor

© 2012 Daniel J. Sorin
from Roth ECE152 3

This Unit: Processor Design

•  Datapath components and timing
•  Registers and register files
•  Memories (RAMs)

•  Mapping an ISA to a datapath
•  Control
•  Exceptions

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

© 2012 Daniel J. Sorin
from Roth ECE152 4

Readings

•  Patterson and Hennessy
•  Chapter 4: Sections 4.1-4.4

•  Read this chapter carefully
•  It has many more examples than I can cover in class

© 2012 Daniel J. Sorin
from Roth ECE152 5

So You Have an ALU…

•  Important reminder: a processor is just a big finite state
machine (FSM) that interprets some ISA

•  Start with one instruction
 add $3,$2,$4

•  ALU performs just a small part of execution of instruction
•  You have to read and write registers
•  You have have to fetch the instruction to begin with

•  What about loads and stores?
•  Need some sort of memory interface

•  What about branches?
•  Need some hardware for that, too

© 2012 Daniel J. Sorin
from Roth ECE152 6

Datapath and Control

•  Datapath: registers, memories, ALUs (computation)
•  Control: which registers read/write, which ALU operation
•  Fetch: get instruction, translate into control
•  Processor Cycle: Fetch → Decode → Execute

PC
Insn

memory
Register

File
Data

Memory

control

datapath

fetch

© 2012 Daniel J. Sorin
from Roth ECE152 7

Building a Processor for an ISA

•  Fetch is pretty straightforward
•  Just need a register (called the Program Counter or PC) to hold

the next address to fetch from instruction memory
•  Provide address to instruction memory à instruction memory

provides instruction at that address

•  Let’s start with the datapath
1.  Look at ISA
2.  Make sure datapath can implement every instruction

© 2012 Daniel J. Sorin
from Roth ECE152 8

Datapath for MIPS ISA

•  Consider only the following instructions
add $1,$2,$3
addi $1,2,$3
lw $1,4($3)
sw $1,4($3)
beq $1,$2,PC_relative_target
j Absolute_target

•  Why only these?
•  Most other instructions are similar from datapath viewpoint
•  I leave the other ones for you to figure out

© 2012 Daniel J. Sorin
from Roth ECE152 9

Review (ECE 52 & Project Part1): Register

•  Register: DFF array with shared clock, write-enable (WE)
•  Notice: both a clock and a WE (DFFWE = clock & registerWE)
•  Convention I: clock represented by wedge
•  Convention II: if no WE, DFF is written on every clock

DFF

DFF

DFF

D0

DN-1

D1

CLK
WE

Q0

Q1

QN-1

D Q
N N

WE

© 2012 Daniel J. Sorin
from Roth ECE152 10

Uses of Registers

•  A single register is good for some things
•  PC: program counter
•  Other things which aren’t the ISA registers

•  ICQ: other examples from within the ALU, mult, div?

PC
Insn

memory
Register

File
Data

Memory

control

datapath

fetch

© 2012 Daniel J. Sorin
from Roth ECE152 11

What About the ISA Registers?

•  Register file: the ISA (“architectural”, ”visible”) registers
•  Two read “ports” + one write “port”

•  Maximum number of reads/writes in single instruction (R-type)

•  Port: wires for accessing an array of data
•  Data bus: width of data element (MIPS: 32 bits)
•  Address bus: width of log2 number of elements (MIPS: 5 bits)
•  Write enable: if it’s a write port
•  M ports = M parallel and independent accesses

Register File

RS1VAL

RS2VAL

RDVAL

RD WE RS1 RS2
RD = dest reg

RS = source reg

© 2012 Daniel J. Sorin
from Roth ECE152 12

A Register File With Four Registers

© 2012 Daniel J. Sorin
from Roth ECE152 13

Add a Read Port for RS1

•  Output of each register into 4to1 mux (RS1VAL)
•  RS1 is select input of RS1VAL mux

RS1

RS1VAL

© 2012 Daniel J. Sorin
from Roth ECE152 14

Add Another Read Port for RS2

•  Output of each register into another 4to1 mux (RS2VAL)
•  RS2 is select input of RS2VAL mux

RS1

RS1VAL

RS2VAL

RS2

© 2012 Daniel J. Sorin
from Roth ECE152 15

Add a Write Port for RD

•  Input RDVAL into each register
•  Enable only one register’s WE: (Decoded RD) & (WE)

•  What if we needed two write ports?

RS1

RS1VAL

RS2VAL

RS2 RD WE

RDVAL

2-to-1 decoder

© 2012 Daniel J. Sorin
from Roth ECE152 16

Another Read Port Implementation

•  A read port that uses muxes is fine for 4 registers
•  Not so good for 32 registers (32-to-1 mux is very slow)

•  Alternative implementation uses tri-state buffers
•  Truth table (E = enable, D = input, Q = output)

E D → Q
1 D → D
0 D → Z

•  Z: “high impedance” state, no current flowing

•  Mux: connect multiple tri-stated buses to one output bus
•  Key: only one input “driving” at any time, all others must be in “Z”

•  Else, all hell breaks loose (electrically)

D Q

E

© 2012 Daniel J. Sorin
from Roth ECE152 17

Register File With Tri-State Read Ports

RS2 RS1 RD WE

RDVAL
RS1VAL

RS2VAL

© 2012 Daniel J. Sorin
from Roth ECE152 18

Another Useful Component: Memory

•  Memory: where instructions and data reside
•  One read/write “port”: one access per cycle, either read or write

•  One address bus
•  One input data bus for writes, one output data bus for reads

Memory

DATAOUT DATAIN

WE

ADDRESS

© 2012 Daniel J. Sorin
from Roth ECE152 19

Let’s Build A MIPS-like Datapath

© 2012 Daniel J. Sorin
from Roth ECE152 20

Start With Fetch

•  PC and instruction memory
•  A +4 incrementer computes default next instruction PC

•  Why +4 (and not +1)? What will it be for 32-bit Duke 152/32?

P
C

Insn
Mem

+
4

© 2012 Daniel J. Sorin
from Roth ECE152 21

First Instruction: add $rd, $rs, $rt

•  Add register file and ALU

P
C

Insn
Mem

Register
File

Op(6) rs(5) rt(5) rd(5) Sh(5) Func(6) R-type

s1 s2 d

+
4

rs

rt
rs + rt

© 2012 Daniel J. Sorin
from Roth ECE152 22

Second Instruction: addi $rt, $rs, imm

•  Destination register can now be either rd or rt
•  Add sign extension unit and mux into second ALU input

P
C

Insn
Mem

Register
File

S
X

Op(6) rs(5) rt(5) I-type Immed(16)

s1 s2 d

+
4

rs

Extended(imm)

sign extension (sx) unit

© 2012 Daniel J. Sorin
from Roth ECE152 23

Third Instruction: lw $rt, imm($rs)

•  Add data memory, address is ALU output (rs+imm)
•  Add register write data mux to select memory output or ALU output

P
C

Insn
Mem

Register
File

S
X

Op(6) rs(5) rt(5) I-type Immed(16)

s1 s2 d

Data
Mem

a

d

+
4

?

?

?

?

?

?

© 2012 Daniel J. Sorin
from Roth ECE152 24

Fourth Instruction: sw $rt, imm($rs)

•  Add path from second input register to data memory data input
•  Disable RegFile’s WE signal

P
C

Insn
Mem

Register
File

S
X

Op(6) rs(5) rt(5) I-type Immed(16)

s1 s2 d

Data
Mem

a

d

+
4

?

© 2012 Daniel J. Sorin
from Roth ECE152 25

Fifth Instruction: beq $1,$2,target

•  Add left shift unit (why?) and adder to compute PC-relative branch target
•  Add mux to do what?

P
C

Insn
Mem

Register
File

S
X

Op(6) rs(5) rt(5) I-type Immed(16)

s1 s2 d

Data
Mem

a

d

+
4

<<
2

z

© 2012 Daniel J. Sorin
from Roth ECE152 26

Sixth Instruction: j

•  Add shifter to compute left shift of 26-bit immediate
•  Add additional PC input mux for jump target

P
C

Insn
Mem

Register
File

S
X

Op(6) J-type Immed(26)

s1 s2 d

Data
Mem

a

d

+
4

<<
2

<<
2

© 2012 Daniel J. Sorin
from Roth ECE152 27

Seventh, Eight, Ninth Instructions

•  Are these the paths we would need for all instructions?
sll $1,$2,4 // shift left logical

•  Like an arithmetic operation, but need a shifter too
slt $1,$2,$3 // set less than (slt)

•  Like subtract, but need to write the condition bits, not the result
•  Need zero extension unit for condition bits
•  Need additional input to register write data mux

jal absolute_target // jump and link
•  Like a jump, but also need to write PC+4 into $ra ($31)

•  Need path from PC+4 adder to register write data mux
•  Need to be able to specify $31 as an implicit destination

jr $31 // jump register
•  Like a jump, but need path from register read to PC write mux

© 2012 Daniel J. Sorin
from Roth ECE152 28

Clock Timing

•  Must deliver clock(s) to avoid races
•  Can’t write and read same value at same clock edge

•  Particularly a problem for RegFile and Memory

•  May create multiple clock edges (from single input clock)
by using buffers (to delay clock) and inverters

© 2012 Daniel J. Sorin
from Roth ECE152 29

This Unit: Processor Design

•  Datapath components and timing
•  Registers and register files
•  Memories (RAMs)
•  Clocking strategies

•  Mapping an ISA to a datapath
•  Control
•  Exceptions

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

© 2012 Daniel J. Sorin
from Roth ECE152 30

What Is Control?

•  9 signals control flow of data through this datapath
•  MUX selectors, or register/memory write enable signals
•  Datapath of current microprocessor has 100s of control signals

P
C

Insn
Mem

Register
File

S
X

s1 s2 d

Data
Mem

a

d

+
4

<<
2

<<
2

Rwe

ALUinB

DMwe

JP

ALUop

BR

Rwd

Rdst

© 2012 Daniel J. Sorin
from Roth ECE152 31

Example: Control for add

P
C

Insn
Mem

Register
File

S
X

s1 s2 d

Data
Mem

a

d

+
4

<<
2

<<
2

BR=0

JP=0

Rwd=0

DMwe=0 ALUop=0

ALUinB=0 Rdst=1

Rwe=1

© 2012 Daniel J. Sorin
from Roth ECE152 32

Example: Control for sw

•  Difference between a sw and an add is 5 signals
•  3 if you don’t count the X (“don’t care”) signals

P
C

Insn
Mem

Register
File

S
X

s1 s2 d

Data
Mem

a

d

+
4

<<
2

<<
2

Rwe=0

ALUinB=1

DMwe=1

JP=0

ALUop=0

BR=0

Rwd=X

Rdst=X

© 2012 Daniel J. Sorin
from Roth ECE152 33

Example: Control for beq $1,$2,target

•  Difference between a store and a branch is only 4 signals

P
C

Insn
Mem

Register
File

S
X

s1 s2 d

Data
Mem

a

d

+
4

<<
2

<<
2

Rwe=0

ALUinB=0

DMwe=0

JP=0

ALUop=1

BR=1

Rwd=X

Rdst=X

© 2012 Daniel J. Sorin
from Roth ECE152 34

How Is Control Implemented?

P
C

Insn
Mem

Register
File

S
X

s1 s2 d

Data
Mem

a

d

+
4

<<
2

<<
2

Rwe

ALUinB

DMwe

JP

ALUop

BR

Rwd

Rdst

Control?

© 2012 Daniel J. Sorin
from Roth ECE152 35

Implementing Control

•  Each instruction has a unique set of control signals
•  Most signals are function of opcode
•  Some may be encoded in the instruction itself

•  E.g., the ALUop signal is some portion of the MIPS Func field
+  Simplifies controller implementation
–  Requires careful ISA design

•  Options for implementing control
1.  Use instruction type to look up control signals in a table
2.  Design FSM whose outputs are control signals
•  Either way, goal is same: turn instruction into control signals

© 2012 Daniel J. Sorin
from Roth ECE152 36

Control Implementation: ROM

•  ROM (read only memory): like a RAM but unwritable
•  Bits in data words are control signals
•  Lines indexed by opcode

•  Example: ROM control for our simple datapath

BR JP ALUinB ALUop DMwe Rwe Rdst Rwd

add 0 0 0 0 0 1 1 0

addi 0 0 1 0 0 1 1 0

lw 0 0 1 0 0 1 0 1

sw 0 0 1 0 1 0 0 0

beq 1 0 0 1 0 0 0 0

j 0 1 0 0 0 0 0 0

opcode

© 2012 Daniel J. Sorin
from Roth ECE152 37

ROM vs. Combinational Logic

•  A control ROM is fine for 6 insns and 9 control signals
•  A real machine has 100+ insns and 300+ control signals

•  Even “RISC”s have lots of instructions
•  30,000+ control bits (~4KB)
–  Not huge, but hard to make fast

•  Control must be faster than datapath

•  Alternative: combinational logic
•  ECE 52 strikes back!
•  Exploits observation: many signals have few 1s or few 0s

© 2012 Daniel J. Sorin
from Roth ECE152 38

ALUinB

Control Implementation: Combinational Logic

•  Example: combinational logic control for our simple
datapath

opcode add
addi
lw
sw
beq
j

BR JP DMwe Rwd Rdst ALUop Rwe

© 2012 Daniel J. Sorin
from Roth ECE152 39

Datapath and Control Timing

P
C

Insn
Mem

Register
File

S
X

s1 s2 d

Data
Mem

a

d

+
4

Control (ROM or combinational logic)

Read IMem Read Registers
(Read Control ROM)

Read DMEM Write DMEM
Write Registers

Write PC

© 2012 Daniel J. Sorin
from Roth ECE152 40

This Unit: Processor Design

•  Datapath components and timing
•  Registers and register files
•  Memories (RAMs)
•  Clocking strategies

•  Mapping an ISA to a datapath
•  Control
•  Exceptions

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

© 2012 Daniel J. Sorin
from Roth ECE152 41

Exceptions

•  Exceptions and interrupts
•  Infrequent (exceptional!) events

•  I/O, divide-by-0, illegal instruction, page fault, protection fault,
ctrl-C, ctrl-Z, timer

•  Handling requires intervention from operating system
•  End program: divide-by-0, protection fault, illegal insn, ^C
•  Fix and restart program: I/O, page fault, ^Z, timer

•  Handling should be transparent to application code
•  Don’t want to (can’t) constantly check for these using insns
•  Want “Fix and restart” equivalent to “never happened”

© 2012 Daniel J. Sorin
from Roth ECE152 42

Exception Handling

•  What does exception handling look like to software?
•  When exception happens…

•  Control transfers to OS at pre-specified exception handler address
•  OS has privileged access to registers user processes do not see

•  These registers hold information about exception
•  Cause of exception (e.g., page fault, arithmetic overflow)
•  Other exception info (e.g., address that caused page fault)
•  PC of application insn to return to after exception is fixed

•  OS uses privileged (and non-privileged) registers to do its “thing”
•  OS returns control to user application

•  Same mechanism available programmatically via SYSCALL

© 2012 Daniel J. Sorin
from Roth ECE152 43

MIPS Exception Handling

•  MIPS uses registers to hold state during exception handling
•  These registers live on “coprocessor 0”
•  $14: EPC (holds PC of user program during exception handling)
•  $13: exception type (SYSCALL, overflow, etc.)
•  $8: virtual address (that produced page/protection fault)
•  $12: exception mask (which exceptions trigger OS)

•  Exception registers accessed using two privileged
instructions mfc0, mtc0

•  Privileged = user process can’t execute them
•  mfc0: move (register) from coprocessor 0 (to user reg)
•  mtc0: move (register) to coprocessor 0 (from user reg)

•  Privileged instruction rfe restores user mode
•  Kernel executes this instruction to restore user program

© 2012 Daniel J. Sorin
from Roth ECE152 44

Implementing Exceptions

•  Why do architects care about exceptions?
•  Because we use datapath and control to implement them
•  More precisely… to implement aspects of exception handling

•  Recognition of exceptions
•  Transfer of control to OS
•  Privileged OS mode

© 2012 Daniel J. Sorin
from Roth ECE152 45

Datapath with Support for Exceptions

•  Co-processor register (CR) file needn’t be implemented as
RF
•  Independent registers connected directly to pertinent muxes

•  PSR (processor status register): in privileged mode?

P
C

Insn
Mem

Register
File

S
X

s1 s2 d

Data
Mem

a

d

+
4

<<
2

<<
2

I
R

B

A

O
D

Co-procesor
Register File

P
S
R

ALUinAC

PCwC

CRwd CRwe

PSRs

PSRr

© 2012 Daniel J. Sorin
from Roth ECE152 46

Summary

•  We now know how to build a fully functional processor
•  But …

•  We’re still treating memory as a black box (actually two green
boxes, to be precise)

•  Our fully functional processor is slow. Really, really slow.

© 2012 Daniel J. Sorin
from Roth ECE152 47

“Single-Cycle” Performance

•  Useful metric: cycles per instruction (CPI)
+  Easy to calculate for single-cycle processor: CPI = 1

•  Seconds/program = (insns/program) * 1 CPI * (N seconds/cycle)
•  ICQ: How many cycles/second in 3.8 GHz processor?

–  Slow!
•  Clock period must be elongated to accommodate longest operation

•  In our datapath: lw
•  Goes through five structures in series: insn mem, register file

(read), ALU, data mem, register file again (write)
•  No one will buy a machine with a slow clock

•  Not even your grandparents!

© 2012 Daniel J. Sorin
from Roth ECE152 48

This Unit: Processor Design

•  Datapath components and timing
•  Registers and register files
•  Memories (RAMs)
•  Clocking strategies

•  Mapping an ISA to a datapath
•  Control

Application

OS

Firmware Compiler

CPU I/O

Memory

Digital Circuits

Gates & Transistors

Next up: Pipelining

