
ECE 152 / 496 
Introduction to Computer Architecture 

Processor Design: Datapath and Control 
Benjamin C. Lee 
Duke University  

 
 

Slides from Daniel Sorin (Duke) 
and are derived from work by 

Amir Roth (Penn) and Alvy Lebeck (Duke) 



© 2012 Daniel J. Sorin  
from Roth     ECE152      2  

Where We Are in This Course Right Now 

•  So far: 
•  We know what a computer architecture is 
•  We know what kinds of instructions it might execute 
•  We know how to perform arithmetic and logic in an ALU 

•  Now: 
•  We learn how to design a processor in which the ALU is just one 

component 
•  Processor must be able to fetch instructions, decode them, and 

execute them 
•  There are many ways to do this, even for a given ISA  

•  Next: 
•  We learn how to use pipelining to get better performance out of 

this processor 
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This Unit: Processor Design 

•  Datapath components and timing 
•  Registers and register files 
•  Memories (RAMs) 

•  Mapping an ISA to a datapath 
•  Control 
•  Exceptions 
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Readings 

•  Patterson and Hennessy 
•  Chapter 4: Sections 4.1-4.4 

•  Read this chapter carefully 
•  It has many more examples than I can cover in class 
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So You Have an ALU… 

•  Important reminder: a processor is just a big finite state 
machine (FSM) that interprets some ISA 

•  Start with one instruction 
 add $3,$2,$4 

•  ALU performs just a small part of execution of instruction 
•  You have to read and write registers 
•  You have have to fetch the instruction to begin with 

•  What about loads and stores? 
•  Need some sort of memory interface 

•  What about branches? 
•  Need some hardware for that, too 
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Datapath and Control 

•  Datapath: registers, memories, ALUs (computation) 
•  Control: which registers read/write, which ALU operation 
•  Fetch: get instruction, translate into control 
•  Processor Cycle: Fetch → Decode → Execute 

PC 
Insn 

memory 
Register 

File 
Data 

Memory 

control 

datapath 

fetch 
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Building a Processor for an ISA 

•  Fetch is pretty straightforward 
•  Just need a register (called the Program Counter or PC) to hold 

the next address to fetch from instruction memory 
•  Provide address to instruction memory à instruction memory 

provides instruction at that address  

•  Let’s start with the datapath 
1.  Look at ISA 
2.  Make sure datapath can implement every instruction 
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Datapath for MIPS ISA 

•  Consider only the following instructions 
add $1,$2,$3 
addi $1,2,$3 
lw $1,4($3) 
sw $1,4($3) 
beq $1,$2,PC_relative_target 
j Absolute_target 

•  Why only these? 
•  Most other instructions are similar from datapath viewpoint 
•  I leave the other ones for you to figure out 
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Review (ECE 52 & Project Part1): Register 

•  Register: DFF array with shared clock, write-enable (WE) 
•  Notice: both a clock and a WE (DFFWE = clock & registerWE) 
•  Convention I: clock represented by wedge 
•  Convention II: if no WE, DFF is written on every clock 

DFF 

DFF 

DFF 

D0 

DN-1 

D1 

CLK 
WE 

Q0 

Q1 

QN-1 

D Q 
N N 

WE 
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Uses of Registers 

•  A single register is good for some things 
•  PC: program counter 
•  Other things which aren’t the ISA registers 

•  ICQ: other examples from within the ALU, mult, div? 

PC 
Insn 

memory 
Register 

File 
Data 

Memory 

control 

datapath 

fetch 



© 2012 Daniel J. Sorin  
from Roth     ECE152      11  

What About the ISA Registers? 

•  Register file: the ISA (“architectural”, ”visible”) registers 
•  Two read “ports” + one write “port” 

•  Maximum number of reads/writes in single instruction (R-type) 

•  Port: wires for accessing an array of data 
•  Data bus: width of data element (MIPS: 32 bits) 
•  Address bus: width of log2 number of elements (MIPS: 5 bits) 
•  Write enable: if it’s a write port 
•  M ports = M parallel and independent accesses 

Register File 

RS1VAL 

RS2VAL 

RDVAL 

RD WE RS1 RS2 
RD = dest reg 

RS = source reg 
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A Register File With Four Registers 
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Add a Read Port for RS1 

•  Output of each register into 4to1 mux (RS1VAL) 
•  RS1 is select input of RS1VAL mux 

RS1 

RS1VAL 
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Add Another Read Port for RS2 

•  Output of each register into another 4to1 mux (RS2VAL) 
•  RS2 is select input of RS2VAL mux 

RS1 

RS1VAL 

RS2VAL 

RS2 
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Add a Write Port for RD 

•  Input RDVAL into each register 
•  Enable only one register’s WE: (Decoded RD) & (WE)  

•  What if we needed two write ports? 

RS1 

RS1VAL 

RS2VAL 

RS2 RD WE 

RDVAL 

2-to-1 decoder 
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Another Read Port Implementation 

•  A read port that uses muxes is fine for 4 registers 
•  Not so good for 32 registers (32-to-1 mux is very slow) 

•  Alternative implementation uses tri-state buffers 
•  Truth table (E = enable, D = input, Q = output) 

E D → Q 
1 D → D  
0 D → Z           

•  Z: “high impedance” state, no current flowing 

•  Mux: connect multiple tri-stated buses to one output bus 
•  Key: only one input “driving” at any time, all others must be in “Z” 

•  Else, all hell breaks loose (electrically) 

D Q

E 
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Register File With Tri-State Read Ports 

RS2 RS1 RD WE 

RDVAL 
RS1VAL 

RS2VAL 
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Another Useful Component: Memory 

•  Memory: where instructions and data reside 
•  One read/write “port”: one access per cycle, either read or write 

•  One address bus 
•  One input data bus for writes, one output data bus for reads 
 

Memory 

DATAOUT DATAIN 

WE 

ADDRESS 
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Let’s Build A MIPS-like Datapath 
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Start With Fetch 

•  PC and instruction memory 
•  A +4 incrementer computes default next instruction PC 

•  Why +4 (and not +1)?  What will it be for 32-bit Duke 152/32? 

P 
C 

Insn 
Mem 

+ 
4 
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First Instruction: add $rd, $rs, $rt 

•  Add register file and ALU 

P 
C 

Insn 
Mem 

Register 
File 

Op(6) rs(5) rt(5) rd(5) Sh(5) Func(6) R-type 

s1 s2 d 

+ 
4 

rs 

rt 
rs + rt 
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Second Instruction: addi $rt, $rs, imm 

•  Destination register can now be either rd or rt 
•  Add sign extension unit and mux into second ALU input 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

Op(6) rs(5) rt(5) I-type Immed(16) 

s1 s2 d 

+ 
4 

rs 

Extended(imm) 

sign extension (sx) unit 
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Third Instruction: lw $rt, imm($rs) 

•  Add data memory, address is ALU output (rs+imm) 
•  Add register write data mux to select memory output or ALU output 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

Op(6) rs(5) rt(5) I-type Immed(16) 

s1 s2 d 

Data 
Mem 

a 

d 

+ 
4 

? 

? 

? 

? 

? 
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Fourth Instruction: sw $rt, imm($rs) 

•  Add path from second input register to data memory data input 
•  Disable RegFile’s WE signal 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

Op(6) rs(5) rt(5) I-type Immed(16) 

s1 s2 d 

Data 
Mem 

a 

d 

+ 
4 

? 
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Fifth Instruction: beq $1,$2,target 

•  Add left shift unit (why?) and adder to compute PC-relative branch target 
•  Add mux to do what? 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

Op(6) rs(5) rt(5) I-type Immed(16) 

s1 s2 d 
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Mem 

a 
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Sixth Instruction: j 

•  Add shifter to compute left shift of 26-bit immediate 
•  Add additional PC input mux for jump target 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

Op(6) J-type Immed(26) 

s1 s2 d 
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Mem 
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2 
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Seventh, Eight, Ninth Instructions 

•  Are these the paths we would need for all instructions? 
sll $1,$2,4  // shift left logical 

•  Like an arithmetic operation, but need a shifter too 
slt $1,$2,$3  // set less than (slt) 

•  Like subtract, but need to write the condition bits, not the result 
•  Need zero extension unit for condition bits 
•  Need additional input to register write data mux 

jal absolute_target   // jump and link 
•  Like a jump, but also need to write PC+4 into $ra ($31) 

•  Need path from PC+4 adder to register write data mux 
•  Need to be able to specify $31 as an implicit destination 

jr $31   // jump register 
•  Like a jump, but need path from register read to PC write mux 
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Clock Timing 

•  Must deliver clock(s) to avoid races 
•  Can’t write and read same value at same clock edge 

•  Particularly a problem for RegFile and Memory 

•  May create multiple clock edges (from single input clock) 
by using buffers (to delay clock) and inverters 
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This Unit: Processor Design 

•  Datapath components and timing 
•  Registers and register files 
•  Memories (RAMs) 
•  Clocking strategies 

•  Mapping an ISA to a datapath 
•  Control 
•  Exceptions 
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What Is Control? 

•  9 signals control flow of data through this datapath 
•  MUX selectors, or register/memory write enable signals 
•  Datapath of current microprocessor has 100s of control signals  
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Example: Control for add 

P 
C 
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File 
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2 

BR=0 
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Rwe=1 
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Example: Control for sw 

•  Difference between a sw and an add is 5 signals 
•  3 if you don’t count the X (“don’t care”) signals 
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File 
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Example: Control for beq $1,$2,target 

•  Difference between a store and a branch is only 4 signals 
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How Is Control Implemented? 

P 
C 

Insn 
Mem 

Register 
File 
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X 

s1 s2 d 
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Control? 
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Implementing Control 

•  Each instruction has a unique set of control signals 
•  Most signals are function of opcode 
•  Some may be encoded in the instruction itself 

•  E.g., the ALUop signal is some portion of the MIPS Func field 
+  Simplifies controller implementation 
–  Requires careful ISA design 

•  Options for implementing control 
1.  Use instruction type to look up control signals in a table 
2.  Design FSM whose outputs are control signals 
•  Either way, goal is same: turn instruction into control signals 
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Control Implementation: ROM 

•  ROM (read only memory): like a RAM but unwritable 
•  Bits in data words are control signals 
•  Lines indexed by opcode 

•  Example: ROM control for our simple datapath 

BR JP ALUinB ALUop DMwe Rwe Rdst Rwd 

add 0 0 0 0 0 1 1 0 

addi 0 0 1 0 0 1 1 0 

lw 0 0 1 0 0 1 0 1 

sw 0 0 1 0 1 0 0 0 

beq 1 0 0 1 0 0 0 0 

j 0 1 0 0 0 0 0 0 

opcode 
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ROM vs. Combinational Logic 

•  A control ROM is fine for 6 insns and 9 control signals 
•  A real machine has 100+ insns and 300+ control signals 

•  Even “RISC”s have lots of instructions 
•  30,000+ control bits (~4KB) 
–  Not huge, but hard to make fast 

•  Control must be faster than datapath 

•  Alternative: combinational logic 
•  ECE 52 strikes back! 
•  Exploits observation: many signals have few 1s or few 0s 
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ALUinB 

Control Implementation: Combinational Logic 

•  Example: combinational logic control for our simple 
datapath 

opcode add 
addi 
lw 
sw 
beq 
j 

BR JP DMwe Rwd Rdst ALUop Rwe 
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Datapath and Control Timing 

P 
C 

Insn 
Mem 

Register 
File 

S 
X 

s1 s2 d 

Data 
Mem 

a 

d 

+ 
4 

Control (ROM or combinational logic) 

Read IMem Read Registers 
(Read Control ROM) 

Read DMEM Write DMEM 
Write Registers 

Write PC 
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This Unit: Processor Design 

•  Datapath components and timing 
•  Registers and register files 
•  Memories (RAMs) 
•  Clocking strategies 

•  Mapping an ISA to a datapath 
•  Control 
•  Exceptions 
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Exceptions 

•  Exceptions and interrupts 
•  Infrequent (exceptional!) events 

•  I/O, divide-by-0, illegal instruction, page fault, protection fault, 
ctrl-C, ctrl-Z, timer 

•  Handling requires intervention from operating system 
•  End program: divide-by-0, protection fault, illegal insn, ^C 
•  Fix and restart program: I/O, page fault, ^Z, timer 

•  Handling should be transparent to application code 
•  Don’t want to (can’t) constantly check for these using insns 
•  Want “Fix and restart” equivalent to “never happened” 
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Exception Handling 

•  What does exception handling look like to software? 
•  When exception happens… 

•  Control transfers to OS at pre-specified exception handler address 
•  OS has privileged access to registers user processes do not see 

•  These registers hold information about exception 
•  Cause of exception (e.g., page fault, arithmetic overflow) 
•  Other exception info (e.g., address that caused page fault) 
•  PC of application insn to return to after exception is fixed 

•  OS uses privileged (and non-privileged) registers to do its “thing” 
•  OS returns control to user application 

•  Same mechanism available programmatically via SYSCALL 
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MIPS Exception Handling 

•  MIPS uses registers to hold state during exception handling 
•  These registers live on “coprocessor 0” 
•   $14: EPC  (holds PC of user program during exception handling) 
•   $13: exception type (SYSCALL, overflow, etc.) 
•   $8: virtual address (that produced page/protection fault) 
•   $12: exception mask (which exceptions trigger OS) 

•  Exception registers accessed using two privileged 
instructions mfc0, mtc0 

•  Privileged = user process can’t execute them 
•  mfc0: move (register) from coprocessor 0 (to user reg) 
•  mtc0: move (register) to coprocessor 0 (from user reg) 

•  Privileged instruction rfe restores user mode 
•  Kernel executes this instruction to restore user program 
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Implementing Exceptions 

•  Why do architects care about exceptions? 
•  Because we use datapath and control to implement them 
•  More precisely… to implement aspects of exception handling 

•  Recognition of exceptions 
•  Transfer of control to OS 
•  Privileged OS mode 
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Datapath with Support for Exceptions 

•  Co-processor register (CR) file needn’t be implemented as 
RF 
•  Independent registers connected directly to pertinent muxes 

•  PSR (processor status register): in privileged mode? 
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Summary 

•  We now know how to build a fully functional processor 
•  But … 

•  We’re still treating memory as a black box (actually two green 
boxes, to be precise) 

•  Our fully functional processor is slow.  Really, really slow. 
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“Single-Cycle” Performance 

•  Useful metric: cycles per instruction (CPI) 
+  Easy to calculate for single-cycle processor: CPI = 1 

•  Seconds/program = (insns/program) * 1 CPI * (N seconds/cycle) 
•  ICQ: How many cycles/second in 3.8 GHz processor? 

–  Slow! 
•  Clock period must be elongated to accommodate longest operation 

•  In our datapath: lw 
•  Goes through five structures in series: insn mem, register file 

(read), ALU, data mem, register file again (write) 
•  No one will buy a machine with a slow clock 

•  Not even your grandparents! 
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This Unit: Processor Design 

•  Datapath components and timing 
•  Registers and register files 
•  Memories (RAMs) 
•  Clocking strategies 

•  Mapping an ISA to a datapath 
•  Control 

Application 

OS 

Firmware Compiler 

CPU I/O 

Memory 

Digital Circuits 

Gates & Transistors 

Next up: Pipelining 


