
1

ECE 152 / 496
Introduction to Computer Architecture

Caches and Memory Hierarchies

Benjamin C. Lee

Duke University

Slides from Daniel Sorin (Duke)

and are derived from work by

Amir Roth (Penn) and Alvy Lebeck (Duke)

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

2

Where We Are in This Course Right Now

• So far:

• We know how to design a processor that can fetch, decode, and
execute the instructions in an ISA

• We have assumed that memory storage (for instructions and data)
is a magic black box

• Now:

• We learn why memory storage systems are hierarchical

• We learn about caches and SRAM technology for caches

• Next:

• We learn how to implement main memory

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

3

This Unit: Caches and Memory Hierarchies

• Memory hierarchy

• Basic concepts

• SRAM technology

• Transistors and circuits

• Cache organization

• ABC

• CAM (content associative memory)

• Classifying misses

• Two optimizations

• Writing into a cache

• Some example calculations

Application

OS

Firmware Compiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

4

Readings

• Patterson and Hennessy

• Chapter 5

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

5

Storage

• We have already seen some storage implementations

• Individual registers

• For singleton values: e.g., PC, PSR

• For march/transient values: e.g., in pipelined design

• Register File

• For architectural values: e.g., ISA registers

• What else is there?

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

6

Storage Hierarchy

• Registers

• Few locations: e.g., 32 4-byte words

• Accessible directly via user-level ISA: multiple specifiers per insn

• Volatile (values disappear when power goes off)

• Memory

• Many (but finite) locations: e.g., 232 bytes

• Accessible indirectly via user-level ISA: one specifier per insn

• Also volatile

• Disk

• “Infinitely” many locations

• Not accessible to user-level ISA (only via OS SYSCALL)

• Non-volatile

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

7

Storage Hierarchy

• Registers vs. memory

• Direct specification (fast) vs. address calculation (slow)

• Few addresses (small & fast) vs. many (big & slow)

• Not everything can be put into registers (e.g., arrays, structs)

• Memory vs. disk

• Electrical (fast) vs. electro-mechanical (extremely slow)

• Disk is so slow (relatively), it is considered I/O

• We will talk just about memory for instructions and data

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

8

(CMOS) Memory Components

• Interface

• N-bit address bus (on N-bit machine)

• Data bus

• Typically read/write on same data bus

• Can have multiple ports: address/data bus pairs

• Can be synchronous: read/write on clock edges

• Can be asynchronous: untimed “handshake”

• Performance

• Access time proportional to (#ports) * √(#bits)

• √(#bits)? Proportional to max wire length

• More about this a little later …

M

address data

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

9

Memory Performance Equation

• For memory component M
• Access: read or write to M

• Hit: desired data found in M

• Miss: desired data not found in M

• Must get from another (slower) component

• Fill: action of placing data in M

• %miss (miss-rate): #misses / #accesses

• thit: time to read data from (write data to) M

• tmiss: time to read data into M from lower level

• Performance metric
• tavg: average access time

tavg = thit + (%miss * tmiss)

CPU

M

thit

tmiss

%miss

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

10

Memory Hierarchy

tavg = thit + %miss * tmiss

• Problem: hard to get low thit and %miss in one structure

• Large structures have low %miss but high thit

• Small structures have low thit but high %miss

• Solution: use a hierarchy of memory structures

• A very old (by computer standards) idea:

 “Ideally, one would desire an infinitely large memory capacity such that
any particular word would be immediately available … We are forced to
recognize the possibility of constructing a hierarchy of memories, each of
which has a greater capacity than the preceding but which is less quickly
accessible.”

Burks, Goldstine, and Von Neumann
“Preliminary discussion of the logical design of an electronic computing instrument”

 IAS memo 1946

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

11

Abstract Memory Hierarchy

• Hierarchy of memory components
• Upper components (closer to CPU)

• Fast  Small  Expensive

• Lower components (further from CPU)

• Slow  Big  Cheap

• Connected by buses
• Which we will ignore for now

• Make average access time close to M1’s
• How?

• Most frequently accessed data in M1

• M1 + next most frequently accessed in M2, etc.

• Automatically move data up&down hierarchy

CPU

M1

M2

M3

M4

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

12

Why Hierarchy Works I

• 10/90 rule (of thumb)

• For Instruction Memory:

• 10% of static insns account for 90% of executed insns

• Inner loops

• For Data Memory:

• 10% of variables account for 90% of accesses

• Frequently used globals, inner loop stack variables

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

13

Why Hierarchy Works II

• Temporal locality
• Recently executed insns likely to be executed again soon

• Inner loops (next iteration)

• Recently referenced data likely to be referenced again soon

• Data in inner loops, hot global data

• Hierarchy can be “reactive”: move things up when accessed

• Spatial locality
• Insns near recently executed insns likely to be executed soon

• Sequential execution

• Data near recently referenced data likely to be referenced soon

• Elements in an array, fields in a struct, variables in frame

• Hierarchy can be “proactive”: move things up speculatively

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

14

Abstract Hierarchy Performance

How do we compute tavg ?

=tavg-M1

=thit-M1 +(%miss-M1*tmiss-M1)

=thit-M1 +(%miss-M1*tavg-M2)

=thit-M1 +(%miss-M1*(thit-M2+(%miss-M2*tmiss-M2)))

=thit-M1 +(%miss-M1*(thit-M2+(%miss-M2*tavg-M3)))

= …

tmiss-M3 = tavg-M4

CPU

M1

M2

M3

M4

tmiss-M2 = tavg-M3

tmiss-M1 = tavg-M2

tavg = tavg-M1

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

15

Concrete Memory Hierarchy

• 1st level: L1 I$, L1 D$ (L1 insn/data caches)

• 2nd level: L2 cache

• Often on-chip, certainly on-package (with CPU)

• Made of SRAM (same circuit type as CPU)

• Managed in hardware

• This unit of ECE 152

• 3rd level: main memory

• Made of DRAM

• Managed in software

• Next unit of ECE 152

• 4th level: disk (swap space)

• Made of magnetic iron oxide discs

• Managed in software

• Course unit after main memory

• Could be other levels (e.g., Flash, PCM, tape, etc.)

CPU

D$

L2

Main

Memory

I$

Disk(swap)

Note: some

processors have

L3$ between L2$

and memory

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

16

Concrete Memory Hierarchy

• Much of today’s chips used for caches  important!

L2

I$
Regfile

 D$

a

d

+

4

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

17

A Typical Die Photo

L2 Cache

Pentium4 Prescott

chip with 2MB L2$

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

18

A Closer Look at that Die Photo

Pentium4 Prescott

chip with 2MB L2$

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

19

A Multicore Die Photo from IBM

IBM’s Xenon chip

with 3 PowerPC

cores

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

20

This Unit: Caches and Memory Hierarchies

• Memory hierarchy

• Basic concepts

• SRAM technology

• Transistors and circuits

• Cache organization

• ABC

• CAM (content associative memory)

• Classifying misses

• Two optimizations

• Writing into a cache

• Some example calculations

Application

OS

Firmware Compiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

21

Implementing Big Storage Arrays

• Register file: bits as flip-flops, read ports as muxes
• Not realistic, even if we replace muxes with tri-state buffers

• MIPS register file: each read port is a 32-bit 32-to-1 mux?

• Just routing the wires would be a nightmare

• What about a cache? each read port is a 1024-to-1 mux? Yuck!

RS1

RS1VAL

RS2VAL

RS2 RD WE

RDVAL

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

22

SRAM

• Reality: large storage arrays implemented in “analog” way

• Bits as cross-coupled inverters, not flip-flops

• Inverters: 2 gates = 4 transistors per bit

• Flip-flops: 8 gates =~32 transistors per bit

• Ports implemented as shared buses called bitlines (next slide)

• Called SRAM (static random access memory)

• “Static”  a written bit maintains its value (but still volatile)

• Example: storage array with two 2-bit words

Word 0

Word 1

Bit 0 Bit 1

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

23

• To write (a 1):

1. Drive bit lines (bit=1, bit=0)

2. Select row

• To read:

1. Pre-charge bit and bit to Vdd (set to 1)

2. Select row

3. Cell pulls one line lower (pulls towards 0)

4. Sense amp on column detects difference between bit and bit

bit bit

word 6-Transistor SRAM Cell

bit bit

word
(row select)

1 0

0 1

Static RAM Cell

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

24

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

SRAM

Cell

- + Sense Amp - + Sense Amp - + Sense Amp - + Sense Amp

: : : :

Word 0

Word 1

Word 15

Dout 0 Dout 1 Dout 2 Dout 3

- +
Wr Driver &

Precharger - +
Wr Driver &

Precharger - +
Wr Driver &

Precharger - +
Wr Driver &

Precharger

A
d

d
ress D

eco
d

er

WrEn

Precharge

Din 0 Din 1 Din 2 Din 3

A0

A1

A2

A3

Typical SRAM Organization: 16-word x 4-bit

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

25

• Write Enable is usually active low (WE_L)

• Din and Dout are combined (D) to save pins:

• A new control signal, output enable (OE_L) is needed

• WE_L is asserted (Low), OE_L is de-asserted (High)

• D serves as the data input pin

• WE_L is de-asserted (High), OE_L is asserted (Low)

• D is now the data output pin

• Both WE_L and OE_L are asserted:

• Result is unknown. Don’t do that!!!

A

D OE_L

2 N words

x M bit

SRAM

N

M

WE_L

Logic Diagram of a Typical SRAM

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

26

Write Timing:

D

Read Timing:

WE_L

A

Write

Hold Time

Write Setup Time

A

D OE_L

2 N words

x M bit

SRAM

N

M

WE_L

Data In

Write Address

OE_L

High Z

Junk Read Address

Junk

Read Access

Time

Data Out

Read Access

Time

Data Out Junk

Read Address

Typical SRAM Timing: Write then 2 Reads

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

27

SRAM Summary

• Large storage arrays cannot be implemented “digitally”
• Muxing and wire routing become impractical

• SRAM implementation exploits analog transistor properties
• Inverter pair bits much smaller than flip-flop bits

• Wordline/bitline arrangement makes for simple “grid-like” routing

• Basic understanding of reading and writing

• Wordlines select words

• Overwhelm inverter-pair to write

• Drain pre-charged line or swing voltage to read

• Access latency proportional to √#bits * #ports

• You must understand important properties of SRAM
• Will help when we talk about DRAM (next unit)

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

28

This Unit: Caches and Memory Hierarchies

• Memory hierarchy

• Basic concepts

• SRAM technology

• Transistors and circuits

• Cache organization

• ABCs

• CAM (content associative memory)

• Classifying misses

• Two optimizations

• Writing into a cache

• Some example calculations

Application

OS

Firmware Compiler

I/O

Memory

Digital Circuits

Gates & Transistors

CPU

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

29

Basic Cache Structure

• Basic cache: array of block frames
• Example: 4KB cache made up of 1024 4B frames

• To find frame: decode part of address
• Which part?

• 32-bit address

• 4B blocks  2 LS bits locate byte within block

• These are called offset bits

• 1024 frames  next 10 bits find frame

• These are the index bits

• Note: nothing says index must be these bits

• But these work best (think about why)

0

1

1021

1022

1023

2

3

[31:12]

data

[11:2] <<

CPU address

1024*32

SRAM

bitlines

w
o
rd

lin
e
s

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

30

Basic Cache Structure

• Each frame can hold one of 220 blocks

• All blocks with same index bit pattern

• How to know which if any is currently there?

• To each frame attach tag and valid bit

• Compare frame tag to address tag bits

• No need to match index bits (why?)

• Lookup algorithm

• Read frame indicated by index bits

• If (tag matches && valid bit set)

then Hit  data is good

Else Miss  data is no good, wait

0

1

1021

1022

1023

2

3

1:0 [31:12]

data

[11:2] <<

CPU
address

==

hit/miss

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

31

Calculating Tag Size

• “4KB cache” means cache holds 4KB of data

• Called capacity

• Tag storage is considered overhead (not included in capacity)

• Calculate tag overhead of 4KB cache with 1024 4B frames

• Not including valid bits

• 4B frames  2-bit offset

• 1024 frames  10-bit index

• 32-bit address – 2-bit offset – 10-bit index = 20-bit tag

• 20-bit tag * 1024 frames = 20Kb tags = 2.5KB tags

• 63% overhead

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

32

Measuring Cache Performance

• Ultimate metric is tavg

• Cache capacity roughly determines thit

• Lower-level memory structures determine tmiss

• Measure %miss

• Hardware performance counters (Pentium, Sun, etc.)

• Simulation (write a program that mimics behavior)

• Hand simulation (next slide)

• %miss depends on program that is running

• Why?

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

33

Cache Performance Simulation

• Parameters: 8-bit addresses, 32B cache, 4B blocks

• Addresses initially in cache : 0, 4, 8, 12, 16, 20, 24, 28

• To find location in cache, do mod32 arithmetic (why 32?)

Cache contents (prior to access) Address Outcome

0, 4, 8, 12, 16, 20, 24, 28 200 (200%32=8) Miss

0, 4, 200, 12, 16, 20, 24, 28 204 (204%32=12) Miss

0, 4, 200, 204, 16, 20, 24, 28 144 (144%32=16) Miss

0, 4, 200, 204, 144, 20, 24, 28 6 Hit

0, 4, 200, 204, 144, 20, 24, 28 8 Miss

0, 4, 8, 204, 144, 20, 24, 28 12 Miss

0, 4, 8, 12, 144, 20, 24, 28 20 Hit

0, 4, 8, 12, 144, 20, 24, 28 16 Miss

0, 4, 8, 12, 16, 20, 24, 28 144 Miss

0, 4, 8, 12, 144, 20, 24, 28 200 Miss

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

34

Block Size

• Given capacity, manipulate %miss by changing organization

• One option: increase block size

+ Exploit spatial locality

• Caveat: works only up to a point

+ Reduce tag overhead

• Notice tag/index/offset bits

0-1

2-3

1020-1021

1022-1023

4-5

[2:0] [31:12]

data

[11:3] <<

CPU
address

==

hit/miss

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

35

Calculating Tag Size

• Calculate tag overhead of 4KB cache with 512 8B frames

• Not including valid bits

• 8B frames  3-bit offset

• 512 frames  9-bit index

• 32-bit address – 3-bit offset – 9-bit index = 20-bit tag

• 20-bit tag * 512 frames = 10Kb tags = 1.25KB tags

+ 32% overhead

+ Less tag overhead with larger blocks

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

36

Cache Performance Simulation

• Parameters: 8-bit addresses, 32B cache, 8B blocks

• Addresses in base4 (“nibble”) notation

• Initial contents : 0000(0010), 0020(0030), 0100(0110), 0120(0130)

Cache contents (prior to access) Address Outcome

0000(0010), 0020(0030), 0100(0110), 0120(0130) 3020 Miss

0000(0010), 3020(3030), 0100(0110), 0120(0130) 3030 Hit (spatial locality!)

0000(0010), 3020(3030), 0100(0110), 0120(0130) 2100 Miss

0000(0010), 3020(3030), 2100(2110), 0120(0130) 0012 Hit

0000(0010), 3020(3030), 2100(2110), 0120(0130) 0020 Miss

0000(0010), 0020(0030), 2100(2110), 0120(0130) 0030 Hit (spatial locality)

0000(0010), 0020(0030), 2100(2110), 0120(0130) 0110 Miss (conflict)

0000(0010), 0020(0030), 0100(0110), 0120(0130) 0100 Hit (spatial locality)

0000(0010), 0020(0030), 0100(0110), 0120(0130) 2100 Miss

0000(0010), 0020(0030), 2100(2110), 0120(0130) 3020 Miss

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

37

Effect of Block Size

• Increasing block size has two effects (one good, one bad)

+ Spatial prefetching

• For blocks with adjacent addresses

• Turns miss/miss pairs into miss/hit pairs

• Example from previous slide: 3020,3030

– Conflicts

• For blocks with non-adjacent addresses (but adjacent frames)

• Turns hits into misses by disallowing simultaneous residence

• Example: 2100,0110

• Both effects always present to some degree

• Spatial prefetching dominates initially (until 64–128B)

• Interference dominates afterwards

• Optimal block size is 32–128B (varies across programs)

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

38

Conflicts

• What about pairs like 3030/0030, 0100/2100?

• These will conflict in any size cache (regardless of block size)

• Will keep generating misses

• Can we allow pairs like these to simultaneously reside?

• Yes, but we have to reorganize cache to do so

Cache contents (prior to access) Address Outcome

0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 3020 Miss

0000, 0010, 3020, 0030, 0100, 0110, 0120, 0130 3030 Miss

0000, 0010, 3020, 3030, 0100, 0110, 0120, 0130 2100 Miss

0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0012 Hit

0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0020 Miss

0000, 0010, 0020, 3030, 2100, 0110, 0120, 0130 0030 Miss

0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0110 Hit

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

39

Set-Associativity

• Set-associativity

• Block can reside in one of few frames

• Frame groups called sets

• Each frame in set called a way

• This is 2-way set-associative (SA)

• 1-way  direct-mapped (DM)

• 1-set  fully-associative (FA)

+ Reduces conflicts

– Increases thit: additional mux

512

513

1022

1023

514

1:0 [31:11]

data

[10:2] <<

CPU
address

==

hit/miss

0

1

510

511

2

==

ways

s
e
ts

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

40

Set-Associativity

• Lookup algorithm

• Use index bits to find set

• Read data/tags in all frames in parallel

• Any (match && valid bit)?

• Then Hit

• Else Miss

• Notice tag/index/offset bits

512

513

1022

1023

514

1:0 [31:11]

data

[10:2] <<

CPU
address

==

hit/miss

0

1

510

511

2

==

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

41

Cache Performance Simulation

• Parameters: 32B cache, 4B blocks, 2-way set-associative

• Initial contents : 0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130

Cache contents Address Outcome

[0000,0100], [0010,0110], [0020,0120], [0030,0130] 3020 Miss

[0000,0100], [0010,0110], [0120,3020], [0030,0130] 3030 Miss

[0000,0100], [0010,0110], [0120,3020], [0130,3030] 2100 Miss

[0100,2100], [0010,0110], [0120,3020], [0130,3030] 0012 Hit

[0100,2100], [0010,0110], [0120,3020], [0130,3030] 0020 Miss

[0100,2100], [0010,0110], [3020,0020], [0130,3030] 0030 Miss

[0100,2100], [0010,0110], [3020,0020], [3030,0030] 0110 Hit

[0100,2100], [0010,0110], [3020,0020], [3030,0030] 0100 Hit (avoid conflict)

[2100,0100], [0010,0110], [3020,0020], [3030,0030] 2100 Hit (avoid conflict)

[0100,2100], [0010,0110], [3020,0020], [3030,0030] 3020 Hit (avoid conflict)

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

42

Cache Replacement Policies

• Set-associative caches present a new design choice
• On cache miss, which block in set to replace (kick out)?

• Some options
• Random

• FIFO (first-in first-out)

• When is this a good idea?

• LRU (least recently used)

• Fits with temporal locality, LRU = least likely to be used in future

• NMRU (not most recently used)

• An easier-to-implement approximation of LRU

• NMRU=LRU for 2-way set-associative caches

• Belady’s: replace block that will be used furthest in future

• Unachievable optimum (but good for comparisons)

• Which policy is simulated in previous slide?

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

43

NMRU and Miss Handling

• Add MRU field to each set

• MRU data is encoded “way”

• Hit? update MRU

• Fill? write enable ~MRU

512

513

1023

1:0 [31:11]

data

[10:2] <<

CPU
address

==

hit/miss

0

1

511

==

W
E

data from memory

~

W
E

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

44

Physical Cache Layout

• Logical layout

• Data and tags mixed together

• Physical layout

• Data and tags in separate RAMs

• Often multiple sets per line

• As square as possible

• Not shown here

512

513

1022

1023

514

1:0 [31:11]

data

[10:2] <<

CPU
address

==

hit/miss

0

1

510

511

2

==

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

45

Full-Associativity

• How to implement full (or at least high) associativity?

• Doing it this way is terribly inefficient

• 1K matches are unavoidable, but 1K data reads + 1K-to-1 mux?

1 1023

1:0 [31:2] <<

CPU

==

0 1022

== == ==

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

46

Full-Associativity with CAMs

• CAM: content addressable memory

• Array of words with built-in comparators

• Matchlines instead of bitlines

• Output is “one-hot” encoding of match

• FA cache?

• Tags as CAM

• Data as RAM

0

1

1022

1023

1:0 [31:2] <<

==

==

==

==

• Hardware is not software

• Example I: parallel computation with carry select adder

• Example II: parallel search with CAM

• No such thing as software CAM

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

47

CAM Circuit

• Matchlines (correspond to bitlines in SRAM): inputs

• Wordlines: outputs

• Two phase match

• Phase I: clk=1, pre-charge wordlines to 1

• Phase II: clk=0, enable matchlines, non-matched bits dis-charge wordlines

~match1 ~match0 match1
~clk

match0

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

48

CAM Circuit In Action

• Phase I: clk=1

• Pre-charge wordlines to 1

~match1 ~match0 match1
~clk

match0

1

1

1

1 0

1

0 1 1 0

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

49

CAM Circuit In Action

• Phase I: clk=0

• Enable matchlines (notice, match bits are flipped)

• Any non-matching bit discharges entire wordline

• Implicitly ANDs all bit matches (NORs all bit non-matches)

• Similar technique for doing a fast OR for hit detection

~match1 ~match0 match1
~clk

match0

1

0

1

1 0

1

0 1 1 0

Looking for match

with 01

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

50

CAM Upshot

• CAMs are effective but expensive

– Matchlines are very expensive (for nasty circuit-level reasons)

• CAMs are used but only for 16 or 32 way (max) associativity

• See an example soon

• Not for 1024-way associativity

– No good way of doing something like that

+ No real need for it either

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

51

Analyzing Cache Misses: 3C Model

• Divide cache misses into three categories

• Compulsory (cold): never seen this address before

• Easy to identify

• Capacity: miss caused because cache is too small

• Consecutive accesses to block separated by accesses to at least
N other distinct blocks where N is number of frames in cache

• Conflict: miss caused because cache associativity is too low

• All other misses

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

52

Cache Performance Simulation

• Parameters: 8-bit addresses, 32B cache, 4B blocks

• Initial contents : 0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130

• Initial blocks accessed in increasing order

Cache contents Address Outcome

0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 3020 Miss (compulsory)

0000, 0010, 3020, 0030, 0100, 0110, 0120, 0130 3030 Miss (compulsory)

0000, 0010, 3020, 3030, 0100, 0110, 0120, 0130 2100 Miss (compulsory)

0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0012 Hit

0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0020 Miss (capacity)

0000, 0010, 0020, 3030, 2100, 0110, 0120, 0130 0030 Miss (capacity)

0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0110 Hit

0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0100 Miss (capacity)

0000, 1010, 0020, 0030, 0100, 0110, 0120, 0130 2100 Miss (conflict)

1000, 1010, 0020, 0030, 2100, 0110, 0120, 0130 3020 Miss (capacity)

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

53

ABC

• Associativity (increase)

+ Decreases conflict misses

– Increases thit

• Block size (increase)

– Increases conflict misses

+ Decreases compulsory misses

± Increases or decreases capacity misses

• Negligible effect on thit

• Capacity (increase)

+ Decreases capacity misses

– Increases thit

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

54

Two (of many possible) Optimizations

• Victim buffer: for conflict misses

• Prefetching: for capacity/compulsory misses

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

55

Victim Buffer

• Conflict misses: not enough associativity

• High-associativity is expensive, but also rarely needed

• 3 blocks mapping to same 2-way set and accessed (ABC)*

• Victim buffer (VB): small FA cache (e.g., 4 entries)

• Sits on I$/D$ fill path

• VB is small  very fast

• Blocks kicked out of I$/D$ placed in VB

• On miss, check VB: hit ? Place block back in I$/D$

• 4 extra ways, shared among all sets

+ Only a few sets will need it at any given time

+ Very effective in practice

I$/D$

L2

VB

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

56

Prefetching

• Prefetching: put blocks in cache proactively/speculatively
• Key: anticipate upcoming miss addresses accurately

• Can do in software or hardware

• Simple example: next block prefetching

• Miss on address X  anticipate miss on X+block-size

• Works for insns: sequential execution

• Works for data: arrays

• Timeliness: initiate prefetches sufficiently in advance

• Accuracy: don’t evict useful data

I$/D$

L2

prefetch logic

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

57

Write Issues

• So far we have looked at reading from cache (loads)

• What about writing into cache (stores)?

• Several new issues

• Tag/data access

• Write-through vs. write-back

• Write-allocate vs. write-not-allocate

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

58

Tag/Data Access

• Reads: read tag and data in parallel

• Tag mis-match  data is garbage (OK)

• Writes: read tag, write data in parallel?

• Tag mis-match  clobbered data (oops)

• For SA cache, which way is written?

• Writes are a pipelined 2 cycle process

• Cycle 1: match tag

• Cycle 2: write to matching way

1022

1023

1:0 [31:11]

data

[10:2]

<<

address

==

hit/miss

0

1

2

1:0 [10:2] data

data

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

59

Tag/Data Access

• Cycle 1: check tag

• Hit? Write data next cycle

• Miss? We’ll get to this in a few slides …

1022

1023

1:0 [31:11]

data

[10:2]

<<

address

==

hit/miss

0

1

2

1:0 [10:2] data

data

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

60

Tag/Data Access

• Cycle 2: write data

1022

1023

1:0 [31:11]

data

[10:2]

<<

address

==

hit/miss

0

1

2

1:0 [10:2] data

data

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

61

Write-Through vs. Write-Back

• When to propagate new value to (lower level) memory?

• Write-through: immediately

+ Conceptually simpler

+ Uniform latency on misses

– Requires additional bus bandwidth

• Write-back: when block is replaced

• Requires additional “dirty” bit per block

+ Minimal bus bandwidth

• Only write back dirty blocks

– Non-uniform miss latency

• Clean miss: one transaction with lower level (fill)

• Dirty miss: two transactions (writeback & fill)

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

62

Write-allocate vs. Write-non-allocate

• What to do on a write miss?

• Write-allocate: read block from lower level, write value into it

+ Decreases read misses

– Requires additional bandwidth

• Use with write-back

• Write-non-allocate: just write to next level

– Potentially more read misses

+ Uses less bandwidth

• Use with write-through

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

63

Write Buffer

• Write buffer: between cache and memory

• Write-through cache? Helps with store misses

+ Write to buffer to avoid waiting for memory

• Store misses become store hits

• Write-back cache? Helps with dirty misses

+ Allows you to do read (important part) first

1. Write dirty block to buffer

2. Read new block from memory to cache

3. Write buffer contents to memory

$

Next Level

1

2
3

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

64

Typical Processor Cache Hierarchy

• First level caches: optimized for thit and parallel access
• Insns and data in separate caches (I$, D$)

• Capacity: 8–64KB, block size: 16–64B, associativity: 1–4

• Other: write-through or write-back

• thit: 1–4 cycles

• Second level cache (L2): optimized for %miss

• Insns and data in one cache for better utilization

• Capacity: 128KB–1MB, block size: 64–256B, associativity: 4–16

• Other: write-back

• thit: 10–20 cycles

• Third level caches (L3): also optimized for %miss

• Capacity: 1–8MB

• thit: 30 cycles

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

65

Performance Calculation Example

• Parameters
• Reference stream: 20% stores, 80% loads

• L1 D$: thit = 1ns, %miss = 5%, write-through + write-buffer

• L2: thit = 10ns, %miss = 20%, write-back, 50% dirty blocks

• Main memory: thit = 50ns, %miss = 0%

• What is tavgL1D$ without an L2?
• Write-through+write-buffer means all stores effectively hit

• tmissL1D$ = thitM

• tavgL1D$ = thitL1D$ + %loads*%missL1D$*thitM = 1ns+(0.8*0.05*50ns) = 3ns

• What is tavgD$ with an L2?
• tmissL1D$ = tavgL2

• Write-back (no buffer) means dirty misses cost double

• tavgL2 = thitL2+(1+%dirty)*%missL2*thitM = 10ns+(1.5*0.2*50ns) =25ns

• tavgL1D$ = thitL1D$ + %loads*%missL1D$*tavgL2 = 1ns+(0.8*0.05*25ns)
=2ns

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

66

Summary

• Average access time of a memory component

• tavg = thit + %miss * tmiss

• Hard to get low thit and %miss in one structure  hierarchy

• Memory hierarchy

• Cache (SRAM)  memory (DRAM)  swap (Disk)

• Smaller, faster, more expensive  bigger, slower, cheaper

• SRAM

• Analog technology for implementing big storage arrays

• Cross-coupled inverters + bitlines + wordlines

• Delay ~ √#bits * #ports

ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck

67

Summary, cont’d

• Cache ABCs

• Capacity, associativity, block size

• 3C miss model: compulsory, capacity, conflict

• Some optimizations

• Victim buffer for conflict misses

• Prefetching for capacity, compulsory misses

• Write issues

• Pipelined tag/data access

• Write-back vs. write-through/write-allocate vs. write-no-allocate

• Write buffer

Next Course Unit: Main Memory

