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Where We Are in This Course Right Now 

• So far: 

• We know how to design a processor that can fetch, decode, and 
execute the instructions in an ISA 

• We have assumed that memory storage (for instructions and data) 
is a magic black box 

• Now: 

• We learn why memory storage systems are hierarchical 

• We learn about caches and SRAM technology for caches 

• Next: 

• We learn how to implement main memory 
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This Unit: Caches and Memory Hierarchies 

• Memory hierarchy 

• Basic concepts 

• SRAM technology 

• Transistors and circuits 

• Cache organization 

• ABC 

• CAM (content associative memory) 

• Classifying misses 

• Two optimizations 

• Writing into a cache 

• Some example calculations 

Application 

OS 

Firmware Compiler 

I/O 

Memory 

Digital Circuits 

Gates & Transistors 

CPU 
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Readings 

• Patterson and Hennessy 

• Chapter 5 
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Storage 

• We have already seen some storage implementations 

• Individual registers 

• For singleton values: e.g., PC, PSR 

• For march/transient values: e.g., in pipelined design 

• Register File 

• For architectural values: e.g., ISA registers 

 

• What else is there? 
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Storage Hierarchy 

• Registers 

• Few locations: e.g., 32 4-byte words 

• Accessible directly via user-level ISA: multiple specifiers per insn 

• Volatile (values disappear when power goes off) 

• Memory 

• Many (but finite) locations: e.g., 232 bytes 

• Accessible indirectly via user-level ISA: one specifier per insn 

• Also volatile 

• Disk 

• “Infinitely” many locations 

• Not accessible to user-level ISA (only via OS SYSCALL) 

• Non-volatile 
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Storage Hierarchy 

• Registers vs. memory 

• Direct specification (fast) vs. address calculation (slow) 

• Few addresses (small & fast) vs. many (big & slow) 

• Not everything can be put into registers (e.g., arrays, structs) 

• Memory vs. disk 

• Electrical (fast) vs. electro-mechanical (extremely slow) 

• Disk is so slow (relatively), it is considered I/O 

• We will talk just about memory for instructions and data 
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(CMOS) Memory Components 

• Interface 

• N-bit address bus (on N-bit machine) 

• Data bus 

• Typically read/write on same data bus 

• Can have multiple ports: address/data bus pairs 

• Can be synchronous: read/write on clock edges 

• Can be asynchronous: untimed “handshake” 

 

• Performance 

• Access time proportional to (#ports) * √(#bits) 

• √(#bits)? Proportional to max wire length 

• More about this a little later … 

M 

address data 
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Memory Performance Equation 

• For memory component M 
• Access: read or write to M 

• Hit: desired data found in M 

• Miss: desired data not found in M 

• Must get from another (slower) component 

• Fill: action of placing data in M 

 

• %miss (miss-rate): #misses / #accesses 

• thit: time to read data from (write data to) M 

• tmiss: time to read data into M from lower level 

 

• Performance metric 
• tavg: average access time 

tavg = thit + (%miss * tmiss) 

CPU 

M 

thit 

tmiss 

%miss 
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Memory Hierarchy 

tavg = thit + %miss * tmiss  

• Problem: hard to get low thit and %miss in one structure 

• Large structures have low %miss but high thit 

• Small structures have low  thit but high %miss 

• Solution: use a hierarchy of memory structures 

• A very old (by computer standards) idea: 

 

 “Ideally, one would desire an infinitely large memory capacity such that 
any particular word would be immediately available … We are forced to 
recognize the possibility of constructing a hierarchy of memories, each of 
which has a greater capacity than the preceding but which is less quickly 
accessible.” 

Burks, Goldstine, and Von Neumann  
“Preliminary discussion of the logical design of an electronic computing instrument” 

 IAS memo 1946  
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Abstract Memory Hierarchy 

• Hierarchy of memory components 
• Upper components (closer to CPU) 

• Fast  Small  Expensive 

• Lower components (further from CPU) 

• Slow  Big  Cheap 

• Connected by buses 
• Which we will ignore for now 

 

• Make average access time close to M1’s 
• How? 

• Most frequently accessed data in M1 

• M1 + next most frequently accessed in M2, etc. 

• Automatically move data up&down hierarchy 

CPU 

M1 

M2 

M3 

M4 
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Why Hierarchy Works I 

• 10/90 rule (of thumb) 

• For Instruction Memory: 

• 10% of static insns account for 90% of executed insns 

• Inner loops 

• For Data Memory: 

• 10% of variables account for 90% of accesses 

• Frequently used globals, inner loop stack variables 
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Why Hierarchy Works II 

• Temporal locality 
• Recently executed insns likely to be executed again soon 

• Inner loops (next iteration) 

• Recently referenced data likely to be referenced again soon 

• Data in inner loops, hot global data 

• Hierarchy can be “reactive”: move things up when accessed 

 

• Spatial locality 
• Insns near recently executed insns likely to be executed soon 

• Sequential execution 

• Data near recently referenced data likely to be referenced soon 

• Elements in an array, fields in a struct, variables in frame 

• Hierarchy can be “proactive”: move things up speculatively 
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Abstract Hierarchy Performance 

 

How do we compute tavg ? 

=tavg-M1 

=thit-M1 +(%miss-M1*tmiss-M1) 

=thit-M1 +(%miss-M1*tavg-M2) 

=thit-M1 +(%miss-M1*(thit-M2+(%miss-M2*tmiss-M2))) 

=thit-M1 +(%miss-M1*(thit-M2+(%miss-M2*tavg-M3))) 

= … 

 

tmiss-M3 = tavg-M4 

CPU 

M1 

M2 

M3 

M4 

tmiss-M2 = tavg-M3 

tmiss-M1 = tavg-M2 

tavg = tavg-M1 
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Concrete Memory Hierarchy 

• 1st level: L1 I$, L1 D$ (L1 insn/data caches) 

• 2nd level: L2 cache 

• Often on-chip, certainly on-package (with CPU) 

• Made of SRAM (same circuit type as CPU) 

• Managed in hardware 

• This unit of ECE 152 

• 3rd level: main memory 

• Made of DRAM 

• Managed in software  

• Next unit of ECE 152 

• 4th level: disk (swap space) 

• Made of magnetic iron oxide discs 

• Managed in software 

• Course unit after main memory 

• Could be other levels (e.g., Flash, PCM, tape, etc.) 

CPU 

D$ 

L2 

Main 

Memory 

I$ 

Disk(swap) 

Note: some 

processors have 

L3$ between L2$ 

and memory 
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Concrete Memory Hierarchy 

• Much of today’s chips used for caches  important! 

L2 

I$ 
Regfile 

 D$ 

a 

d 

+ 

4 
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A Typical Die Photo 

L2 Cache 

Pentium4 Prescott 

chip with 2MB L2$ 



ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck 

 

18 

A Closer Look at that Die Photo 

Pentium4 Prescott 

chip with 2MB L2$ 
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A Multicore Die Photo from IBM 

IBM’s Xenon chip 

with 3 PowerPC 

cores 
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This Unit: Caches and Memory Hierarchies 

• Memory hierarchy 

• Basic concepts 

• SRAM technology 

• Transistors and circuits 

• Cache organization 

• ABC 

• CAM (content associative memory) 

• Classifying misses 

• Two optimizations 

• Writing into a cache 

• Some example calculations 

Application 

OS 

Firmware Compiler 

I/O 

Memory 

Digital Circuits 

Gates & Transistors 

CPU 
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Implementing Big Storage Arrays 

• Register file: bits as flip-flops, read ports as muxes 
• Not realistic, even if we replace muxes with tri-state buffers 

• MIPS register file: each read port is a 32-bit 32-to-1 mux? 

• Just routing the wires would be a nightmare 

• What about a cache? each read port is a 1024-to-1 mux?  Yuck! 

RS1 

RS1VAL 

RS2VAL 

RS2 RD WE 

RDVAL 
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SRAM 

• Reality: large storage arrays implemented in “analog” way 

• Bits as cross-coupled inverters, not flip-flops 

• Inverters: 2 gates = 4 transistors per bit 

• Flip-flops: 8 gates =~32 transistors per bit 

• Ports implemented as shared buses called bitlines (next slide) 

• Called SRAM (static random access memory) 

• “Static”  a written bit maintains its value (but still volatile) 

• Example: storage array with two 2-bit words 

Word 0 

Word 1 

Bit 0 Bit 1 
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• To write (a 1): 

1. Drive bit lines (bit=1, bit=0) 

2. Select row 

• To read: 

1. Pre-charge bit and bit to Vdd (set to 1) 

2. Select row 

3. Cell pulls one line lower (pulls towards 0) 

4. Sense amp on column detects difference between bit and bit 

bit bit 

word 6-Transistor SRAM Cell 

bit bit 

word 
(row select) 

1 0 

0 1 

Static RAM Cell 
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SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

SRAM 

Cell 

- + Sense Amp - + Sense Amp - + Sense Amp - + Sense Amp 

: : : : 

Word 0 

Word 1 

Word 15 

Dout 0 Dout 1 Dout 2 Dout 3 

- + 
Wr Driver & 

Precharger - + 
Wr Driver & 

Precharger - + 
Wr Driver & 

Precharger - + 
Wr Driver & 

Precharger 

A
d

d
ress D

eco
d

er
 

WrEn 

Precharge 

Din 0 Din 1 Din 2 Din 3 

A0 

A1 

A2 

A3 

Typical SRAM Organization: 16-word x 4-bit 
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• Write Enable is usually active low (WE_L) 

• Din and Dout are combined (D) to save pins: 

• A new control signal, output enable (OE_L) is needed 

• WE_L is asserted (Low), OE_L is de-asserted (High) 

• D serves as the data input pin 

• WE_L is de-asserted (High), OE_L is asserted (Low) 

• D is now the data output pin 

• Both WE_L and OE_L are asserted: 

• Result is unknown.  Don’t do that!!! 

A 

D OE_L 

2 N words 

x  M bit 

SRAM 

N 

M 

WE_L 

Logic Diagram of a Typical SRAM 
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Write Timing: 

D 

Read Timing: 

WE_L 

A 

Write 

Hold Time 

Write Setup Time 

A 

D OE_L 

2 N words 

x  M bit 

SRAM 

N 

M 

WE_L 

Data In 

Write Address 

OE_L 

High Z 

Junk Read Address 

Junk 

Read Access 

Time 

Data Out 

Read Access 

Time 

Data Out Junk 

Read Address 

Typical SRAM Timing: Write then 2 Reads 
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SRAM Summary 

• Large storage arrays cannot be implemented “digitally” 
• Muxing and wire routing become impractical 

• SRAM implementation exploits analog transistor properties 
• Inverter pair bits much smaller than flip-flop bits 

• Wordline/bitline arrangement makes for simple “grid-like” routing 

• Basic understanding of reading and writing 

• Wordlines select words 

• Overwhelm inverter-pair to write 

• Drain pre-charged line or swing voltage to read 

• Access latency proportional to √#bits * #ports 

 

• You must understand important properties of SRAM 
• Will help when we talk about DRAM (next unit) 
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This Unit: Caches and Memory Hierarchies 

• Memory hierarchy 

• Basic concepts 

• SRAM technology 

• Transistors and circuits 

• Cache organization 

• ABCs 

• CAM (content associative memory) 

• Classifying misses 

• Two optimizations 

• Writing into a cache 

• Some example calculations 

Application 

OS 

Firmware Compiler 

I/O 

Memory 

Digital Circuits 

Gates & Transistors 

CPU 
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Basic Cache Structure 

• Basic cache: array of block frames 
• Example: 4KB cache made up of 1024 4B frames 

• To find frame: decode part of address 
• Which part? 

• 32-bit address 

• 4B blocks  2 LS bits locate byte within block 

• These are called offset bits 

• 1024 frames  next 10 bits find frame 

• These are the index bits 

• Note: nothing says index must be these bits 

• But these work best (think about why) 

0 

1 

1021 

1022 

1023 

2 

3 

[31:12] 

data 

[11:2] << 

CPU address 

1024*32 

SRAM 

bitlines 

w
o
rd

lin
e
s
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Basic Cache Structure 

• Each frame can hold one of 220 blocks 

• All blocks with same index bit pattern 

• How to know which if any is currently there? 

• To each frame attach tag and valid bit 

• Compare frame tag to address tag bits 

• No need to match index bits (why?) 

• Lookup algorithm 

• Read frame indicated by index bits 

• If (tag matches && valid bit set) 

then Hit  data is good 

Else Miss  data is no good, wait 

0 

1 

1021 

1022 

1023 

2 

3 

1:0 [31:12] 

data 

[11:2] << 

CPU 
address 

== 

hit/miss 
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Calculating Tag Size 

• “4KB cache” means cache holds 4KB of data 

• Called capacity 

• Tag storage is considered overhead (not included in capacity) 

• Calculate tag overhead of 4KB cache with 1024 4B frames 

• Not including valid bits 

• 4B frames  2-bit offset 

• 1024 frames  10-bit index 

• 32-bit address – 2-bit offset – 10-bit index = 20-bit tag 

• 20-bit tag * 1024 frames = 20Kb tags = 2.5KB tags 

• 63% overhead 
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Measuring Cache Performance 

• Ultimate metric is tavg 

• Cache capacity roughly determines thit 

• Lower-level memory structures determine tmiss 

• Measure %miss 

• Hardware performance counters (Pentium, Sun, etc.)  

• Simulation (write a program that mimics behavior) 

• Hand simulation (next slide) 

• %miss depends on program that is running 

• Why? 
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Cache Performance Simulation 

• Parameters: 8-bit addresses, 32B cache, 4B blocks 

• Addresses initially in cache : 0, 4, 8, 12, 16, 20, 24, 28 

• To find location in cache, do mod32 arithmetic (why 32?) 

Cache contents (prior to access) Address Outcome 

0, 4, 8, 12, 16, 20, 24, 28 200 (200%32=8) Miss 

0, 4, 200, 12, 16, 20, 24, 28 204 (204%32=12) Miss 

0, 4, 200, 204, 16, 20, 24, 28 144 (144%32=16) Miss 

0, 4, 200, 204, 144, 20, 24, 28 6 Hit 

0, 4, 200, 204, 144, 20, 24, 28 8 Miss 

0, 4, 8, 204, 144, 20, 24, 28 12 Miss 

0, 4, 8, 12, 144, 20, 24, 28 20 Hit 

0, 4, 8, 12, 144, 20, 24, 28 16 Miss 

0, 4, 8, 12, 16, 20, 24, 28 144 Miss 

0, 4, 8, 12, 144, 20, 24, 28 200 Miss 
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Block Size 

• Given capacity, manipulate %miss by changing organization 

• One option: increase block size 

+ Exploit spatial locality 

• Caveat: works only up to a point 

+ Reduce tag overhead 

 

• Notice tag/index/offset bits 

0-1 

2-3 

1020-1021 

1022-1023 

4-5 

[2:0] [31:12] 

data 

[11:3] << 

CPU 
address 

== 

hit/miss 
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Calculating Tag Size 

• Calculate tag overhead of 4KB cache with 512 8B frames 

• Not including valid bits 

• 8B frames  3-bit offset 

• 512 frames  9-bit index 

• 32-bit address – 3-bit offset – 9-bit index = 20-bit tag 

• 20-bit tag * 512 frames = 10Kb tags = 1.25KB tags 

+ 32% overhead 

+ Less tag overhead with larger blocks 
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Cache Performance Simulation 

• Parameters: 8-bit addresses, 32B cache, 8B blocks 

• Addresses in base4 (“nibble”) notation 

• Initial contents : 0000(0010), 0020(0030), 0100(0110), 0120(0130) 

Cache contents (prior to access) Address Outcome 

0000(0010), 0020(0030), 0100(0110), 0120(0130) 3020 Miss 

0000(0010), 3020(3030), 0100(0110), 0120(0130) 3030 Hit (spatial locality!) 

0000(0010), 3020(3030), 0100(0110), 0120(0130) 2100 Miss 

0000(0010), 3020(3030), 2100(2110), 0120(0130) 0012 Hit 

0000(0010), 3020(3030), 2100(2110), 0120(0130) 0020 Miss 

0000(0010), 0020(0030), 2100(2110), 0120(0130) 0030 Hit (spatial locality) 

0000(0010), 0020(0030), 2100(2110), 0120(0130) 0110 Miss (conflict) 

0000(0010), 0020(0030), 0100(0110), 0120(0130) 0100 Hit (spatial locality) 

0000(0010), 0020(0030), 0100(0110), 0120(0130) 2100 Miss 

0000(0010), 0020(0030), 2100(2110), 0120(0130) 3020 Miss 
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Effect of Block Size 

• Increasing block size has two effects (one good, one bad) 

+ Spatial prefetching 

• For blocks with adjacent addresses 

• Turns miss/miss pairs into miss/hit pairs 

• Example from previous slide: 3020,3030 

– Conflicts 

• For blocks with non-adjacent addresses (but adjacent frames) 

• Turns hits into misses by disallowing simultaneous residence 

• Example: 2100,0110 

• Both effects always present to some degree 

• Spatial prefetching dominates initially (until 64–128B) 

• Interference dominates afterwards 

• Optimal block size is 32–128B (varies across programs) 
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Conflicts 

• What about pairs like 3030/0030, 0100/2100? 

• These will conflict in any size cache (regardless of block size) 

• Will keep generating misses 

• Can we allow pairs like these to simultaneously reside? 

• Yes, but we have to reorganize cache to do so 

Cache contents (prior to access) Address Outcome 

0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 3020 Miss 

0000, 0010, 3020, 0030, 0100, 0110, 0120, 0130 3030 Miss 

0000, 0010, 3020, 3030, 0100, 0110, 0120, 0130 2100 Miss 

0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0012 Hit 

0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0020 Miss 

0000, 0010, 0020, 3030, 2100, 0110, 0120, 0130 0030 Miss 

0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0110 Hit 
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Set-Associativity 

• Set-associativity 

• Block can reside in one of few frames 

• Frame groups called sets 

• Each frame in set called a way 

• This is 2-way set-associative (SA) 

• 1-way  direct-mapped (DM) 

• 1-set  fully-associative (FA) 

 

+ Reduces conflicts 

– Increases thit: additional mux 

 

512 

513 

1022 

1023 

514 

1:0 [31:11] 

data 

[10:2] << 

CPU 
address 

== 

hit/miss 

0 

1 

510 

511 

2 

== 

ways 

s
e
ts
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Set-Associativity 

• Lookup algorithm 

• Use index bits to find set 

• Read data/tags in all frames in parallel 

• Any (match && valid bit)? 

• Then Hit  

• Else Miss 

 

• Notice tag/index/offset bits 

 

512 

513 

1022 

1023 

514 

1:0 [31:11] 

data 

[10:2] << 

CPU 
address 

== 

hit/miss 

0 

1 

510 

511 

2 

== 
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Cache Performance Simulation 

• Parameters: 32B cache, 4B blocks, 2-way set-associative 

• Initial contents : 0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 

Cache contents Address Outcome 

[0000,0100], [0010,0110], [0020,0120], [0030,0130] 3020 Miss 

[0000,0100], [0010,0110], [0120,3020], [0030,0130] 3030 Miss 

[0000,0100], [0010,0110], [0120,3020], [0130,3030] 2100 Miss 

[0100,2100], [0010,0110], [0120,3020], [0130,3030] 0012 Hit 

[0100,2100], [0010,0110], [0120,3020], [0130,3030] 0020 Miss 

[0100,2100], [0010,0110], [3020,0020], [0130,3030] 0030 Miss 

[0100,2100], [0010,0110], [3020,0020], [3030,0030] 0110 Hit 

[0100,2100], [0010,0110], [3020,0020], [3030,0030] 0100 Hit (avoid conflict) 

[2100,0100], [0010,0110], [3020,0020], [3030,0030] 2100 Hit (avoid conflict) 

[0100,2100], [0010,0110], [3020,0020], [3030,0030] 3020 Hit (avoid conflict) 
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Cache Replacement Policies 

• Set-associative caches present a new design choice 
• On cache miss, which block in set to replace (kick out)? 

• Some options 
• Random 

• FIFO (first-in first-out) 

• When is this a good idea? 

• LRU (least recently used) 

• Fits with temporal locality, LRU = least likely to be used in future 

• NMRU (not most recently used)  

• An easier-to-implement approximation of LRU 

• NMRU=LRU for 2-way set-associative caches 

• Belady’s: replace block that will be used furthest in future 

• Unachievable optimum (but good for comparisons) 

• Which policy is simulated in previous slide? 
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NMRU and Miss Handling 

• Add MRU field to each set 

• MRU data is encoded “way” 

• Hit? update MRU 

• Fill? write enable ~MRU 

 

 

 

512 

513 

1023 

1:0 [31:11] 

data 

[10:2] << 

CPU 
address 

== 

hit/miss 

0 

1 

511 

== 

W
E

 

data from memory 

~ 

W
E

 



ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck 

 

44 

Physical Cache Layout 

• Logical layout 

• Data and tags mixed together 

• Physical layout 

• Data and tags in separate RAMs 

• Often multiple sets per line 

• As square as possible 

• Not shown here 

512 

513 

1022 

1023 

514 

1:0 [31:11] 

data 

[10:2] << 

CPU 
address 

== 

hit/miss 

0 

1 

510 

511 

2 

== 
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Full-Associativity 

• How to implement full (or at least high) associativity? 

• Doing it this way is terribly inefficient 

• 1K matches are unavoidable, but 1K data reads + 1K-to-1 mux? 

1 1023 

1:0 [31:2] << 

CPU 

== 

0 1022 

== == == 
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Full-Associativity with CAMs 

• CAM: content addressable memory 

• Array of words with built-in comparators 

• Matchlines instead of bitlines 

• Output is “one-hot” encoding of match 

 

• FA cache? 

• Tags as CAM 

• Data as RAM 

0 

1 

1022 

1023 

1:0 [31:2] << 

== 

== 

== 

== 

• Hardware is not software 

• Example I: parallel computation with carry select adder 

• Example II: parallel search with CAM 

• No such thing as software CAM 
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CAM Circuit 

• Matchlines (correspond to bitlines in SRAM): inputs 

• Wordlines: outputs 

• Two phase match 

• Phase I: clk=1, pre-charge wordlines to 1 

• Phase II: clk=0, enable matchlines, non-matched bits dis-charge wordlines 

~match1 ~match0 match1 
~clk 

match0 
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CAM Circuit In Action 

• Phase I: clk=1 

• Pre-charge wordlines to 1 

~match1 ~match0 match1 
~clk 

match0 

1 

1 

1 

1 0 

1 

0 1 1 0 
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CAM Circuit In Action 

• Phase I: clk=0 

• Enable matchlines (notice, match bits are flipped) 

• Any non-matching bit discharges entire wordline 

• Implicitly ANDs all bit matches (NORs all bit non-matches) 

• Similar technique for doing a fast OR for hit detection 

~match1 ~match0 match1 
~clk 

match0 

1 

0 

1 

1 0 

1 

0 1 1 0 

Looking for match 

with 01 
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CAM Upshot 

• CAMs are effective but expensive 

– Matchlines are very expensive (for nasty circuit-level reasons) 

• CAMs are used but only for 16 or 32 way (max) associativity 

• See an example soon 

• Not for 1024-way associativity 

– No good way of doing something like that 

+ No real need for it either 



ECE 152 © 2012 Daniel J. Sorin from Roth and Lebeck 

 

51 

Analyzing Cache Misses: 3C Model 

• Divide cache misses into three categories 

• Compulsory (cold): never seen this address before 

• Easy to identify 

• Capacity: miss caused because cache is too small 

• Consecutive accesses to block separated by accesses to at least 
N other distinct blocks where N is number of frames in cache 

• Conflict: miss caused because cache associativity is too low 

• All other misses 
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Cache Performance Simulation 

• Parameters: 8-bit addresses, 32B cache, 4B blocks 

• Initial contents : 0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 

• Initial blocks accessed in increasing order 

Cache contents Address Outcome 

0000, 0010, 0020, 0030, 0100, 0110, 0120, 0130 3020 Miss (compulsory) 

0000, 0010, 3020, 0030, 0100, 0110, 0120, 0130 3030 Miss (compulsory) 

0000, 0010, 3020, 3030, 0100, 0110, 0120, 0130 2100 Miss (compulsory) 

0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0012 Hit 

0000, 0010, 3020, 3030, 2100, 0110, 0120, 0130 0020 Miss (capacity) 

0000, 0010, 0020, 3030, 2100, 0110, 0120, 0130 0030 Miss (capacity) 

0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0110 Hit 

0000, 0010, 0020, 0030, 2100, 0110, 0120, 0130 0100 Miss (capacity) 

0000, 1010, 0020, 0030, 0100, 0110, 0120, 0130 2100 Miss (conflict) 

1000, 1010, 0020, 0030, 2100, 0110, 0120, 0130 3020 Miss (capacity) 
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ABC 

• Associativity (increase) 

+ Decreases conflict misses 

– Increases thit 

• Block size (increase) 

– Increases conflict misses 

+ Decreases compulsory misses 

± Increases or decreases capacity misses 

• Negligible effect on thit 

• Capacity (increase) 

+ Decreases capacity misses 

– Increases thit 
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Two (of many possible) Optimizations 

• Victim buffer: for conflict misses 

• Prefetching: for capacity/compulsory misses 
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Victim Buffer 

• Conflict misses: not enough associativity 

• High-associativity is expensive, but also rarely needed 

• 3 blocks mapping to same 2-way set and accessed (ABC)* 

 

• Victim buffer (VB): small FA cache (e.g., 4 entries) 

• Sits on I$/D$ fill path 

• VB is small  very fast 

• Blocks kicked out of I$/D$ placed in VB 

• On miss, check VB: hit ? Place block back in I$/D$ 

• 4 extra ways, shared among all sets 

+ Only a few sets will need it at any given time 

+ Very effective in practice 

I$/D$ 

L2 

VB 
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Prefetching 

• Prefetching: put blocks in cache proactively/speculatively 
• Key: anticipate upcoming miss addresses accurately 

• Can do in software or hardware 

 

• Simple example: next block prefetching 

• Miss on address X  anticipate miss on X+block-size 

• Works for insns: sequential execution 

• Works for data: arrays 

 

• Timeliness: initiate prefetches sufficiently in advance 

• Accuracy: don’t evict useful data 

I$/D$ 

L2 

prefetch logic 
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Write Issues 

• So far we have looked at reading from cache (loads) 

• What about writing into cache (stores)? 

 

• Several new issues 

• Tag/data access 

• Write-through vs. write-back 

• Write-allocate vs. write-not-allocate 
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Tag/Data Access 

• Reads: read tag and data in parallel 

• Tag mis-match  data is garbage (OK) 

• Writes: read tag, write data in parallel? 

• Tag mis-match  clobbered data (oops) 

• For SA cache, which way is written? 

 

• Writes are a pipelined 2 cycle process 

• Cycle 1: match tag 

• Cycle 2: write to matching way 

1022 

1023 

1:0 [31:11] 

data 

[10:2] 

<< 

address 

== 

hit/miss 

0 

1 

2 

1:0 [10:2] data 

data 
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Tag/Data Access 

• Cycle 1: check tag 

• Hit?  Write data next cycle 

• Miss?  We’ll get to this in a few slides … 

1022 

1023 

1:0 [31:11] 

data 

[10:2] 

<< 

address 

== 

hit/miss 

0 

1 

2 

1:0 [10:2] data 

data 
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Tag/Data Access 

• Cycle 2: write data 

1022 

1023 

1:0 [31:11] 

data 

[10:2] 

<< 

address 

== 

hit/miss 

0 

1 

2 

1:0 [10:2] data 

data 
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Write-Through vs. Write-Back 

• When to propagate new value to (lower level) memory? 

• Write-through: immediately 

+ Conceptually simpler 

+ Uniform latency on misses 

– Requires additional bus bandwidth 

• Write-back: when block is replaced 

• Requires additional “dirty” bit per block 

+ Minimal bus bandwidth 

• Only write back dirty blocks 

– Non-uniform miss latency 

• Clean miss: one transaction with lower level (fill) 

• Dirty miss: two transactions (writeback & fill) 
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Write-allocate vs. Write-non-allocate 

• What to do on a write miss? 

• Write-allocate: read block from lower level, write value into it 

+ Decreases read misses 

– Requires additional bandwidth 

• Use with write-back 

• Write-non-allocate: just write to next level 

– Potentially more read misses 

+ Uses less bandwidth 

• Use with write-through 
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Write Buffer 

• Write buffer: between cache and memory 

• Write-through cache? Helps with store misses 

+ Write to buffer to avoid waiting for memory 

• Store misses become store hits 

• Write-back cache? Helps with dirty misses 

+ Allows you to do read (important part) first 

1. Write dirty block to buffer 

2. Read new block from memory to cache 

3. Write buffer contents to memory 

 

 

$ 

Next Level 

1 

2 
3 
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Typical Processor Cache Hierarchy 

• First level caches: optimized for thit and parallel access 
• Insns and data in separate caches (I$, D$) 

• Capacity: 8–64KB, block size: 16–64B, associativity: 1–4 

• Other: write-through or write-back 

• thit: 1–4 cycles 

• Second level cache (L2): optimized for %miss 

• Insns and data in one cache for better utilization 

• Capacity: 128KB–1MB, block size: 64–256B, associativity: 4–16 

• Other: write-back 

• thit: 10–20 cycles 

• Third level caches (L3): also optimized for %miss 

• Capacity: 1–8MB 

• thit: 30 cycles 
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Performance Calculation Example  

• Parameters 
• Reference stream: 20% stores, 80% loads 

• L1 D$: thit = 1ns, %miss = 5%, write-through + write-buffer 

• L2: thit = 10ns, %miss = 20%, write-back, 50% dirty blocks 

• Main memory: thit = 50ns, %miss = 0% 

• What is tavgL1D$ without an L2? 
• Write-through+write-buffer means all stores effectively hit 

• tmissL1D$ = thitM 

• tavgL1D$ = thitL1D$ + %loads*%missL1D$*thitM = 1ns+(0.8*0.05*50ns) = 3ns 

• What is tavgD$ with an L2? 
• tmissL1D$ = tavgL2 

• Write-back (no buffer) means dirty misses cost double 

• tavgL2 = thitL2+(1+%dirty)*%missL2*thitM = 10ns+(1.5*0.2*50ns) =25ns 

• tavgL1D$ = thitL1D$ + %loads*%missL1D$*tavgL2 = 1ns+(0.8*0.05*25ns) 
=2ns 
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Summary 

• Average access time of a memory component 

• tavg = thit + %miss * tmiss 

• Hard to get low thit and %miss in one structure  hierarchy 

• Memory hierarchy 

• Cache (SRAM)  memory (DRAM)  swap (Disk) 

• Smaller, faster, more expensive  bigger, slower, cheaper 

• SRAM 

• Analog technology for implementing big storage arrays 

• Cross-coupled inverters + bitlines + wordlines 

• Delay ~ √#bits * #ports 
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Summary, cont’d 

• Cache ABCs 

• Capacity, associativity, block size 

• 3C miss model: compulsory, capacity, conflict 

• Some optimizations 

• Victim buffer for conflict misses 

• Prefetching for capacity, compulsory misses 

• Write issues 

• Pipelined tag/data access 

• Write-back vs. write-through/write-allocate vs. write-no-allocate 

• Write buffer 

 

Next Course Unit: Main Memory 


