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Multicore and Multithreaded Processors 

•  Why multicore? 
•  Thread-level parallelism 
•  Multithreaded cores 
•  Multiprocessors 
•  Design issues 
•  Examples 



© 2009 Daniel J. Sorin 3 

Readings 

•  Patterson and Hennessy 
•  Chapter 7 
•  Some recent research papers! 
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Why Multicore? 

•  Why is everything now multicore? 
•  This is a fairly new trend 

•  Reason #1: Running out of ILP that we can exploit 
•  Can’t get much better performance out of a single core that’s 

running a single program at a time 

•  Reason #2: Power/thermal constraints 
•  Even if we wanted to just build fancier single cores at higher clock 

speeds, we’d run into power and thermal obstacles  

•  Reason #3: Moore’s Law 
•  Lots of transistors à what else are we going to do with them? 
•  Historically: use transistors to make more complicated cores with 

bigger and bigger caches 
•  But we just saw that this strategy has run into problems 
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How do we keep multicores busy? 

•  Single core processors exploit ILP 
•  Multicore processors exploit TLP: thread-level parallelism 
•  What’s a thread? 

•  A program can have 1 or more threads of control 
•  Each thread has own PC and own arch registers 
•  All threads in a given program share resources (e.g., memory) 

•  OK, so where do we find more than one thread? 
•  Option #1: Multiprogrammed workloads 

•  Run multiple single-threaded programs at same time 

•  Option #2: Explicitly multithreaded programs 
•  Create a single program that has multiple threads that work 

together to solve a problem 
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Parallel Programming 

•  How do we break up a problem into sub-problems that can 
be worked on by separate threads? 

•  ICQ: How would you create a multithreaded program that 
searches for an item in an array? 

•  ICQ: How would you create a multithreaded program that 
sorts a heap? 

•  Fundamental challenges 
•  Breaking up the problem into many reasonably sized tasks 

•  What if tasks are too small?  Too big?  Too few? 
•  Minimizing the communication between threads 

•  Why? 
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Writing a Parallel Program 

•  Compiler can turn sequential code into parallel code 
•  Just as soon as the Cubs win the World Series 

•  Can use an explicitly parallel language or extensions to an 
existing language 
•  High performance Fortran (HPF) 
•  Pthreads 
•  Message passing interface (MPI) 
•  CUDA 
•  OpenCL 
•  Etc. 
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Parallel Program Challenges 

•  Parallel programming is HARD! 
•  Why? 

•  Problem: #cores is increasing, but parallel programming 
isn’t getting easier  à how are we going to use all of these 
cores??? 
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HPF Example 

 forall(i=1:100, j=1:200){ 
    MyArray[i,j] = (X[i-1, j] + X[i+1, j]; 
 } 
  
// “forall” means we can do all i,j combinations in parallel 
// I.e., no dependences between these operations 
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Some Problems Are “Easy” to Parallelize 

•  Database management system (DBMS) 
•  Web search (Google) 
•  Graphics 
•  Some scientific workloads (why?) 
•  Others?? 
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Multicore and Multithreaded Processors 

•  Why multicore? 
•  Thread-level parallelism 
•  Multithreaded cores 
•  Multiprocessors 
•  Design issues 
•  Examples 
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Multithreaded Cores 

•  So far, our core executes one thread at a time 
•  Multithreaded core: execute multiple threads at a time 
•  Old idea … but made a big comeback fairly recently 
•  How do we execute multiple threads on same core? 

•  Coarse-grain switching 
•  Fine-grain switching 
•  Simultaneous multithreading (SMT) à “hyperthreading” (Intel) 

•  Benefits? 
•  Better instruction throughput 

•  Greater resource utilization 
•  Tolerates long latency events (e.g., cache misses) 

•  Cheaper than multiple complete cores (does this matter any more?) 
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Multiprocessors 

•  Multiprocessors have been around a long time … just not 
on a single chip 
•  Mainframes and servers with 2-64 processors 
•  Supercomputers with 100s or 1000s of processors 

•  Now, multiprocessor on a single chip 
•  “Chip multiprocessor” (CMP) or “multicore processor” 

•  Why does “single chip” matter so much? 
•  ICQ: What’s fundamentally different about having a multiprocessor 

that fits on one chip vs. on multiple chips? 
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Multicore and Multithreaded Processors 

•  Why multicore? 
•  Thread-level parallelism 
•  Multithreaded cores 
•  Multiprocessors 
•  Design issues 
•  Examples 
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Multiprocessor Microarchitecture 

•  Many design issues unique to multiprocessors 
•  Interconnection network 
•  Communication between cores 
•  Memory system design 
•  Others? 
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Interconnection Networks 

•  Networks have many design aspects 
•  We focus on one here (topology) à see ECE 259 for more on this 

•  Topology is the structure of the interconnect 
•  Geometric property à topology has nice mathematical properties 

•  Direct vs Indirect Networks 
•  Direct: All switches attached to host nodes (e.g., mesh) 
•  Indirect: Many switches not attached to host nodes (e.g., tree) 



© 2009 Daniel J. Sorin ECE 152 

Direct Topologies: k-ary d-cubes 

•  Often called k-ary n-cubes 

•  General class of regular, direct topologies 
•  Subsumes rings, tori, cubes, etc. 

•  d dimensions 
•  1 for ring 
•  2 for mesh or torus 
•  3 for cube 
•  Can choose arbitrarily large d, except for cost of switches 

•  k switches in each dimension 
•  Note: k can be different in each dimension (e.g., 2,3,4-ary 3-cube)  
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Examples of k-ary d-cubes 

•  1D Ring = k-ary 1-cube 
•  d = 1 [always] 
•  k = N [always] = 4 [here] 
•  Ave dist = ? 

•  2D Torus = k-ary 2-cube 
•  d = 2 [always] 
•  k = logdN (always) = 3 [here] 
•  Ave dist = ? 
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k-ary d-cubes in Real World 

•  Compaq Alpha 21364 (and 21464, R.I.P.) 
•  2D torus  (k-ary 2-cube) 

•  Cray T3D and T3E 
•  3D torus  (k-ary, 3-cube) 

•  Intel Larrabee (Knight’s Ferry/Corner/Landing) 
•  1D ring 

•  Tilera64 
•  2D torus 
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Indirect Topologies 

•  Indirect topology – most switches not attached to nodes 
•  Some common indirect topologies 

•  Crossbar 
•  Tree 
•  Butterfly 

•  Each of the above topologies comes in many flavors 
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Indirect Topologies: Crossbar 

•  Crossbar = single switch that directly connects n inputs to 
m outputs 

•  Logically equivalent to m n:1 muxes 
•  Very useful component that is used frequently 

in0 

in1 

in2 

in3 

out0 out3 out2 out1 out4 
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Indirect Topologies: Trees 

•  Indirect topology – most switches not attached to nodes 
•  Tree: send message up from leaf to closest common 

ancestor, then down to recipient  

•  N host nodes at leaves 
•  k = branching factor of tree (k=2 à binary tree) 
•  d = height of tree = logkN 
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Indirect Topologies: Fat Trees 

CM-5 “Thinned” Fat Tree 

•   Problem with trees: too much contention at or 
near root 
•   Fat tree: same as tree, but with more bandwidth 
near the root (by adding multiple roots and high 
order switches) 
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Indirect Topologies: Butterflies 

•   Multistage: nodes at ends, switches in middle 
•   Exactly one path between each pair of nodes 
•   Each node sees a tree rooted at itself 
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Indirect Topologies: More Butterflies 

Benes (pronounced “BEN-ish”) Network 

N  
Butterfly 

Reversed 
N  

Butterfly 

° 
° 
° 

•   Routes all permutations w/o conflict 

•   Notice similarity to fat tree (fold in half) 

•   Randomization is major breakthrough 

•  In general, called k-ary, n-flies 

•  n stages of radix-k switches 

•  Have many nice features, esp. logn distances 

•  But conflicts cause tree saturation 

•  How can we spread the traffic more evenly? 
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Indirect Networks in Real World 

•  Thinking Machines CM-5 (old … older than you) 
•  Fat tree 

•  Sun UltraEnterprise E10000 (about as old as you) 
•  4 trees (interleaved by address) 
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Multiprocessor Microarchitecture 

•  Many design issues unique to multiprocessors 
•  Interconnection network 
•  Communication between cores 
•  Memory system design 
•  Others? 



© 2009 Daniel J. Sorin ECE 152 

Communication Between Cores (Threads) 

•  How should threads communicate with each other? 
•  Two popular options 
•  Shared memory 

•  Perform loads and stores to shared addresses 
•  Requires synchronization (can’t read before write) 

•  Message passing 
•  Send messages between threads (cores) 
•  No shared address space 
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What is (Hardware) Shared Memory? 

•  Take multiple microprocessors 

•  Implement a memory system with a single global physical 
address space (usually) 
•  Communication assist HW does the “magic” of cache coherence 

•  Goal 1: Minimize memory latency 
•  Use co-location & caches 

•  Goal 2: Maximize memory bandwidth 
•  Use parallelism & caches 
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Some Memory System Options 

I/O devicesMem

P1

$ $

Pn

P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Interconnection network

$

Pn

Mem Mem

(b) Bus-based shared memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Interconnection network

$

Pn

Mem Mem

(d) Distributed-memory
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Cache Coherence 

•  According to Webster’s dictionary … 
•  Cache: a secure place of storage 
•  Coherent: logically consistent 

 
•  Cache Coherence: keep storage logically consistent 

•  Coherence requires enforcement of 2 properties 

1)  Write propagation 
•  All writes eventually become visible to other processors 

3)  Write serialization 
•  All processors see writes to same block in same order 
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Why Cache Coherent Shared Memory? 

•  Pluses 
•  For applications - looks like multitasking uniprocessor 
•  For OS - only evolutionary extensions required 
•  Easy to do communication without OS 
•  Software can worry about correctness first and then performance 

•  Minuses 
•  Proper synchronization is complex 
•  Communication is implicit so may be harder to optimize 
•  More work for hardware designers (i.e., us!) 

•  Result 
•  Cache coherent shared memory machines are the most successful 

parallel machines ever 
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In More Detail 

•  Efficient naming 
•  Virtual to physical mapping with TLBs 

•  Easy and efficient caching 
•  Caching is natural and well-understood 
•  Can be done in HW automatically 
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Symmetric Multiprocessors (SMPs) 

•  Multiple cores 

•  Each has a cache (or multiple caches in a hierarchy) 

•  Connect with logical bus (totally-ordered broadcast) 
•  Physical bus = set of shared wires 
•  Logical bus = functional equivalent of physical bus 

•  Implement Snooping Cache Coherence Protocol 
•  Broadcast all cache misses on bus 
•  All caches “snoop” bus and may act (e.g., respond with data) 
•  Memory responds otherwise 
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Cache Coherence Problem (Step 1) 

P1 P2 

x 

Interconnection Network 

Main Memory 

Ti
m

e 

ld r2, x 
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Cache Coherence Problem (Step 2) 

P1 P2 

x 

Interconnection Network 

Main Memory 

ld r2, x 

Ti
m

e 

ld r2, x 
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Cache Coherence Problem (Step 3) 

P1 P2 

x 

Interconnection Network 

Main Memory 

ld r2, x 
add r1, r2, r4 
st x, r1 Ti

m
e 

ld r2, x 
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Snooping Cache-Coherence Protocols 

•  Each cache controller “snoops” all bus transactions 
•  Transaction is relevant if it is for a block this cache contains 
•  Take action to ensure coherence 

•  Invalidate 
•  Update 
•  Supply value to requestor if Owner 

•  Actions depend on the state of the block and the protocol 

•  Main memory controller also snoops on bus  
•  If no cache is owner, then memory is owner 

•  Simultaneous operation of independent controllers 
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Simple 2-State Invalidate Snooping Protocol 

•  Write-through, 
no-write-allocate 
cache 

•  Proc actions: 
Load, Store 

•  Bus actions: 
GETS, GETX 

Store / OwnGETX 

Valid OtherGETX/ -- 

Invalid 

OtherGETS / -- 

Load / OwnGETS 

Load / -- 

Notation:  observed event / action taken 

Store / OwnGETX 

OtherGETS / -- 

OtherGETX / -- 
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A 3-State Write-Back Invalidation Protocol 

•  2-State Protocol 
+ Simple hardware and protocol 
•  Uses lots of bandwidth (every write goes on bus!) 

•  3-State Protocol (MSI) 
•   Modified 

•  One cache exclusively has valid (modified) copy è Owner 
•  Memory is stale 

•   Shared 
•  >= 1 cache and memory have valid copy (memory = owner) 

•   Invalid (only memory has valid copy and memory is owner) 

•  Must invalidate all other copies before entering modified 
state 

•  Requires bus transaction (order and invalidate) 
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MSI Processor and Bus Actions 

•  Processor:  
•  Load  
•  Store 
•  Writeback on replacement of modified block 

•  Bus 
•  GetShared (GETS): Get without intent to modify, data could come 

from memory or another cache 
•  GetExclusive (GETX): Get with intent to modify, must invalidate all 

other caches’ copies 
•  PutExclusive (PUTX): cache controller puts contents on bus and 

memory is updated 
•  Definition: cache-to-cache transfer occurs when another cache 

satisfies GETS or GETX request 

•  Let’s draw it! 
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MSI State Diagram 

Load /-- 

M 

-/OtherGETX 
Store / OwnGETX 

S 

I 

Store / -- 

-/OtherGETS Store / OwnGETX 

Load / OwnGETS 

OtherBusRdX / -- 

Load / -- 
-/OtherGETS 

Writeback / OwnPUTX 

Writeback / -- 

Note: we never take any action on an OtherPUTX  
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An MSI Protocol Example 

Proc Action    P1 State    P2 state    P3 state    Bus Act      Data from 
    initially  I    I        I 
1. P1 load u        IàS           I                 I            GETS      Memory 
2. P3 load u        S               I                IàS        GETS      Memory 
3. P3 store u      SàI            I               SàM      GETX    Memory or P1 (?) 
4. P1 load u       IàS            I               MàS      GETS      P3’s cache 
5. P2 load u        S              IàS             S          GETS       Memory 
 

•  Single writer, multiple reader protocol 
•  Why Modified to Shared in line 4? 
•  What if not in any cache?  Memory responds 
•  Read then Write produces 2 bus transactions 

•  Slow and wasteful of bandwidth for a common sequence of 
actions 
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Multicore and Multithreaded Processors 

•  Why multicore? 
•  Thread-level parallelism 
•  Multithreaded cores 
•  Multiprocessors 
•  Design issues 
•  Examples 



© 2009 Daniel J. Sorin ECE 152 

Some Real-World Multicores 

•  Intel/AMD 2/4/8-core chips 
•  Pretty standard 

•  Tilera Tile64 
•  Sun’s Niagara (UltraSPARC T1-T3) 

•  4-16 simple, in-order, multithreaded cores 

•  [D.O.A] Sun’s Rock processor: 16 cores 
•  Cell Broadband Engine: in PlayStation 3 
•  Intel’s Larrabee: 80 simple x86 cores in a ring 
•  Cisco CRS-1 Processor: 188 in-order cores 
•  Graphics processing units (GPUs): hundreds of “cores” 


