
© 2009 Daniel J. Sorin 1

ECE 152 / 496
Introduction to Computer Architecture

Multicore and Multithreaded Processors
Benjamin C. Lee
Duke University

Slides from Daniel Sorin (Duke)
and are derived from work by

Amir Roth (Penn)

© 2009 Daniel J. Sorin 2

Multicore and Multithreaded Processors

•  Why multicore?
•  Thread-level parallelism
•  Multithreaded cores
•  Multiprocessors
•  Design issues
•  Examples

© 2009 Daniel J. Sorin 3

Readings

•  Patterson and Hennessy
•  Chapter 7
•  Some recent research papers!

© 2009 Daniel J. Sorin 4

Why Multicore?

•  Why is everything now multicore?
•  This is a fairly new trend

•  Reason #1: Running out of ILP that we can exploit
•  Can’t get much better performance out of a single core that’s

running a single program at a time

•  Reason #2: Power/thermal constraints
•  Even if we wanted to just build fancier single cores at higher clock

speeds, we’d run into power and thermal obstacles

•  Reason #3: Moore’s Law
•  Lots of transistors à what else are we going to do with them?
•  Historically: use transistors to make more complicated cores with

bigger and bigger caches
•  But we just saw that this strategy has run into problems

© 2009 Daniel J. Sorin 5

How do we keep multicores busy?

•  Single core processors exploit ILP
•  Multicore processors exploit TLP: thread-level parallelism
•  What’s a thread?

•  A program can have 1 or more threads of control
•  Each thread has own PC and own arch registers
•  All threads in a given program share resources (e.g., memory)

•  OK, so where do we find more than one thread?
•  Option #1: Multiprogrammed workloads

•  Run multiple single-threaded programs at same time

•  Option #2: Explicitly multithreaded programs
•  Create a single program that has multiple threads that work

together to solve a problem

© 2009 Daniel J. Sorin 6

Parallel Programming

•  How do we break up a problem into sub-problems that can
be worked on by separate threads?

•  ICQ: How would you create a multithreaded program that
searches for an item in an array?

•  ICQ: How would you create a multithreaded program that
sorts a heap?

•  Fundamental challenges
•  Breaking up the problem into many reasonably sized tasks

•  What if tasks are too small? Too big? Too few?
•  Minimizing the communication between threads

•  Why?

© 2009 Daniel J. Sorin 7

Writing a Parallel Program

•  Compiler can turn sequential code into parallel code
•  Just as soon as the Cubs win the World Series

•  Can use an explicitly parallel language or extensions to an
existing language
•  High performance Fortran (HPF)
•  Pthreads
•  Message passing interface (MPI)
•  CUDA
•  OpenCL
•  Etc.

© 2009 Daniel J. Sorin 8

Parallel Program Challenges

•  Parallel programming is HARD!
•  Why?

•  Problem: #cores is increasing, but parallel programming
isn’t getting easier à how are we going to use all of these
cores???

© 2009 Daniel J. Sorin 9

HPF Example

 forall(i=1:100, j=1:200){
 MyArray[i,j] = (X[i-1, j] + X[i+1, j];
 }

// “forall” means we can do all i,j combinations in parallel
// I.e., no dependences between these operations

© 2009 Daniel J. Sorin 10

Some Problems Are “Easy” to Parallelize

•  Database management system (DBMS)
•  Web search (Google)
•  Graphics
•  Some scientific workloads (why?)
•  Others??

© 2009 Daniel J. Sorin 11

Multicore and Multithreaded Processors

•  Why multicore?
•  Thread-level parallelism
•  Multithreaded cores
•  Multiprocessors
•  Design issues
•  Examples

© 2009 Daniel J. Sorin 12

Multithreaded Cores

•  So far, our core executes one thread at a time
•  Multithreaded core: execute multiple threads at a time
•  Old idea … but made a big comeback fairly recently
•  How do we execute multiple threads on same core?

•  Coarse-grain switching
•  Fine-grain switching
•  Simultaneous multithreading (SMT) à “hyperthreading” (Intel)

•  Benefits?
•  Better instruction throughput

•  Greater resource utilization
•  Tolerates long latency events (e.g., cache misses)

•  Cheaper than multiple complete cores (does this matter any more?)

© 2009 Daniel J. Sorin 13

Multiprocessors

•  Multiprocessors have been around a long time … just not
on a single chip
•  Mainframes and servers with 2-64 processors
•  Supercomputers with 100s or 1000s of processors

•  Now, multiprocessor on a single chip
•  “Chip multiprocessor” (CMP) or “multicore processor”

•  Why does “single chip” matter so much?
•  ICQ: What’s fundamentally different about having a multiprocessor

that fits on one chip vs. on multiple chips?

© 2009 Daniel J. Sorin 14

Multicore and Multithreaded Processors

•  Why multicore?
•  Thread-level parallelism
•  Multithreaded cores
•  Multiprocessors
•  Design issues
•  Examples

© 2009 Daniel J. Sorin 15

Multiprocessor Microarchitecture

•  Many design issues unique to multiprocessors
•  Interconnection network
•  Communication between cores
•  Memory system design
•  Others?

© 2009 Daniel J. Sorin ECE 152

Interconnection Networks

•  Networks have many design aspects
•  We focus on one here (topology) à see ECE 259 for more on this

•  Topology is the structure of the interconnect
•  Geometric property à topology has nice mathematical properties

•  Direct vs Indirect Networks
•  Direct: All switches attached to host nodes (e.g., mesh)
•  Indirect: Many switches not attached to host nodes (e.g., tree)

© 2009 Daniel J. Sorin ECE 152

Direct Topologies: k-ary d-cubes

•  Often called k-ary n-cubes

•  General class of regular, direct topologies
•  Subsumes rings, tori, cubes, etc.

•  d dimensions
•  1 for ring
•  2 for mesh or torus
•  3 for cube
•  Can choose arbitrarily large d, except for cost of switches

•  k switches in each dimension
•  Note: k can be different in each dimension (e.g., 2,3,4-ary 3-cube)

© 2009 Daniel J. Sorin ECE 152

Examples of k-ary d-cubes

•  1D Ring = k-ary 1-cube
•  d = 1 [always]
•  k = N [always] = 4 [here]
•  Ave dist = ?

•  2D Torus = k-ary 2-cube
•  d = 2 [always]
•  k = logdN (always) = 3 [here]
•  Ave dist = ?

© 2009 Daniel J. Sorin ECE 152

k-ary d-cubes in Real World

•  Compaq Alpha 21364 (and 21464, R.I.P.)
•  2D torus (k-ary 2-cube)

•  Cray T3D and T3E
•  3D torus (k-ary, 3-cube)

•  Intel Larrabee (Knight’s Ferry/Corner/Landing)
•  1D ring

•  Tilera64
•  2D torus

© 2009 Daniel J. Sorin ECE 152

Indirect Topologies

•  Indirect topology – most switches not attached to nodes
•  Some common indirect topologies

•  Crossbar
•  Tree
•  Butterfly

•  Each of the above topologies comes in many flavors

© 2009 Daniel J. Sorin ECE 152

Indirect Topologies: Crossbar

•  Crossbar = single switch that directly connects n inputs to
m outputs

•  Logically equivalent to m n:1 muxes
•  Very useful component that is used frequently

in0

in1

in2

in3

out0 out3 out2 out1 out4

© 2009 Daniel J. Sorin ECE 152

Indirect Topologies: Trees

•  Indirect topology – most switches not attached to nodes
•  Tree: send message up from leaf to closest common

ancestor, then down to recipient

•  N host nodes at leaves
•  k = branching factor of tree (k=2 à binary tree)
•  d = height of tree = logkN

© 2009 Daniel J. Sorin ECE 152

Indirect Topologies: Fat Trees

CM-5 “Thinned” Fat Tree

•  Problem with trees: too much contention at or
near root
•  Fat tree: same as tree, but with more bandwidth
near the root (by adding multiple roots and high
order switches)

© 2009 Daniel J. Sorin ECE 152

Indirect Topologies: Butterflies

•  Multistage: nodes at ends, switches in middle
•  Exactly one path between each pair of nodes
•  Each node sees a tree rooted at itself

© 2009 Daniel J. Sorin ECE 152

Indirect Topologies: More Butterflies

Benes (pronounced “BEN-ish”) Network

N
Butterfly

Reversed
N

Butterfly

°
°
°

•  Routes all permutations w/o conflict

•  Notice similarity to fat tree (fold in half)

•  Randomization is major breakthrough

•  In general, called k-ary, n-flies

•  n stages of radix-k switches

•  Have many nice features, esp. logn distances

•  But conflicts cause tree saturation

•  How can we spread the traffic more evenly?

© 2009 Daniel J. Sorin ECE 152

Indirect Networks in Real World

•  Thinking Machines CM-5 (old … older than you)
•  Fat tree

•  Sun UltraEnterprise E10000 (about as old as you)
•  4 trees (interleaved by address)

© 2009 Daniel J. Sorin 27

Multiprocessor Microarchitecture

•  Many design issues unique to multiprocessors
•  Interconnection network
•  Communication between cores
•  Memory system design
•  Others?

© 2009 Daniel J. Sorin ECE 152

Communication Between Cores (Threads)

•  How should threads communicate with each other?
•  Two popular options
•  Shared memory

•  Perform loads and stores to shared addresses
•  Requires synchronization (can’t read before write)

•  Message passing
•  Send messages between threads (cores)
•  No shared address space

© 2009 Daniel J. Sorin 29

What is (Hardware) Shared Memory?

•  Take multiple microprocessors

•  Implement a memory system with a single global physical
address space (usually)
•  Communication assist HW does the “magic” of cache coherence

•  Goal 1: Minimize memory latency
•  Use co-location & caches

•  Goal 2: Maximize memory bandwidth
•  Use parallelism & caches

© 2009 Daniel J. Sorin 30

Some Memory System Options

I/O devicesMem

P1

$ $

Pn

P1

Switch

Main memory

Pn

(Interleaved)

(Interleaved)

P1

$

Interconnection network

$

Pn

Mem Mem

(b) Bus-based shared memory

(c) Dancehall

(a) Shared cache

First-level $

Bus

P1

$

Interconnection network

$

Pn

Mem Mem

(d) Distributed-memory

© 2009 Daniel J. Sorin 31

Cache Coherence

•  According to Webster’s dictionary …
•  Cache: a secure place of storage
•  Coherent: logically consistent

•  Cache Coherence: keep storage logically consistent

•  Coherence requires enforcement of 2 properties

1)  Write propagation
•  All writes eventually become visible to other processors

3)  Write serialization
•  All processors see writes to same block in same order

© 2009 Daniel J. Sorin 32

Why Cache Coherent Shared Memory?

•  Pluses
•  For applications - looks like multitasking uniprocessor
•  For OS - only evolutionary extensions required
•  Easy to do communication without OS
•  Software can worry about correctness first and then performance

•  Minuses
•  Proper synchronization is complex
•  Communication is implicit so may be harder to optimize
•  More work for hardware designers (i.e., us!)

•  Result
•  Cache coherent shared memory machines are the most successful

parallel machines ever

© 2009 Daniel J. Sorin 33

In More Detail

•  Efficient naming
•  Virtual to physical mapping with TLBs

•  Easy and efficient caching
•  Caching is natural and well-understood
•  Can be done in HW automatically

© 2009 Daniel J. Sorin 34

Symmetric Multiprocessors (SMPs)

•  Multiple cores

•  Each has a cache (or multiple caches in a hierarchy)

•  Connect with logical bus (totally-ordered broadcast)
•  Physical bus = set of shared wires
•  Logical bus = functional equivalent of physical bus

•  Implement Snooping Cache Coherence Protocol
•  Broadcast all cache misses on bus
•  All caches “snoop” bus and may act (e.g., respond with data)
•  Memory responds otherwise

© 2009 Daniel J. Sorin 35

Cache Coherence Problem (Step 1)

P1 P2

x

Interconnection Network

Main Memory

Ti
m

e

ld r2, x

© 2009 Daniel J. Sorin 36

Cache Coherence Problem (Step 2)

P1 P2

x

Interconnection Network

Main Memory

ld r2, x

Ti
m

e

ld r2, x

© 2009 Daniel J. Sorin 37

Cache Coherence Problem (Step 3)

P1 P2

x

Interconnection Network

Main Memory

ld r2, x
add r1, r2, r4
st x, r1 Ti

m
e

ld r2, x

© 2009 Daniel J. Sorin 38

Snooping Cache-Coherence Protocols

•  Each cache controller “snoops” all bus transactions
•  Transaction is relevant if it is for a block this cache contains
•  Take action to ensure coherence

•  Invalidate
•  Update
•  Supply value to requestor if Owner

•  Actions depend on the state of the block and the protocol

•  Main memory controller also snoops on bus
•  If no cache is owner, then memory is owner

•  Simultaneous operation of independent controllers

© 2009 Daniel J. Sorin 39

Simple 2-State Invalidate Snooping Protocol

•  Write-through,
no-write-allocate
cache

•  Proc actions:
Load, Store

•  Bus actions:
GETS, GETX

Store / OwnGETX

Valid OtherGETX/ --

Invalid

OtherGETS / --

Load / OwnGETS

Load / --

Notation: observed event / action taken

Store / OwnGETX

OtherGETS / --

OtherGETX / --

© 2009 Daniel J. Sorin 40

A 3-State Write-Back Invalidation Protocol

•  2-State Protocol
+ Simple hardware and protocol
•  Uses lots of bandwidth (every write goes on bus!)

•  3-State Protocol (MSI)
•  Modified

•  One cache exclusively has valid (modified) copy è Owner
•  Memory is stale

•  Shared
•  >= 1 cache and memory have valid copy (memory = owner)

•  Invalid (only memory has valid copy and memory is owner)

•  Must invalidate all other copies before entering modified
state

•  Requires bus transaction (order and invalidate)

© 2009 Daniel J. Sorin 41

MSI Processor and Bus Actions

•  Processor:
•  Load
•  Store
•  Writeback on replacement of modified block

•  Bus
•  GetShared (GETS): Get without intent to modify, data could come

from memory or another cache
•  GetExclusive (GETX): Get with intent to modify, must invalidate all

other caches’ copies
•  PutExclusive (PUTX): cache controller puts contents on bus and

memory is updated
•  Definition: cache-to-cache transfer occurs when another cache

satisfies GETS or GETX request

•  Let’s draw it!

© 2009 Daniel J. Sorin 42

MSI State Diagram

Load /--

M

-/OtherGETX
Store / OwnGETX

S

I

Store / --

-/OtherGETS Store / OwnGETX

Load / OwnGETS

OtherBusRdX / --

Load / --
-/OtherGETS

Writeback / OwnPUTX

Writeback / --

Note: we never take any action on an OtherPUTX

© 2009 Daniel J. Sorin 43

An MSI Protocol Example

Proc Action P1 State P2 state P3 state Bus Act Data from
 initially I I I
1. P1 load u IàS I I GETS Memory
2. P3 load u S I IàS GETS Memory
3. P3 store u SàI I SàM GETX Memory or P1 (?)
4. P1 load u IàS I MàS GETS P3’s cache
5. P2 load u S IàS S GETS Memory

•  Single writer, multiple reader protocol
•  Why Modified to Shared in line 4?
•  What if not in any cache? Memory responds
•  Read then Write produces 2 bus transactions

•  Slow and wasteful of bandwidth for a common sequence of
actions

© 2009 Daniel J. Sorin 44

Multicore and Multithreaded Processors

•  Why multicore?
•  Thread-level parallelism
•  Multithreaded cores
•  Multiprocessors
•  Design issues
•  Examples

© 2009 Daniel J. Sorin ECE 152

Some Real-World Multicores

•  Intel/AMD 2/4/8-core chips
•  Pretty standard

•  Tilera Tile64
•  Sun’s Niagara (UltraSPARC T1-T3)

•  4-16 simple, in-order, multithreaded cores

•  [D.O.A] Sun’s Rock processor: 16 cores
•  Cell Broadband Engine: in PlayStation 3
•  Intel’s Larrabee: 80 simple x86 cores in a ring
•  Cisco CRS-1 Processor: 188 in-order cores
•  Graphics processing units (GPUs): hundreds of “cores”

