
Page 1 of 3 	  

Duke ECE496 – Spring 2013 – Project Part 3: Adder and Shifter 
100 Points. Due electronically by 11:59pm on February 8. 

	  
	  

In this part of the project, you will implement a 32-bit 2’s complement adder and a 32-bit 
barrel shifter.  These will be components in the ALU of your processor. 

	  
	  
Project Part 3a: 32-bit Carry-Select-Lookahead Adder/Subtractor (60 points) 

The  adder  uses  a  combination  of   ripple-carry,  carry-lookahead   and  carry-select 
techniques.  The lower 16-bit addition (adding bits 0-15 of the addends) is performed by two 8- 
bit carry-lookahead adders chained in ripple-carry fashion.   The upper 16-bit addition (adding 
bits 16-31 of the addends) is performed using two 16-bit ripple-carry-lookahead adders used in 
carry-select fashion.  Thus you will be using three identical 16-bit ripple-carry-lookahead adders 
for the entire 32-bit adder, as illustrated in Figure 1.  You do not need to account for underflow 
or overflow. 

In addition to the addends, the adder also takes a single-bit input ctrl_subtract which, if 
high,  denotes  that  2’s  complement  subtraction  should  be  performed  instead  of  addition 
(data_sum = data_addendA – data_addendB).  You will implement your adder in Structural 
VHDL using the Quartus II software.  You should create one VHDL (adder.vhd) or Block- 
Diagram (adder.bdf) file that has exactly the same format as the diagram in Figure 2.  This top- 
level adder.vhd or adder.bdf file is likely to refer to other lower-level files (e.g., 8bitCLA, etc.). 
The top-level file adder.vhd or adder.bdf file is what you will then use later in the semester when 
you  need  a  fast  adder  for  your  processor’s  ALU.    Figure  2  is  a  screenshot  of  the  adder 
component in Quartus, and it shows the signal names that you MUST use in your design to 
facilitate testing and grading. 

After implementing your adder, you should test it thoroughly to verify that it works 
correctly. One test waveform is provided for your adder in the file test_adder_s13.vwf. In 
addition, this assignment will be graded by running additional tests that are not provided, so do 
not assume that you can ignore bugs that do not manifest themselves on the one test that is 
provided. 

	  
	  
Project Part 3b: 32-bit Logarithmic Barrel Shifter/Rotator (40 points) 

The shifter/rotator uses the barrel shifting method discussed in lecture for faster delay 
and lower area.  In addition to the operand and shift/rotate amount, the shifter/rotator also takes 
two other single-bit inputs: ctrl_right and ctrl_shift. If high, ctrl_right denotes that a right 
shift/rotate should be performed instead  of  a left  shift/rotate. Analogously, ctrl_shift denotes a 
zero-extending or zero-filling shift when high, and a rotation if low. Remember that during right 
rotations the LSBs (least significant bits) take place of the MSBs (most significant bits) and the 
opposite happens for left rotations. You  will  implement  your  logarithmic  barrel  shifter/rotator  
in Structural VHDL using the Quartus II software.  You should create one VHDL (shifter.vhd) 
or Block-Diagram (shifter.bdf) file that has exactly the same format as the diagram in Figure 
3. This top-level shifter.vhd or shifter.bdf file is likely to refer to other lower-level files (e.g., 
mux32, etc.).  The top-level file shifter.vhd or shifter.bdf file is what you will then use later in 



Page 2 of 3 	  

the semester when you need a shifter for your processor’s ALU.  Figure 3 is a screenshot of the 
shifter component in Quartus, and it shows the signal names that you MUST use in your design 
to facilitate testing and grading. 

 
After implementing your shifter/rotator, you should test it thoroughly to verify that it 

works correctly. One test waveform is provided for your shifter in the file test_shifter_s13.vwf. In  
addition,  this  assignment will be graded by running additional tests that are not provided, so do 
not assume that you can ignore bugs that do not manifest themselves on the one test that is 
provided. 

	  
	  
Submitting This Assignment 

To submit this assignment, create a Quartus Archive (Project à Archive Project) named 
project3.qar of all the files needed to implement your design.  Make sure that your top-level files 
are named adder.vhd or adder.bdf and shifter.vhd or shifter.bdf.  Names of lower-level files are 
unrestricted, but be sure to include them along with your top-level design entity in the Quartus 
Archive file.  Submit your Quartus Archive to Sakai along with all group members’ names and 
NetIDs. 

	  
	  
	  
	  
	  
Figure 1: 32-bit Tiered Carry-Select-Lookahead Adder (CSLA) 

	  
	  

carryIn 

addendA[7:0] 

	  

16-bit RCLA 
	  

carryIn 

addendA[15:0] 

	  

	  
	  
	  
	  
16-bit 
RCLA 

	  
32-bit CSLA 
	  

sum[15:0] 

	  
	  

addendB[7:0] 

8-bit 
CLA 

sum[7:0] addendB[15:0] 
	  
	  

0 
	  
	  

addendA[15:8] 
	  
	  

addendB[15:8] 

	  
	  
8-bit 
CLA 

	  
	  
sum[15:8] 
	  
	  
	  
carryOut 

addendA[31:16] 
	  
	  
addendB[31:16] 

	  
16-bit 
RCLA 
	  
	  
	  

1 
	  
	  
	  
16-bit 
RCLA 

	  

	  
	  
	  
	  
	  
	  
Mux 

	  
	  
	  
	  
	  
	  
	  
	  
sum[31:16], 

carryOut 



Page 3 of 3 	  

Figure 2: adder VHDL and BDF screenshots 
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
Figure 3: shifter VHDL screenshot 

 
 


