
Page of  	
  

Duke ECE496 – Spring 2013 – Project Part 4: ALU 
75 Points. Due electronically by 11:59pm on Thu, Feb 21. 

	
  
	
  

In this part of the project, you will implement the integer Arithmetic Logic Unit (ALU) 
that you will use in your processor. 

	
  
	
  
Project Part 4: Arithmetic Logic Unit 

The ALU implements all of the arithmetic and logical operations specified in the 
Instruction Set Architecture, including addition, 2’s complement subtraction, bitwise logical and, 
bitwise logical or, left shift, zero-extending right shift as well as left and right rotation.  In 
addition to the above operations, the ALU also generates a signal isNotEqual when both 
operands are not equal to each other; this is used for the bne (branch-if-not-equal) instruction.   
Lastly, the ALU generates a signal isLessThan when data_operandB is less than 
data_operandA and the subtract operation is selected (behavior when the subtract operation is 
not selected is undefined / don’t-care); this is used for the blt (branch-if-less-than signed 2’s 
complement) instruction.  Be sure to check for under- / over-flow and generate the correct output 
when calculating isLessThan.  The ALU receives a 5-bit ALU operation code (ALU opcode) 
from the processor’s control logic that denotes which operation should be performed. Note that 
the for some of the instructions, the ALU opcode is already present in the instruction word. The 
shift/rotate operations require only the lower 5 bits of input data_operandB. 

You will implement your ALU in Structural VHDL using the Quartus II software.  You 
should create one VHDL (alu.vhd) or Block-Diagram (alu.bdf) file that has exactly the same 
format as the diagram in Figure 1.  This top-level alu.vhd or alu.bdf file is likely to refer to other 
lower-level files (e.g., adder, shifter, etc.).  The top-level file alu.vhd or alu.bdf file is what you 
will then use later in the semester when you need an ALU for your processor.   Figure 1 is a 
screenshot of the alu component in Quartus, and it shows the signal names that you MUST use in 
your design to facilitate testing and grading. 

After implementing your ALU, you should test it thoroughly to verify that it works 
correctly. One test waveform is provided for your ALU on Sakai. In addition, this assignment 
will be graded by running additional tests that are not provided, so do not assume that you can 
ignore bugs that do not manifest themselves on the one test that is provided. 

	
  

	
  
Submitting This Assignment 

To submit this assignment, create a Quartus Archive (Project  Archive Project) named 
project4.qar of all the files needed to implement your design.  Make sure that your top-level file 
is named alu.vhd or alu.bdf.  Names of lower-level files are unrestricted, but be sure to include 
them along with your top-level design entity in the Quartus Archive file.  Submit the archive 
on the assignment section in Sakai. 



Page of  	
  

Table 1: ALU Opcodes 
	
  

Operation ALU 
Opcode 

add 00000 
sub 00001 
and 00010 
or 00011 
sll 00100 
srl 00101 

 
 

rol 00110 
ror 00111 

	
  

	
  
	
  
	
  
	
  

Figure 1: alu VHDL declaration 
 
ENTITY alu IS 
 PORT ( data_operandA, data_operandB : IN STD_LOGIC_VECTOR(31 DOWNTO 0); -- 32bit inputs 
  ctrl_ALUopcode   : IN STD_LOGIC_VECTOR(4 DOWNTO 0); -- 5bit ALU opcode 
  data_result   : OUT STD_LOGIC_VECTOR(31 DOWNTO 0); -- 32bit output 
  isNotEqual, isLessThan  : OUT STD_LOGIC); 
END alu; 


