
Page 1 of 2 	

Duke ECE496 – Spring 2013 – Instruction Set Architecture
Duke496-S13-32

	
Instruction Opcode Type ALU Opcode Usage Operation

add 00000 R 00000 add $rd, $rs, $rt $rd = $rs + $rt
sub 00000 R 00001 sub $rd, $rs, $rt $rd = $rs – $rt
and 00000 R 00010 and $rd, $rs, $rt $rd = $rs AND $rt
or 00000 R 00011 or $rd, $rs, $rt $rd = $rs OR $rt
sll 00000 R 00100 sll $rd, $rs, $rt $rd = $rs shifted left by $rt[4:0]
sra 00000 R 00101 sra $rd, $rs, $rt $rd = $rs shifted right arithmetic by $rt[4:0]

rol 00000 R 00110 rol $rd, $rs, $rt $rd = $rs rotated left by $rt[4:0]
ror 00000 R 00111 ror $rd, $rs, $rt $rd = $rs rotated right by $rt[4:0]

custr1 00000 R 01000 custr1 $rd, $rs, $rt student custom defined
custr2 00000 R 01001 custr2 $rd, $rs, $rt student custom defined
custr3 00000 R 01010 custr3 $rd, $rs, $rt student custom defined
custr4 00000 R 01011 custr4 $rd, $rs, $rt student custom defined
custr5 00000 R 01100 custr5 $rd, $rs, $rt student custom defined
custr6 00000 R 01101 custr6 $rd, $rs, $rt student custom defined
addi 00001 I N/A addi $rd, $rs, N $rd = $rs + N
sltiu 00010 I N/A sltiu $rd, $rs, N $rd = 1 if $rs < N (unsigned) else 0
lw 00011 I N/A lw $rd, N($rs) $rd = Mem[$rs+N]
sw 00100 I N/A sw $rd, N($rs) Mem[$rs+N] = $rd
bne 00101 I N/A bne $rd, $rs, N if ($rd!=$rs) then PC = PC+1+N
blt 00110 I N/A blt $rd, $rs, N if ($rd<$rs) then PC = PC+1+N
j 00111 J N/A j N PC = N

jal 01000 J N/A jal N $r31 = PC+1; PC = N
jr 01001 I N/A jr $rd PC = $rd

input 01010 I N/A input $rd $rd = keyboard input
output 01011 I N/A output $rd LCD output = $rd (lower 8 bits)
custi1 01100 I N/A custi1 $rd, $rs, N student custom defined
custi2 01101 I N/A custi2 $rd, $rs, N student custom defined
custi3 01110 I N/A custi3 $rd, $rs, N student custom defined
custj1 01111 J N/A custj1 N student custom defined
custj2 10000 J N/A custj2 N student custom defined

	
Instruction Type Instruction Format

R opcode(5) rd(5) rs(5) rt(5) ALUop(5) zeroes(7)
I opcode(5) rd(5) rs(5) immediate(17)
J opcode(5) target(27)

	
R-type instruction field shamt(5) is unsigned.
I-type immediate(17) is signed 2’s complement and is sign-extended to the full 32-bit word size.
J-type target(27) is extended to the full PC size by using the upper bits from the current PC.
Register fields that are undefined are filled with zeroes by the assembler.
Register $r0 always equals zero. Registers $r1 through $r30 are general purpose. Register $r31 stores the

return address of a jump-and-link instruction.
Instructions that change control flow (bne, blt, j, jal, jr) do not have a delay slot.
The Input instruction shall assert high on input_ack for the cycle only when the input is read from the

keyboard controller; otherwise it shall assert low. The Output instruction shall assert high on
LCD_wren for the cycle only when the data is outputted to the LCD controller; otherwise it shall
assert low.

Page 2 of 2 	

Memory is word-addressed. The instruction and data memory address spaces are separate. Static data
begins at data memory address zero. Stack data begins at the end of the data memory and grows
downwards. There is no preset boundary between the end of static data and the start of the upwards-
growing heap; this is a property of the assembly program.

After a reset, all register values are zero and program execution begins from instruction memory address
zero. The memories’ contents are not reset.

	

	
	
Revised by James Hong, Oliver Fang, Amay Jhaveri, Mason Meier on January 15th, 2013.

