
Optimal Logic Depth Per 
Pipeline Stage
Presentation & Discussion

What is FO4?
- Fan-out of 4 is a process-independent delay metric in CMOS tech
- Cload/Cin = FO4
- Cload = total MOS gate capacitance driven by logic gate under consideration
- Cin = the MOS gate capacitance of the logic gate under consideration
- FO4 is used as a fairer comparison metric because scaled technologies are 

inherently faster in absolute terms
- In terms of a delay metric:

- 1 FO4 is the delay of an inverter, driven by an inverter 4x smaller than 
itself, while driving an inverter 4x larger than itself



Outline
- Abstract
- History
- Quantifying Latch Overhead
- Finding the Ideal Clock Frequency
- New Microarchitectural Structures
- Related Work
- Wrap-up

Discoveries
- Using SPEC 2000 benchmarks, for high-performance architecture in 

100nm
- 8FO4 for integer benchmarks

- 6 for useful work
- 2 for overhead

- 6FO4 for floating point benchmarks
- Insensitive to latch and skew overheads

- Further pipelining:
- Performance boost upto 2x

- Difficult to design instruction issue windows to operate in one cycle, 
considering high clock frequencies

- Segmented instruction window



Processor Performance History

- Performance boosted by IPC and clock 
frequency gains
- How much further can reducing the amount of logic 

per pipeline stage improve performance?

Intel Processor Trend



Caveats
- Reducing the amount of logic per pipeline 

stage
- Seek balance between IPC and clock frequency

Overhead

- Pipelined machines requires data and 
control signals at each stage to be saved at 
the end of every cycle

- Final estimate is 36 ps (1 FO4) at 100nm



Pulse Latch Circuit Determining Overhead



Skew & Jitter Simulation Framework
- Simulator that models both low-level structures 

of Alpha 21264 and execution core
- Accuracy of 20% of a Compaq DS-10L

- Capacities of integer and floating point values 
were increased to 512 each

- Execution core permits addition of more stages 
to different parts of pipeline

- Pipeline depth of different parts of the 
processor pipeline can be varied

- Experiments skip the first 500 million 
instructions of each benchmark and simulate 
the subsequent 500 million

- Cacti models on-chip microarchitectural 
structures and estimates their access times

- Major MA structures were chosen to 
match the equivalent ones in the Alpha



Latencies & Scaling Pipelines Pipelined Architectures
- Vary pipeline depth of an in-order issue 

processor to determine optimal clock 
frequency
- 7 stages and the issue stage can handle 4 instructions 

in each cycle
- Functional units are fully pipelined, new instructions 

assigned at every clock cycle



Benchmarks of IO Pipeline CRAY Comparison
- The latency in one logic level for a CRAY-1S in CMOS would 

be 1.36 FO4
- 8 gate levels for scalar
- 4 gate levels for vector

- Optimal logic for vector benchmarks have stayed the same for 
the IO Pipeline and CRAY because of ample ILP

- Logic for integers has more than halved since the time of the 
CRAY

- Processor designed with modern techniques can be clocked at 
more than twice the frequency



Dynamically Scheduled Processor Relating Logic & Overhead



Logic & Structure Capacity
- Identify the best capacity 

and corresponding latency 
for on-chip structures:
- Determine the 

sensitivity of IPC to the 
size and delay of each 
individual structure

- Vary latency of each 
structure individually, 
with its capacity 
unchanged

IPC & Pipelining
- Increasing overall depth of a pipeline 

decreases IPC because of dependencies in 
critical loops
- Issue, load, obtaining a value, and predicting a 

branch
- Loops lengths increase

- Loops need to execute in fewest cycles



Critical Loops Segmented Instruction Window

- For new instructions every 
cycle, the instruction issue 
window examines which 
instructions can be issued 
(woken up)

- Every cycle that a result is 
produced, a destination 
tag is broadcast to all 
entries in the instruction 
window



Instruction Window Stages
- 3 components constitute delay to 

wake up instructions
- Delay to broadcast tags
- Delay to perform tag 

comparisons
- Delay to OR individual match 

lines
- To reduce tag broadcast latency, 

organize instruction window into 
stages

Effects of Stages



Selection Logic
- Conventional processor, select logic 

examines the entire instruction 
window to select instructions for issue

- Decrease latency by reducing fan-in
- At every clock cycle, preselection logic 

blocks S2-S4 pick ready instructions in 
their stage

- Instructions are stored in latches 
L1-L7 at the end of the cycle

- In the second cycle, the select 
logic of S1 selects 4 instructions 
from Stage 1 and those in L1-L7 to 
be issued

Related Work
- Instructions can be woken up speculatively when grandparents are issued

- If grandparents’ tags are broadcast during the current cycle, parents’ 
tags will probably be issued the same cycle

- Cannot be issued until parents are issued
- Reduces IPC, but enables functionality at higher frequencies

- Moving selection logic off the critical path
- Two separate stages for wake-up and select
- In the wake-up stage instructions are woken up by producer tags
- All woken instructions speculate that they will be selected for issue in 

the following cycle - i.e. available 
- Result tags are broadcast as if all of them have been issued
- Still, selection logic selects only a limited number from ‘available’, 

others are detected and rescheduled



Wrap-Up
- 6FO4 is the amount of useful logic per stage that will provide the best performance

- Below this value, the improvement in clock frequency cannot compensate for a 
decrease in IPC and vice-versa

- Optimal clock frequencies are dependent on on-chip microarchitectural structures, 
these structures need to be pipelined to operate at high frequencies

- Segmented instruction window for pipelining with 4 stages without a marked 
decrease in IPC

- Pipelining can at most improve the clock rate by a factor of two, additional 
improvements must come from

- Concurrency, ILP or TLP, or a combination
- To follow historic performance trends, concurrency would have to increase at 

33% per year, with 15 IPC before another 15 years has passed

END


