Optimal Logic Depth Per
Pipeline Stage

Presentation & Discussion

What is FO4?

- Fan-out of 4 is a process-independent delay metric in CMOS tech
- Cload/Cin = FO4
- C,,,q= total MOS gate capacitance driven by logic gate under consideration
- C,, = the MOS gate capacitance of the logic gate under consideration
- FOg4 is used as a fairer comparison metric because scaled technologies are
inherently faster in absolute terms

- Interms of a delay metric:

- 1FOg4 is the delay of an inverter, driven by an inverter 4x smaller than

itself, while driving an inverter 4x larger than itself

Outline

- Abstract

- History

- Quantifying Latch Overhead

- Finding the Ideal Clock Frequency
- New Microarchitectural Structures
- Related Work

- Wrap-up

Discoveries

Using SPEC 2000 benchmarks, for high-performance architecture in
100nm
- 8FO04 for integer benchmarks
- 6 for useful work
- 2 for overhead
- 6FO4 for floating point benchmarks
- Insensitive to latch and skew overheads
Further pipelining:
- Performance boost upto 2x
Difficult to design instruction issue windows to operate in one cycle,
considering high clock frequencies
- Segmented instruction window

Processor Performance History

- Performance boosted by IPC and clock
frequency gains

- How much further can reducing the amount of logic
per pipeline stage improve performance?

Intel Processor Trend

Clock period (Fod)
&

8

0

T T T T T T)
Year 1990 1992 1994 1996 1998 2000 2002
Tech(um) 1000 800 600 350 250 180 130

Figure 1: The year of introduction, clock frequency and fabrication
technologies of the last seven generations of Intel processors. Logic
levels are measured in fan-out-of-four delays (FO4). The broken line
shows the optimal clock period for integer codes.

- Reducing the amount of logic per pipeline @ = Progic + Platch + Pskew + Pjitter (1)
stage
- Seek balance between IPC and clock frequency

- Pipelined machines requires data and
control signals at each stage to be saved at
the end of every cycle

- Final estimate is 36 ps (1 FO4) at 100nm

Pulse Latch Circuit

Determining Overhead

(b)

Tigure 2: Circuit and timing diagrams of a basic pulse latch. The shaded area in Figure 2b indicates that the signal is valid.

%}%D @ -
e PR LT

Figure 3: Simulation setup to find latch overhead. The clock and
data signals are buffered by a series of six inverters and the output
drives a similar latch with its transmission gate turned on.

Skew & Jitter Simulation Framework

Simulator that models both low-level structures

- [Integer Vector FP_| Non-vector FP | _ of Alpha 21264 and execution core
| Symbol I Definition I Overhead ‘ T64g7ip T71swim 177.mesa - Accuracy of 20% of a Compaq DS-10L
175.vpr 172 mgrid 178 galgel - Capagities of integer and floating point values
(,'b_l atch Latch Overhead 1 0 FO4 176.gcc 173.applu 179.art were increased to 512 each
181.mef 183 equake 188.amm - Execution core permits addition of more stages
QS skew Skew Overhead 0.3 FO4 197 parser 4 189 lucaf to different parts of pipeline
. b : - Pipeline depth of different parts of the
¢jitte-r Jitter Overhead 0.5 FO4 2535?;;1(:;:@ processor pipeline can be varied
1 Zégb' in2 - Experiments skip the first 500 million
QSO‘U erhead TOta 1 - 8 FO4 . apH instructions of each benchmark and simulate
300 twol the subsequent 500 million

- Cacti models on-chip microarchitectural

. . . structures and estimates their access times
Table 2: SPEC 2000 benchmarks used in all simulation exper-

- 2= iments. The benchmarks are further classified into vector and non- - Major MA Stru.Ctures were .Chosen to
Table 1: Overheads due to latch, clock skew and jitter. eior Kencimmarba match the equivalent ones in the Alpha

Latencies & Scaling Pipelines Pipelined Architectures

Branch | Rename Tssuc Register Intcger TLoating Point
Progic (FO4) DL1 | Predictor ‘Lable Window File Add | Mult | Add | Div | Sgrt | Mult V 3 1' d h f : d 3
e T T AR i EMAS B O - Vary pipeline depth of an in-order issue
3 11 7 6 6 4 6 41 24 70 105 24 " .
: o | s : : ols s s s processor to determine optimal clock
6 6 4 3 3 2 3 21 12 35 53 12
7 6 3 3 3 2 3 18 10 30 45 10 f q y
8 i x| : | 3 2 3 16 2 27 40 B re uenc
9 5 3 2 2 3 2 14 8 24 35 8 . . .
10 4 2 2 2 2 |2 |3 |7 o ey - 7 stages and the issue stage can handle 4 instructions
11 4 2 2 2 1 2 12 7 19 29 = 4
12 4 2 2 2 1 2 11 6 18 2 6 31
I ; ; S I T I I I in each cycle
14 4 2 2 2 1 2 9 5 15 | 23 5 . 1 . f 11 . 1_ . .
15 3 2 2 2 1 2 9 5 14 21 5 -
15 3 2 2 2 ! 22 e s Functional units are fully pipelined, new instructions
Alpha 212 174 3 1 1 1 7 4 12 8 4 3
pha 21201 U7 ! ! ! assigned at every clock cycle
Table 3: Access latencies (clock cycles) of microarchitectural structures and integer and floating-point operations at 100nm technology (drawn
gate length). The functional units are fully pipelined and new instructions can be assigned to them every cycle. The last row shows the latency of
on-chip structures on the Alpha 21264 processor (180nm).

Benchmarks of 10 Pipeline

—e— Vector FP

_ —+— Non-vector FP —+— Non-vector FP
4 @
=] &
g 10 g 10
g]
g H
E £
£ 05 € 05
s g
K £

00 T T T T T T T J 00 T T T T T T T 1

2 4 6 8 10 12 14 16 2 4 6 8 10 12 14 16
Useful logic per stage (FO4) Useful logic per stage (FO4)
() (b)

Figure 4: In-order pipeline performance with and without latch overhead. Figure 4a shows that when there is no latch overhead performance
improves as pipeline depth is increased. When latch and clock overheads are considered, maximum performance is obtained with 6 FO4 useful
logic per stage (1ogic)- as shown in Figure 4b.

CRAY Comparison

- The latency in one logic level for a CRAY-1S in CMOS would
be 1.36 FO4

- 8 gate levels for scalar
- 4 gate levels for vector
- Optimal logic for vector benchmarks have stayed the same for
the IO Pipeline and CRAY because of ample ILP
- Logic for integers has more than halved since the time of the
CRAY

- Processor designed with modern techniques can be clocked at
more than twice the frequency

Dynamically Scheduled Processor

~ -~ All benchmarks
—a— Non-vector FP

Performance (BIPS)
o
I

Useful logic per stage (FO4)

Figure 5: The harmonic mean of the performance of integer and
floating point benchmarks, executing on an out-of-order pipeline, ac-
counting for latch overhead, clock skew and jitter. For integer bench-
marks best performance is obtained with 6 FO4 of useful logic per
stage (Progic)- For vector and non-vector floating-point benchmarks
the optimal ¢y, is 4 FO4 and 5 FO4 respectively.

Relating Logic & Overhead

—e— 0FO1
—=— 1FO4
—— 2FO4
—a— 3FO04
—»— 41FO4
—+— SFO4
—e— GFO4

BIPS

0 T T T
5 10 15
Clock Period (FO4)

Figure 6: The harmonic mean of the performance of integer bench-
marks, executing on an out-of-order pipeline for various values of
Poverhead-

Logic & Structure Capacity

—e— Optimized Structures
~ - Alpha21264

T T
5 10 15
Useful logic per stage(FO4)

Figure 7: The harmonic mean of the performance of all SPEC
2000 benchmarks when optimal on-chip microarchitectural structure

capacities are selected.

- Identify the best capacity
and corresponding latency
for on-chip structures:

- Determine the
sensitivity of IPC to the
size and delay of each
individual structure

- Vary latency of each
structure individually,
with its capacity
unchanged

IPC & Pipelining

- Increasing overall depth of a pipeline
decreases IPC because of dependencies in
critical loops

- Issue, load, obtaining a value, and predicting a
branch
- Loops lengths increase

- Loops need to execute in fewest cycles

Critical LOOpS Segmented Instruction Window

0] St bt g o gk ray# - For new instructions every
, . cycle, the instruction issue
é . window examines which
ER Lol opd gk “‘Y'{ instructions can be issued
e (woken up)
00 . - 3 = - Every cycle that a result is

5
Number of cycles over Alpha 21264 loop

produced, a destination

‘ e tag is broadcast to all
Figure 8: IPC sensitivity to critical loops in the data path. The . N . .
x-axis of this graph shows the number of cycles the loop was extended entrles mn the lnStructlon

over its length in the Alpha 21264 pipeline. The y-axis shows relative . .
IPC. Figure 9: A high-level representation of the instruction window. W]ndow

K

Instruction Window Stages Effects of Stages

o] [‘ - 3 components constitute delay to R IR S e =

wake up instructions
- Delay to broadcast tags

—e— vector FP

g
2 —m— Integer
g % s —— Non-vector FP
= - Delay to perform tag E
e comparisons
é o - Delay to OR individual match 00 : ‘ ‘ , ,
=% . 2 4 6 3 10
WA WA hnes Instruction window pipeline depth
- To reduce tag broadcast latency,
Figue 10, A segmented inscion indow wherin e s e Organize instruc‘tion Window into Figure 11: IPC sensitivity to instruction window pipeline depth,

assume that instructions can be selected from the entire window

assuming all entries in the window can be considered for selection.
stages

Selection Logic

Related Work

- Conventional processor, select logic
examines the entire instruction
window to select instructions for issue

- Decrease latency by reducing fan-in

- At every clock cycle, preselection logic
blocks S2-S4 pick ready instructions in

wxina] [their stage
S 1 - Instructions are stored in latches

" ! L1-Ly at the end of the cycle

i T - Inthe second cycle, the select
logic of S1 selects 4 instructions
Tigure 12: A 32-entry instruction window partitioned into four from Stage 1 and those n Ll-L7 to
stages with a selection logic fan-in of 16 instructions be issued

[reS——

- Instructions can be woken up speculatively when grandparents are issued
- If grandparents’ tags are broadcast during the current cycle, parents’
tags will probably be issued the same cycle
- Cannot be issued until parents are issued
- Reduces IPC, but enables functionality at higher frequencies
- Moving selection logic off the critical path
- Two separate stages for wake-up and select
- In the wake-up stage instructions are woken up by producer tags
- All woken instructions speculate that they will be selected for issue in
the following cycle - i.e. available
- Result tags are broadcast as if all of them have been issued
- Still, selection logic selects only a limited number from ‘available’,
others are detected and rescheduled

Wrap-Up

- 6FO4 is the amount of useful logic per stage that will provide the best performance
- Below this value, the improvement in clock frequency cannot compensate for a
decrease in IPC and vice-versa
- Optimal clock frequencies are dependent on on-chip microarchitectural structures,
these structures need to be pipelined to operate at high frequencies
- Segmented instruction window for pipelining with 4 stages without a marked
decrease in IPC
- Pipelining can at most improve the clock rate by a factor of two, additional
improvements must come from
- Concurrency, ILP or TLP, or a combination
- To follow historic performance trends, concurrency would have to increase at
33% per year, with 15 IPC before another 15 years has passed

END

