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Tutorial Schedule

Time Topic

09:00 - 09:30 Introduction

09:30 - 10:30  Setting up MARSSx86 and DRAMSIim2
10:30 - 11:00 Break

11:00 - 12:00  Spark simulation
12:00 - 13:00 Lunch

13:00 - 13:30  Spark continued

13:30 - 14:30  GraphLab simulation
14:30 - 15:00  Break

15:00 - 16:15  Web search simulation
16:15 - 17:00 Case studies
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Big Computing and its Challenges

Big data demands big computing, yet we face challenges...

e Architecture Design
e Systems Management

e Research Coordination
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Toward Energy-Efficient Datacenters

Heterogeneity
e Tailors hardware to software, reducing energy
e Complicates resource allocation and scheduling

e [ntroduces risk

Sharing
e Divides hardware over software, amortizing energy
e Complicates task placement and co-location

e [ntroduces risk
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Datacenter Design and Management

Heterogeneity for Efficiency

Heterogeneous datacenters deploy mix of server- and mobile-class hardware
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Heterogeneity and Markets
Agents bid for heterogeneous hardware in a market that maximizes welfare

Sharing and Game Theory
Agents share multiprocessors with game-theoretic fairness guarantees
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Datacenter Design and Management

Heterogeneity for Efficiency

Heterogeneous datacenters deploy mix of server- and mobile-class hardware

® “Web search using mobile cores” [ISCA’10]
® “Towards energy-proportional datacenter memory with mobile DRAM" [ISCA’12]
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Mobile versus Server Processors

e Simpler Datapath
e |ssue fewer instructions per cycle

e Speculate less often

e Smaller Caches
e Provide less capacity

e Provide lower associativity

e Slower Clock

e Reduce processor frequency

Duke
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Applications in Transition
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Conventional Enterprise
Search Compute Intensity
‘ T e Independent requests
e Memory-, |/O-intensive

e Ex: web or file server

conventional
applications

Emerging Datacenter
e Inference, analytics
e Compute-intensive

e Ex: neural network

Web DB Java Mail File RMS Bing

Reddi et al., “Web search using mobile cores” [ISCA’10]



Web Search

Incoming
Queries }' Aggregator |—| Cache

]
Manager e Distribute web pages
I T among index servers
[ |
Ranker ContextGenerator e Distribute queries among
1 index servers
NeuralNet
e Rank indexed pages with
Streams
neural network
Index Serving Node

(SN) |
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Query Efficiency
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Case for Processor Heterogeneity

Mobile Core Efficiency

e Queries per Joule 1 5x

Robustness :: Search Latency Distribution

100
90 .
s Mobile Core Latency
S
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\m/ e Small cores for simple queries
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Latency (Normalized to Cutoff)

e Big cores for complex queries

Reddi et al., “Web search using mobile cores” [ISCA’10]



Memory Architecture and Applications
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Conventional Enterprise Emerging Datacenter
e High bandwidth e Low bandwidth (< 6% DDR3 peak)
e Ex: transaction processing e Ex: search [Microsoft],

memcached [Facebook] M
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Memory Capacity vs Bandwidth

e Online Services
e Use < 6% bandwidth, 65-97% capacity

e Ex: Microsoft mail, map-reduce, search [kansal+]

e Memory Caching

e 75% of Facebook data in memory

e Ex: memcached, RAMCloud [ousterhout+]

e Capacity-Bandwidth Bundles

e Server with 4 sockets, 8 channels

e Ex: 32GB capacity, >100GB/s bandwidth

Duke
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Mobile-class Memory

e Operating Parameters
e Lower active current (130mA vs 250mA)
e Lower standby current (20mA vs 70mA)

e Low-power Interfaces
e No delay-locked loops, on-die termination
e Lower bus frequency (400 vs 800MHz)
e Lower peak bandwidth (6.4 vs 12.8GBps)
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Source of Disproportionality

1Gb, 800MHz-DDR3, x8, Vdd=1.5V
9% 7% Activity Example
— (

\\ e 16% DDR3 peak

5%

Energy per Bit

e Large power overheads

Ml activate
Mlread/write
[ background
[ Jtermination
(]

e High cost per bit

689
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“Calculating memory system power for DDR3" [Micron]



Case for Memory Heterogeneity

Mobile Memory Efficiency

280 e Bits / Joule T 5x
260 —»-LVDDR3-800

--DDR3-1600
240 -©-LPDDR2-800

Mobile Memory Bandwidth
e Peak B/W | 0.5x

Heterogeneity
—o—o—o—o 1
“ ] e LPDDR for search, memcached
07128 256 384 512 6.4 7.68 10.24 128 e DDR for databases, HPC

Sustained channel bandwidth (GB/s)

Malladi et al., “Towards energy-proportional datacenter memory with mobile DRAM" [ISCA’12]



Datacenter Design and Management

Heterogeneity and Markets
Agents bid for heterogeneous hardware in a market that maximizes welfare

® “Navigating heterogeneous processors with market mechanisms” [HPCA’13]

® “Strategies for anticipating risk in heterogeneous system design” [HPCA’14]
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Datacenter Heterogeneity

On-Demand Instance Prices

Systems are heterogeneous
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Elastic Compute Cloud (EC2) [Amazon]
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Managing Performance Risk

Risk: the possibility that something bad will happen

Understand Heterogeneity and Risk
e What types of hardware?
e How many of each type?

e What allocation to users?

Mitigate Risk with Market Allocation
e Ensure service quality

e Hide hardware complexity

e Trade-off performance and power

Duke
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Market Mechanism

e User specifies value for performance

e Market shields user from heterogeneity

Market
(Datacenter Manager)

. A

(Activity,, Value,) Appa —| t«— Procy (Costy)

(Activityg, Valueg) Apps —| t<— Procy (Costy)

t«— Procy (Costy)

Bids (Proxy)

(Activityc, Valuec) Appc —|

(193uddeR3RQ) SYSY

l«—— Proc; (Cost;)

(Activityp, Valuep) Appp >

Guevara et al. “Navigating heterogeneous processors with market mechanisms” [HPCA’13]
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Proxy Bidding

PROXY INPUTS PROXY ANALYSIS
historical d ] predict_demand User Provides...
A
A—15-- 5 M—h A = (N1, Men) o Task stream
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predict latency

e Service-level agreement
A = I #
time

. _ —In(1-p)
L deop) = —

user value

Proxy Provides...

predict utility

e parchitectural insight

U=(VolL)(w

e Performance profiles

l e Bids for hardware
latency bids

Guevara et al. “Navigating heterogeneous processors with market mechanisms” [HPCA’13]

Wu and Lee, “Inferred models for dynamic and sparse hardware-software spaces” [MICRO'12]
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Visualizing Heterogeneity (2 Processor Types)

8%
e Ellipses represent
- - — F °°
High-performance Low-power 7% hardware types
6%
5% e Points are combinations
4% of processor types
3%
P e Colors show
1% QoS violations
Heterogeneous
Homogeneous 0%

Guevara et al. “Navigating heterogeneous processors with market mechanisms” [HPCA’13]

21 /45



Further Heterogeneity (4 Processor Types)

io4w24 iolw24 f
118% e Best configuration is
l16% heterogeneous
114%
1129 e QoS violations fall
| 10% 16% — 2%
- 8%
™ e Trade-offs motivate
o design for manageability
‘o
2%

Guevara et al. “Navigating heterogeneous processors with market mechanisms” [HPCA’13]

Guevara et al. “Strategies for anticipating risk in heterogeneous datacenter design” [HPCA'14]
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Datacenter Design and Management

Sharing and Game Theory
Agents share multiprocessors with game-theoretic fairness guarantees

® “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]

Duke
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Case for Sharing

Big Servers

e Hardware is under-utilized

R e Sharing amortized power

Queue, Uncore

Heterogeneous Users
e Tasks are diverse

e Users are complementary

e Users prefer flexibility

an 4

Memory Controller el

Sharing Challenges

e Allocate multiple resources

e Ensure fairness

Duke
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Motivation

"

-

Alice and Bob are working on research papers

Each has $10K to buy computers

Alice and Bob have different types of tasks

Alice and Bob have different paper deadlines

Duke
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Strategic Behavior

e Alice and Bob are strategic

e Which is better?

e Small, separate clusters

e Large, shared cluster

e Suppose Alice and Bob share
e |s allocation fair?

e |s lying beneficial?

Image: [www.websavers.org]



Conventional Wisdom in Computer Architecture

Users must share

e Overlooks strategic behavior

Fairness policy is equal slowdown

e Fails to encourage envious users to share

Heuristic mechanisms enforce equal slowdown

e Fail to give provable guarantees

Duke
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Rethinking Fairness

"If an allocation is both equitable and Pareto efficient,

. it is fair.” [Varian, Journal of Economic Theory (1974)]

Duke
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Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

e Sharing Incentives
Users perform no worse than under equal division

Duke

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS'14]
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Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

e Sharing Incentives
Users perform no worse than under equal division

e Envy-Free
No user envies another's allocation

o Pareto-Efficient
No other allocation improves utility without harming others

e Strategy-Proof
No user benefits from lying

Duke

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS'14]
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Cobb-Douglas Utility

R
U(X) = Hr:l X?r

u utility (e.g., performance)
x, allocation for resource r (e.g., cache size)
«y elasticity for resource r

e Cobb-Douglas fits preferences in computer architecture

e Exponents model diminishing marginal returns

e Products model substitution effects

Duke

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS'14]
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Example Utilities

6,,0.4 2,,0.
ulzxgﬁy(l’ uzzxg ygs

uj,uy performance
x1,X2 allocated memory bandwidth
y1,y2 allocated cache size
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Possible Allocations

4 20 15 10 5 0o
12F g ‘ ‘ 70
e 2 users ol 3 2\
> 8F - f fffffffffffffffffffffffffffffff 4
e 12MB cache N 3 1°
O 41 | 18
2} 3 {10
e 24GB/s bandwidth ok i ‘ ‘ ‘ 2
user, 9 5 10 15 20 24

Memory Bandwidth

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS'14]
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Envy-Free (EF) Allocations

24 20 15 10 5 0
12F 0
10f 2
5 8f EF Region 4
g G 6
. . S 4t 8
e Identify EF allocations ot 10
for each user ok ‘ 12
0 5 10 15 20 24
Memory Bandwidth
24 20 15 10 5 0
e uj(A1) > u1(Az) i R ‘ 70
e uz(Az) > uz(Ay) 4
=
8
EF Region

0 5 10 15 20 24

Memory Bandwidth

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS'14]



Pareto-Efficient (PE) Allocations

e No other allocation improves utility without harming others

24 20 15 10 5 0

Contract Curve

Cache Si e

Memory Bandwidth

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS'14]



Fair Allocations

Fairness = Envy-freeness + Pareto efficiency

24 20 15 10 5 0
12 0
10 2
$ s\ Fai : .
& >~ air Allocations
£ 6 o 6
]
o 4 8
2 10
0 1
0 5 10 15 20 24

Memory Bandwidth

Many possible fair allocations!

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS'14]



Mechanism for Resource Elasticity Fairness

Profile preferences

| i J

s ) Guarantees desiderata
Fit utility function e Sharing incentives

~ i d e Envy-freeness

f 2 e Pareto efficiency

Normalize elasticities

|

( N\

Strategy-proofness

Allocate proportionally

& J

Duke
Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS'14]
36 /45



Profiling for REF

Profile preferences

Off-line profiling
i e Synthetic benchmarks

Fit utility function
Off-line simulations

l e Various hardware

Normalize elasticities
L J Machine learning

‘L e o = 0.5, then update

Allocate proportionally

Duke

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS'14]
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Fitting Utilities

Profile preferences

|\ i J
( ) o u= [} x¥
Fit utility function
" J R
| e log(u) = 38 ; ar log(x)
4 1\

Normalize elasticities
L ) e Use linear regression to find ay

|

Allocate proportionally

Duke

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS'14]
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Cobb-Douglas Accuracy

uFerret Sim.+Ferret Est.
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e Utility is instructions per cycle

e Resources are cache size, memory bandwidth

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS'14]
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Normalizing Utilities

( )
Profile preferences
| i J
( )
Fit utility function e Compare users’ elasticities
N l 4 on same scale
( )
. . . _ 02,03 _ 0.4,0.6
Normalize elasticities * U=X"TYy'TT 2 u=XxXTy
| l J
( )
Allocate proportionally

Duke

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS'14]
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Allocating Proportional Shares

- N
Profile preferences
h l g up = xtl).ﬁytlm uy = xg.zyg.s
- N
Fit utility function
) I = (62855 x 24 =18GB/s
- N
Normalize elasticities
\ ) Xy = (0.60420.2> x 24 = 6GB/s
( l N\
Allocate proportionally

& J

Duke

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS'14]
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Equal Slowdown versus REF

M canneal
M barnes
100%
90%
80%

o~
LI
RN

% of Total Capacity)
g
X

Resource Allocation
[ARFN
]
X

(
n
=]
X

Cache Size Memory Bandwidth

Equal slow-down provides
neither S| nor EF

Canneal receives < half of
cache, memory
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Equal Slowdown versus REF

M canneal M canneal
M barnes M barnes
100% 100%
90% 90%
S 80% 55 80%
7S 0% =5 70%
S & so% S § eo%
EE 50% S 50%
52 40% 25 40%
Qs O u=
32 30% 2 5 30%
s xR
~ 20% ~ 20%
10% 10%
0% 0%
Cache Size Memory Bandwidth Cache Size Memory Bandwidth
e Equal slow-down provides e Resource elasticity fairness
neither SI nor EF provides both S| and EF
e Canneal receives < half of e Canneal receives more
cache, memory cache, less memory
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Performance versus Fairness

= Max Welfare w/o Fairness Max Welfare w/ Fairness
= Equal Slowdown w/o Fairness u Proportional Elasticity w/ Fairness

4

WDI (40)  WD2(2C-2M) WD3 (4M) WD4 (3C-IM) WDS5 (1C-3M)

Weighted System Throughput
[=1 —_ N [}
S L T N L W,

e Measure weighted instruction throughput

e REF incurs < 10% penalty
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Datacenter Design and Managem

Heterogeneity for Efficiency

Heterogeneous datacenters deploy mix of server- and mobile-class hardware

®  “Web search using mobile cores” [ISCA’10]
® “Towards energy-proportional datacenter memory with mobile DRAM" [ISCA’12]

Heterogeneity and Markets
Agents bid for heterogeneous hardware in a market that maximizes welfare

® “Navigating heterogeneous processors with market mechanisms” [HPCA’13]

® “Strategies for anticipating risk in heterogeneous system design” [HPCA’14]

Sharing and Game Theory
Agents share multiprocessors with game-theoretic fairness guarantees

® “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Datacenter Design and Managem

Heterogeneity for Efficiency
Heterogeneous datacenters deploy mix of server- and mobile-class hardware

® Processors — hardware counters for CPI stack

® Memories — simulator for cache, bandwidth activity

Heterogeneity and Markets
Agents bid for heterogeneous hardware in a market that maximizes welfare

® Processors — simulator for core performance
® Server Racks — queueing models (e.g., M/M/1)

Sharing and Game Theory
Agents share multiprocessors with game-theoretic fairness guarantees

® Memories — simulator for cache, bandwidth utility
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