Datacenter Simulation Methodologies Case Studies

Tamara Silbergleit Lehman, Qiuyun Wang, Seyed Majid Zahedi and Benjamin C. Lee

This work is supported by NSF grants CCF-1149252, CCF-1337215, and STARnet, a Semiconductor Research Corporation Program, sponsored by MARCO and DARPA.

Time	Торіс
09:00 - 09:30	Introduction
09:30 - 10:30	Setting up MARSSx86 and DRAMSim2
10:30 - 11:00	Break
11:00 - 12:00	Spark simulation
12:00 - 13:00	Lunch
13:00 - 13:30	Spark continued
13:30 - 14:30	GraphLab simulation
14:30 - 15:00	Break
15:00 - 16:15	Web search simulation
16:15 - 17:00	Case studies

Big data demands big computing, yet we face challenges...

- Architecture Design
- Systems Management
- Research Coordination

Heterogeneity

- Tailors hardware to software, reducing energy
- Complicates resource allocation and scheduling
- Introduces risk

Sharing

- Divides hardware over software, amortizing energy
- Complicates task placement and co-location
- Introduces risk

Heterogeneity for Efficiency

Heterogeneous datacenters deploy mix of server- and mobile-class hardware

Heterogeneity for Efficiency

Heterogeneous datacenters deploy mix of server- and mobile-class hardware

Heterogeneity and Markets

Agents bid for heterogeneous hardware in a market that maximizes welfare

Heterogeneity for Efficiency

Heterogeneous datacenters deploy mix of server- and mobile-class hardware

Heterogeneity and Markets

Agents bid for heterogeneous hardware in a market that maximizes welfare

Sharing and Game Theory

Agents share multiprocessors with game-theoretic fairness guarantees

Datacenter Design and Management

Heterogeneity for Efficiency

Heterogeneous datacenters deploy mix of server- and mobile-class hardware

- "Web search using mobile cores" [ISCA'10]
- "Towards energy-proportional datacenter memory with mobile DRAM" [ISCA'12]

Mobile versus Server Processors

• Simpler Datapath

- Issue fewer instructions per cycle
- Speculate less often

• Smaller Caches

- Provide less capacity
- Provide lower associativity

Slower Clock

• Reduce processor frequency

Applications in Transition

Conventional Enterprise

- Independent requests
- Memory-, I/O-intensive
- Ex: web or file server

Emerging Datacenter

- Inference, analytics
- Compute-intensive
- Ex: neural network

- Distribute web pages among index servers
- Distribute queries among index servers
- Rank indexed pages with neural network

Bing.com [Microsoft]

- Joules per second :: \downarrow **10**× on Atom versus Xeon
- Queries per second :: \downarrow **2**×
- Queries per Joule :: \uparrow **5**×

Case for Processor Heterogeneity

Mobile Core Efficiency

• Queries per Joule \uparrow **5**×

Mobile Core Latency

- 10% queries exceed cut-off
- Complex queries suffer

Heterogeneity

- Small cores for simple queries
- Big cores for complex queries

Reddi et al., "Web search using mobile cores" [ISCA'10]

Memory Architecture and Applications

Conventional Enterprise

- High bandwidth
- Ex: transaction processing

Emerging Datacenter

- Low bandwidth (< 6% DDR3 peak)
- Ex: search [Microsoft], memcached [Facebook]

Memory Capacity vs Bandwidth

• Online Services

- Use < 6% bandwidth, 65-97% capacity
- Ex: Microsoft mail, map-reduce, search [Kansal+]

• Memory Caching

- 75% of Facebook data in memory
- Ex: memcached, RAMCloud [Ousterhout+]

• Capacity-Bandwidth Bundles

- Server with 4 sockets, 8 channels
- Ex: 32GB capacity, >100GB/s bandwidth

Mobile-class Memory

• Operating Parameters

- Lower active current (130mA vs 250mA)
- Lower standby current (20mA vs 70mA)

• Low-power Interfaces

- No delay-locked loops, on-die termination
- Lower bus frequency (400 vs 800MHz)
- Lower peak bandwidth (6.4 vs 12.8GBps)

LP-DDR2 vs DDR3 [Micron]

Source of Disproportionality

Activity Example

• 16% DDR3 peak

Energy per Bit

- Large power overheads
- High cost per bit

"Calculating memory system power for DDR3" [Micron]

Mobile Memory Efficiency

• Bits / Joule \uparrow 5×

Mobile Memory Bandwidth

• Peak B/W ↓ 0.5×

Heterogeneity

- LPDDR for search, memcached
- DDR for databases, HPC

Heterogeneity and Markets

Agents bid for heterogeneous hardware in a market that maximizes welfare

- "Navigating heterogeneous processors with market mechanisms" [HPCA'13]
- "Strategies for anticipating risk in heterogeneous system design" [HPCA'14]

	RHEL	SLES	Windows	Windows with SQ	L Standard Windows with SC	2L Web
Region:	US East (N. Virginia)		×			
		VCPU	ECU	Memory (GiB)	Instance Storage (GB)	Linux/UNIX Usage
eneral P	urpose -	Current Gen	eration			
n3.medik	m	1	3	3.75	1 x 4 SSD	\$0.113 per Hour
n3Jarge		2	6.5	7.5	1 x 32 SSD	\$0.225 per Hour
n3.xlarge		4	13	15	2 x 40 SSD	\$0.450 per Hour
n3.2xlarg	10	8	25	30	2 × 80 SSD	\$0.900 per Hour
eneral P	urpose - I	Previous Ger	neration			
n1.small		1	1	1.7	1 x 160	\$0.060 per Hour
n1.medik	ım	1	2	3.75	1 x 410	\$0.120 per Hour
n1Jarge		2	4	7.5	2 × 420	\$0.240 per Hour
n1.xlarge		4	8	15	4 x 420	\$0.480 per Hour
ompute	Optimize	d - Current G	ieneration			
:3.large		2	7	3.75	2 x 16 SSD	\$0.150 per Hour
:3.xlarge		4	14	7.5	2 x 40 SSD	\$0.300 per Hour
:3.2xlarg	,	8	28	15	2 x 80 SSD	\$0.600 per Hour
:3.4xlarg		16	55	30	2 x 160 SSD	\$1.200 per Hour
:3.8xlarg	•	32	108	60	2 x 320 SSD	\$2.400 per Hour
ompute	Optimize	d - Previous	Generation			
:1.mediu	m	2	5	1.7	1 x 350	\$0.145 per Hour
1.xlarge		8	20	7	4 x 420	\$0.580 per Hour
c2.8xlar	10	32	88	60.5	4 x 840	\$2,400 per Hour

Systems are heterogeneous

- Virtual machines are sized
- Physical machines are diverse

Heterogeneity is exposed

- Users assess machine price
- Users select machine type

Burden is prohibitive

 Users must understand hardware-software interactions

Elastic Compute Cloud (EC2) [Amazon]

Risk: the possibility that something bad will happen

Understand Heterogeneity and Risk

- What types of hardware?
- How many of each type?
- What allocation to users?

Mitigate Risk with Market Allocation

- Ensure service quality
- Hide hardware complexity
- Trade-off performance and power

Market Mechanism

- User specifies value for performance
- Market shields user from heterogeneity

User Provides...

- Task stream
- Service-level agreement

Proxy Provides...

- µarchitectural insight
- Performance profiles
- Bids for hardware

Guevara et al. "Navigating heterogeneous processors with market mechanisms" [HPCA'13] Wu and Lee, "Inferred models for dynamic and sparse hardware-software spaces" [MICRO'12]

Visualizing Heterogeneity (2 Processor Types)

- Ellipses represent hardware types
- Points are combinations of processor types
- Colors show QoS violations

Further Heterogeneity (4 Processor Types)

- Best configuration is heterogeneous
- QoS violations fall $16\% \rightarrow 2\%$
- Trade-offs motivate design for manageability

Guevara et al. "Navigating heterogeneous processors with market mechanisms" [HPCA'13] Guevara et al. "Strategies for anticipating risk in heterogeneous datacenter design" [HPCA'14]

Sharing and Game Theory

Agents share multiprocessors with game-theoretic fairness guarantees

"REF: Resource elasticity fairness with sharing incentives for multiprocessors" [ASPLOS'14]

Big Servers

- Hardware is under-utilized
- Sharing amortized power

Heterogeneous Users

- Tasks are diverse
- Users are complementary
- Users prefer flexibility

Sharing Challenges

- Allocate multiple resources
- Ensure fairness

- Alice and Bob are working on research papers
- Each has \$10K to buy computers
- Alice and Bob have different types of tasks
- Alice and Bob have different paper deadlines

Strategic Behavior

- Alice and Bob are strategic
- Which is better?
 - Small, separate clusters
 - Large, shared cluster

- Suppose Alice and Bob share
 - Is allocation fair?
 - Is lying beneficial?

Image: [www.websavers.org]

Users must share

• Overlooks strategic behavior

Fairness policy is equal slowdown

• Fails to encourage envious users to share

Heuristic mechanisms enforce equal slowdown

• Fail to give provable guarantees

"If an allocation is both equitable and Pareto efficient, ... it is fair." [Varian, Journal of Economic Theory (1974)]

• Sharing Incentives

Users perform no worse than under equal division

• Sharing Incentives

Users perform no worse than under equal division

• Envy-Free

No user envies another's allocation

• Sharing Incentives

Users perform no worse than under equal division

Envy-Free

No user envies another's allocation

• Pareto-Efficient

No other allocation improves utility without harming others

• Sharing Incentives

Users perform no worse than under equal division

Envy-Free

No user envies another's allocation

• Pareto-Efficient

No other allocation improves utility without harming others

• Strategy-Proof

No user benefits from lying

Cobb-Douglas Utility

$$\mathbf{u}(\mathbf{x}) = \prod_{\mathsf{r}=1}^{\mathsf{R}} \mathbf{x}_{\mathsf{r}}^{lpha_{\mathsf{r}}}$$

- u utility (e.g., performance)
- $\mathbf{x}_{\mathbf{r}}$ allocation for resource \mathbf{r} (e.g., cache size)
- $\alpha_{\mathbf{r}}$ elasticity for resource \mathbf{r}
- Cobb-Douglas fits preferences in computer architecture
- Exponents model diminishing marginal returns
- Products model substitution effects

Zahedi et al. "REF: Resource elasticity fairness with sharing incentives for multiprocessors" [ASPLOS'14]

$$\mathsf{u}_1 = \mathsf{x}_1^{0.6} \mathsf{y}_1^{0.4} \qquad \mathsf{u}_2 = \mathsf{x}_2^{0.2} \mathsf{y}_2^{0.8}$$

 $\begin{array}{lll} u_1, u_2 & \mbox{performance} \\ x_1, x_2 & \mbox{allocated memory bandwidth} \\ y_1, y_2 & \mbox{allocated cache size} \end{array}$

Possible Allocations

- 2 users
- 12MB cache
- 24GB/s bandwidth

Envy-Free (EF) Allocations

- Identify EF allocations for each user
- $u_1(A_1) \ge u_1(A_2)$
- $u_2(A_2) \ge u_2(A_1)$

• No other allocation improves utility without harming others

Fairness = Envy-freeness + Pareto efficiency

Memory Bandwidth

Many possible fair allocations!

Zahedi et al. "REF: Resource elasticity fairness with sharing incentives for multiprocessors" [ASPLOS'14]

Guarantees desiderata

- Sharing incentives
- Envy-freeness
- Pareto efficiency
- Strategy-proofness

Off-line profiling

• Synthetic benchmarks

Off-line simulations

• Various hardware

Machine learning

• $\alpha = 0.5$, then update

• $\mathbf{u} = \prod_{\mathbf{r}=1}^{\mathbf{R}} \mathbf{x}_{\mathbf{r}}^{\alpha_{\mathbf{r}}}$

•
$$\log(\mathbf{u}) = \sum_{\mathbf{r}=1}^{\mathbf{R}} \alpha_{\mathbf{r}} \log(\mathbf{x}_{\mathbf{r}})$$

- Use linear regression to find $\alpha_{\rm r}$

Cobb-Douglas Accuracy

Ferret Sim. + Ferret Est.

- Utility is instructions per cycle
- Resources are cache size, memory bandwidth •

Zahedi et al. "REF: Resource elasticity fairness with sharing incentives for multiprocessors" [ASPLOS'14]

• Compare users' elasticities on same scale

•
$$u = x^{0.2}y^{0.3} \rightarrow u = x^{0.4}y^{0.6}$$

$$\begin{aligned} \mathbf{u}_1 &= \mathbf{x}_1^{0.6} \mathbf{y}_1^{0.4} & \mathbf{u}_2 &= \mathbf{x}_2^{0.2} \mathbf{y}_2^{0.8} \\ \mathbf{x}_1 &= \left(\frac{0.6}{0.6+0.2}\right) \times 24 = 18 \text{GB/s} \\ \mathbf{x}_2 &= \left(\frac{0.2}{0.6+0.2}\right) \times 24 = 6 \text{GB/s} \end{aligned}$$

Equal Slowdown versus REF

- Equal slow-down provides neither SI nor EF
- Canneal receives < half of cache, memory

Equal Slowdown versus REF

- Equal slow-down provides neither SI nor EF
- Canneal receives < half of cache, memory

- Resource elasticity fairness provides both SI and EF
- Canneal receives more cache, less memory

Zahedi et al. "REF: Resource elasticity fairness with sharing incentives for multiprocessors" [ASPLOS'14]

Performance versus Fairness

- Measure weighted instruction throughput
- REF incurs < 10% penalty

Zahedi et al. "REF: Resource elasticity fairness with sharing incentives for multiprocessors" [ASPLOS'14]

Datacenter Design and Management

Heterogeneity for Efficiency

Heterogeneous datacenters deploy mix of server- and mobile-class hardware

- "Web search using mobile cores" [ISCA'10]
- "Towards energy-proportional datacenter memory with mobile DRAM" [ISCA'12]

Heterogeneity and Markets

Agents bid for heterogeneous hardware in a market that maximizes welfare

- "Navigating heterogeneous processors with market mechanisms" [HPCA'13]
- "Strategies for anticipating risk in heterogeneous system design" [HPCA'14]

Sharing and Game Theory

Agents share multiprocessors with game-theoretic fairness guarantees

"REF: Resource elasticity fairness with sharing incentives for multiprocessors" [ASPLOS'14]

Datacenter Design and Management

Heterogeneity for Efficiency

Heterogeneous datacenters deploy mix of server- and mobile-class hardware

- Processors hardware counters for CPI stack
- Memories simulator for cache, bandwidth activity

Heterogeneity and Markets

Agents bid for heterogeneous hardware in a market that maximizes welfare

- Processors simulator for core performance
- Server Racks queueing models (e.g., M/M/1)

Sharing and Game Theory

Agents share multiprocessors with game-theoretic fairness guarantees

Memories – simulator for cache, bandwidth utility

