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Tutorial Schedule

Time Topic

09:00 - 09:30 Introduction
09:30 - 10:30 Setting up MARSSx86 and DRAMSim2
10:30 - 11:00 Break
11:00 - 12:00 Spark simulation
12:00 - 13:00 Lunch
13:00 - 13:30 Spark continued
13:30 - 14:30 GraphLab simulation
14:30 - 15:00 Break
15:00 - 16:15 Web search simulation
16:15 - 17:00 Case studies
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Big Computing and its Challenges

Big data demands big computing, yet we face challenges...

• Architecture Design

• Systems Management

• Research Coordination
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Toward Energy-Efficient Datacenters

Heterogeneity

• Tailors hardware to software, reducing energy

• Complicates resource allocation and scheduling

• Introduces risk

Sharing

• Divides hardware over software, amortizing energy

• Complicates task placement and co-location

• Introduces risk
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Datacenter Design and Management

Heterogeneity for Efficiency

Heterogeneous datacenters deploy mix of server- and mobile-class hardware

• “Web search using mobile cores” [ISCA’10]

• “Towards energy-proportional datacenter memory with mobile DRAM” [ISCA’12]

Heterogeneity and Markets
Agents bid for heterogeneous hardware in a market that maximizes welfare

• “Navigating heterogeneous processors with market mechanisms” [HPCA’13]

• “Strategies for anticipating risk in heterogeneous datacenter design” [HPCA’14]

Sharing and Game Theory
Agents share multiprocessors with game-theoretic fairness guarantees

• “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Mobile versus Server Processors

• Simpler Datapath

• Issue fewer instructions per cycle

• Speculate less often

• Smaller Caches

• Provide less capacity

• Provide lower associativity

• Slower Clock

• Reduce processor frequency

Atom v. Xeon [Intel]
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Applications in Transition

Conventional Enterprise

• Independent requests

• Memory-, I/O-intensive

• Ex: web or file server

Emerging Datacenter

• Inference, analytics

• Compute-intensive

• Ex: neural network

Reddi et al., “Web search using mobile cores” [ISCA’10]
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Web Search

• Distribute web pages
among index servers

• Distribute queries among
index servers

• Rank indexed pages with

neural network

Bing.com [Microsoft]
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Query Efficiency

• Joules per second :: ↓ 10× on Atom versus Xeon

• Queries per second :: ↓ 2×
• Queries per Joule :: ↑ 5×

Reddi et al., “Web search using mobile cores” [ISCA’10]
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Case for Processor Heterogeneity

Mobile Core Efficiency

• Queries per Joule ↑ 5×

Mobile Core Latency

• 10% queries exceed cut-off

• Complex queries suffer

Heterogeneity

• Small cores for simple queries

• Big cores for complex queries

Reddi et al., “Web search using mobile cores” [ISCA’10]
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Memory Architecture and Applications

Conventional Enterprise

• High bandwidth

• Ex: transaction processing

Emerging Datacenter

• Low bandwidth (< 6% DDR3 peak)

• Ex: search [Microsoft],

memcached [Facebook]
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Memory Capacity vs Bandwidth

• Online Services

• Use < 6% bandwidth, 65-97% capacity

• Ex: Microsoft mail, map-reduce, search [Kansal+]

• Memory Caching

• 75% of Facebook data in memory

• Ex: memcached, RAMCloud [Ousterhout+]

• Capacity-Bandwidth Bundles

• Server with 4 sockets, 8 channels

• Ex: 32GB capacity, >100GB/s bandwidth
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Mobile-class Memory

• Operating Parameters

• Lower active current (130mA vs 250mA)

• Lower standby current (20mA vs 70mA)

• Low-power Interfaces

• No delay-locked loops, on-die termination

• Lower bus frequency (400 vs 800MHz)

• Lower peak bandwidth (6.4 vs 12.8GBps)

LP-DDR2 vs DDR3 [Micron]
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Source of Disproportionality

Activity Example

• 16% DDR3 peak

Energy per Bit

• Large power overheads

• High cost per bit

“Calculating memory system power for DDR3” [Micron]
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Case for Memory Heterogeneity

Mobile Memory Efficiency

• Bits / Joule ↑ 5×

Mobile Memory Bandwidth

• Peak B/W ↓ 0.5×

Heterogeneity

• LPDDR for search, memcached

• DDR for databases, HPC

Malladi et al., “Towards energy-proportional datacenter memory with mobile DRAM” [ISCA’12]
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Datacenter Design and Management

Heterogeneity for Efficiency

Heterogeneous datacenters deploy mix of server- and mobile-class hardware

• “Web search using mobile cores” [ISCA’10]

• “Towards energy-proportional datacenter memory with mobile DRAM” [ISCA’12]

Heterogeneity and Markets
Agents bid for heterogeneous hardware in a market that maximizes welfare

• “Navigating heterogeneous processors with market mechanisms” [HPCA’13]

• “Strategies for anticipating risk in heterogeneous system design” [HPCA’14]

Sharing and Game Theory
Agents share multiprocessors with game-theoretic fairness guarantees

• “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Datacenter Heterogeneity

Systems are heterogeneous

• Virtual machines are sized

• Physical machines are diverse

Heterogeneity is exposed

• Users assess machine price

• Users select machine type

Burden is prohibitive

• Users must understand

hardware-software interactions

Elastic Compute Cloud (EC2) [Amazon]
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Managing Performance Risk

Risk: the possibility that something bad will happen

Understand Heterogeneity and Risk

• What types of hardware?

• How many of each type?

• What allocation to users?

Mitigate Risk with Market Allocation

• Ensure service quality

• Hide hardware complexity

• Trade-off performance and power
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Market Mechanism

• User specifies value for performance

• Market shields user from heterogeneity

Guevara et al. “Navigating heterogeneous processors with market mechanisms” [HPCA’13]
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Proxy Bidding

User Provides...

• Task stream

• Service-level agreement

Proxy Provides...

• µarchitectural insight

• Performance profiles

• Bids for hardware

Guevara et al. “Navigating heterogeneous processors with market mechanisms” [HPCA’13]

Wu and Lee, “Inferred models for dynamic and sparse hardware-software spaces” [MICRO’12]
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Visualizing Heterogeneity (2 Processor Types)
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Guevara et al. “Navigating heterogeneous processors with market mechanisms” [HPCA’13]
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Further Heterogeneity (4 Processor Types)
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Guevara et al. “Navigating heterogeneous processors with market mechanisms” [HPCA’13]

Guevara et al. “Strategies for anticipating risk in heterogeneous datacenter design” [HPCA’14]
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Datacenter Design and Management
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Case for Sharing

Big Servers

• Hardware is under-utilized

• Sharing amortized power

Heterogeneous Users

• Tasks are diverse

• Users are complementary

• Users prefer flexibility

Sharing Challenges

• Allocate multiple resources

• Ensure fairness

Image: Intel Sandy Bridge E die [www.anandtech.com]
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Motivation

• Alice and Bob are working on research papers

• Each has $10K to buy computers

• Alice and Bob have different types of tasks

• Alice and Bob have different paper deadlines

25 / 45



Strategic Behavior

• Alice and Bob are strategic

• Which is better?

• Small, separate clusters

• Large, shared cluster

• Suppose Alice and Bob share

• Is allocation fair?

• Is lying beneficial?

Image: [www.websavers.org]
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Conventional Wisdom in Computer Architecture

Users must share

• Overlooks strategic behavior

Fairness policy is equal slowdown

• Fails to encourage envious users to share

Heuristic mechanisms enforce equal slowdown

• Fail to give provable guarantees
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Rethinking Fairness

”If an allocation is both equitable and Pareto efficient,
... it is fair.” [Varian, Journal of Economic Theory (1974)]
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Resource Elasticity Fairness (REF)

REF is an allocation mechanism that guarantees game-theoretic
desiderata for shared chip multiprocessors

• Sharing Incentives
Users perform no worse than under equal division

• Envy-Free
No user envies another’s allocation

• Pareto-Efficient
No other allocation improves utility without harming others

• Strategy-Proof
No user benefits from lying

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Cobb-Douglas Utility

u(x) =
∏R

r=1 xαr
r

u utility (e.g., performance)
xr allocation for resource r (e.g., cache size)
αr elasticity for resource r

• Cobb-Douglas fits preferences in computer architecture

• Exponents model diminishing marginal returns

• Products model substitution effects

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Example Utilities

u1 = x0.6
1 y0.4

1 u2 = x0.2
2 y0.8

2

u1,u2 performance
x1, x2 allocated memory bandwidth
y1, y2 allocated cache size

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Possible Allocations

• 2 users

• 12MB cache

• 24GB/s bandwidth
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Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Envy-Free (EF) Allocations

• Identify EF allocations
for each user

• u1(A1) ≥ u1(A2)

• u2(A2) ≥ u2(A1)
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Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Pareto-Efficient (PE) Allocations

• No other allocation improves utility without harming others
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Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Fair Allocations

Fairness = Envy-freeness + Pareto efficiency

Memory Bandwidth

C
ac

h
e

S
iz

e

0 5 10 15 20 24

0510152024

0

2

4

6

8

10

12 0

2

4

6

8

10

12

Fair Allocations

Many possible fair allocations!

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Mechanism for Resource Elasticity Fairness

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

Guarantees desiderata

• Sharing incentives

• Envy-freeness

• Pareto efficiency

• Strategy-proofness

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Profiling for REF

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

Off-line profiling

• Synthetic benchmarks

Off-line simulations

• Various hardware

Machine learning

• α = 0.5, then update

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Fitting Utilities

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• u =
∏R

r=1 xαr
r

• log(u) =
∑R

r=1 αr log(xr)

• Use linear regression to find αr

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Cobb-Douglas Accuracy
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• Utility is instructions per cycle

• Resources are cache size, memory bandwidth

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Normalizing Utilities

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

• Compare users’ elasticities
on same scale

• u = x0.2y0.3 → u = x0.4y0.6

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Allocating Proportional Shares

Profile preferences

Fit utility function

Normalize elasticities

Allocate proportionally

u1 = x0.6
1 y0.4

1 u2 = x0.2
2 y0.8

2

x1 =
(

0.6
0.6+0.2

)
× 24 = 18GB/s

x2 =
(

0.2
0.6+0.2

)
× 24 = 6GB/s

Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Equal Slowdown versus REF
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Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Performance versus Fairness
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Zahedi et al. “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Datacenter Design and Management

Heterogeneity for Efficiency

Heterogeneous datacenters deploy mix of server- and mobile-class hardware

• “Web search using mobile cores” [ISCA’10]

• “Towards energy-proportional datacenter memory with mobile DRAM” [ISCA’12]

Heterogeneity and Markets
Agents bid for heterogeneous hardware in a market that maximizes welfare

• “Navigating heterogeneous processors with market mechanisms” [HPCA’13]

• “Strategies for anticipating risk in heterogeneous system design” [HPCA’14]

Sharing and Game Theory
Agents share multiprocessors with game-theoretic fairness guarantees

• “REF: Resource elasticity fairness with sharing incentives for multiprocessors” [ASPLOS’14]
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Datacenter Design and Management

Heterogeneity for Efficiency

Heterogeneous datacenters deploy mix of server- and mobile-class hardware

• Processors – hardware counters for CPI stack

• Memories – simulator for cache, bandwidth activity

Heterogeneity and Markets
Agents bid for heterogeneous hardware in a market that maximizes welfare

• Processors – simulator for core performance

• Server Racks – queueing models (e.g., M/M/1)

Sharing and Game Theory
Agents share multiprocessors with game-theoretic fairness guarantees

• Memories – simulator for cache, bandwidth utility
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